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Preface

The	 fourth	 edition	of	Applied	Mathematics	 shares	 the	 same	 goals,	 philosophy,
and	 style	 as	 its	 predecessors—to	 introduce	 key	 ideas	 about	 mathematical
methods	 and	modeling,	 along	with	 the	 important	 tools,	 to	mature	 seniors	 and
graduate	students	in	mathematics,	science,	and	engineering.	The	emphasis	is	on
how	mathematics	interrelates	with	the	applied	and	natural	sciences.	Prerequisites
include	 a	 good	 command	 of	 concepts	 and	 techniques	 of	 calculus,	 and
sophomore-level	 courses	 in	 differential	 equations	 and	 matrices;	 a	 genuine
interest	in	applications	in	some	area	of	science	or	engineering	is	a	must.
Readers	 should	 understand	 the	 limited	 scope	 of	 this	 text.	 Being	 a	 broad

introduction	to	the	methods	of	applied	mathematics,	it	cannot	cover	every	topic
in	 depth.	 Indeed,	 each	 chapter	 could	 be	 expanded	 into	 a	 one,	 or	 even	 several,
full-length	books.	In	fact,	readers	can	find	elementary	books	on	all	of	the	topics;
some	of	 these	 are	 cited	 in	 the	 references	 at	 the	 end	of	 the	 chapters.	 Secondly,
readers	 should	 understand	 the	mathematical	 level	 of	 the	 text.	 Some	 books	 on
applied	 mathematics	 take	 a	 highly	 practical	 approach	 and	 ignore	 technical
mathematical	issues	completely,	while	others	take	a	purely	theoretical	approach;
both	 of	 these	 approaches	 are	 valuable	 and	 part	 of	 the	 overall	 body	 of	 applied
mathematics.	Here,	we	seek	a	middle	ground	by	providing	the	physical	basis	and
motivation	 for	 the	 ideas	 and	 methods,	 and	 we	 also	 give	 a	 glimpse	 of	 deeper
mathematical	ideas.
There	 are	 major	 changes	 in	 the	 fourth	 edition.	 The	 material	 has	 been

rearranged	 and	 basically	 divided	 into	 two	 parts.	Chapters	 1	 through	 5	 involve
models	 leading	 to	 ordinary	 differential	 equations	 and	 integral	 equations,	while
Chapters	 6	 through	 8	 focus	 on	 partial	 differential	 equations	 and	 their
applications.	 Motivated	 by	 problems	 in	 the	 biological	 sciences	 where
quantitative	methods	 are	 becoming	 central,	 Chapter	 9	 deals	with	 discrete-time
models,	which	include	some	material	on	random	processes.	Sections	reviewing
elementary	methods	for	solving	systems	of	ordinary	differential	equations	have
been	 added	 in	 Chapters	 1	 and	 2.	 Many	 additional	 examples	 and	 figures	 are
included	 in	 this	 edition,	 and	 several	 new	 exercises	 appear	 throughout.	 Some
exercises	from	the	last	edition	have	been	revised	for	better	clarity,	and	many	new
exercises	are	included.	The	length	of	the	text	has	expanded	over	160	pages.	The
Table	of	Contents	details	the	specific	topics	covered.



Note	 that	equations	are	numbered	within	 sections.	Thus,	equation	 label	 (3.2)
refers	to	the	second	numbered	equation	in	Section	3	of	the	current	chapter.
My	colleagues	in	Lincoln,	who	have	often	used	the	text	in	our	core	sequence

in	applied	mathematics,	deserve	special	thanks.	Glenn	Ledder,	Richard	Rebarber,
and	Tom	Shores	have	provided	me	with	an	extensive	errata,	and	 they	supplied
several	exercises	from	graduate	qualifying	examinations,	homework,	and	course
exams.	 Former	 students	Bill	Wolesensky	 and	Kevin	 TeBeest	 read	 parts	 of	 the
earlier	manuscripts	and	both	were	often	a	sounding	board	for	suggestions.	I	am
extremely	humbled	and	grateful	 to	 those	who	used	earlier	editions	of	 the	book
and	 helped	 establish	 it	 as	 one	 of	 the	 basic	 textbooks	 in	 the	 area;	 many	 have
generously	given	me	corrections	and	suggestions,	and	many	of	the	typographical
errors	 from	 the	 third	 edition	 have	 been	 resolved.	 Because	 of	 the	 extensive
revision,	 some	 new	 ones,	 but	 hopefully	 not	 many,	 have	 no	 doubt	 appeared.	 I
welcome	suggestions,	comments,	and	corrections,	and	contact	information	is	on
the	 book’s	 website:	 http://www.unl.edu/~jlogan1/applied-math.htm.
Solutions	to	some	of	the	exercises	and	an	errata	will	appear	when	they	become
available.
My	editor	at	Wiley,	Susanne	Steitz-Filler,	along	with	Jackie	Palmieri,	deserves

praise	 for	 her	 continued	 enthusiasm	 about	 this	 new	 revision	 and	 her	 skill	 in
making	 it	 an	 efficient,	 painless	 process.	 Finally,	 my	 wife,	 Tess,	 has	 been	 a
constant	 source	of	 support	 for	my	 research,	 teaching,	 and	writing,	 and	 I	 again
take	this	opportunity	to	publicly	express	my	appreciation	for	her	encouragement
and	affection.
Suggestions	 for	 use	 of	 the	 text.	 The	 full	 text	 cannot	 be	 covered	 in	 a	 two-

semester,	3-credit	course,	but	there	is	a	lot	of	flexibility	built	into	the	text.	There
is	 significant	 independence	 among	 chapters,	 enabling	 instructors	 to	 design
special	 one-	 or	 two-semester	 courses	 in	 applied	 mathematics	 that	 meet	 their
specific	needs.
Portions	of	Chapters	1	through	5	can	form	the	basis	of	a	one-semester	course

involving	 differential	 and	 integral	 equations	 and	 the	 basic	 core	 of	 applied
mathematics.	Chapter	4	on	 the	calculus	of	variations	 is	essentially	 independent
from	the	others,	so	it	need	not	be	covered.	If	students	have	a	strong	background
in	differential	equations,	then	only	small	portions	of	Chapters	1	and	2	need	to	be
covered.
A	second	semester,	 focused	around	partial	differential	equations,	could	cover

Chapters	6,7,	and	8.	Students	have	the	flexibility	to	take	the	second	semester,	as
is	often	done	at	 the	University	of	Nebraska,	without	having	 the	 first,	 provided

http://www.unl.edu/~jlogan1/applied-math.htm


small	portions	of	Chapter	5	on	Fourier-type	expansions	is	covered.
Chapter	9,	like	Chapter	3,	is	independent	from	the	rest	of	the	book	and	can	be

covered	at	any	time.
The	 text,	 and	 its	 translations,	 have	 been	 used	 in	 several	 types	 of	 courses:

applied	 mathematics,	 mathematical	 modeling,	 differential	 equations,
mathematical	 biology,	 mathematical	 physics,	 and	 mathematical	 methods	 in
chemical	or	mechanical	engineering.
J.	David	Logan,	Lincoln,	Nebraska
April	2013



Chapter	1

Dimensional	Analysis	and	One-
Dimensional	Dynamics

The	techniques	of	dimensional	analysis	and	scaling	are	basic	 in	 the	 theory	and
practice	of	mathematical	modeling.	In	every	physical	setting	a	good	grasp	of	the
possible	 relationships	 and	 comparative	 magnitudes	 among	 the	 various
dimensioned	 parameters	 nearly	 always	 leads	 to	 a	 better	 understanding	 of	 the
problem	and	sometimes	points	the	way	toward	approximations	and	solutions.	In
this	chapter	we	 introduce	some	of	 the	basic	concepts	 from	these	 two	 topics.	A
statement	 and	 proof	 of	 the	 fundamental	 result	 in	 dimensional	 analysis,	 the	 Pi
theorem,	 is	 presented,	 and	 scaling	 is	 discussed	 in	 the	 context	 of	 reducing
problems	to	dimensionless	form.	The	notion	of	scaling	points	the	way	toward	a
proper	treatment	of	perturbation	methods,	especially	boundary	layer	phenomena
in	 singular	 perturbation	 theory	 as	 well	 as	 algebraic	 equations	 with	 small
parameters.
The	first	part	of	Section	1.3	is	a	review	of	ordinary	differential	equations.	This

material	may	be	perused	or	used	as	a	reference	by	readers	familiar	with	the	basic
concepts	and	elementary	solution	methods.	The	last	part	includes	a	discussion	of
stability	and	bifurcation;	it	may	be	less	familiar.



1.1	Dimensional	Analysis

1.1.1	The	Program	of	Applied
Mathematics
Applied	 mathematics	 is	 a	 broad	 subject	 area	 in	 the	 mathematical	 sciences
dealing	 with	 those	 topics,	 problems,	 and	 techniques	 that	 have	 been	 useful	 in
analyzing	real-world	phenomena.	In	a	very	 limited	sense	 it	 is	a	set	of	methods
that	are	used	 to	solve	 the	equations	 that	come	out	of	science,	engineering,	and
other	 areas.	Traditionally,	 these	methods	were	 techniques	used	 to	examine	and
solve	ordinary	 and	partial	 differential	 equations,	 and	 integral	 equations.	At	 the
other	end	of	the	spectrum,	applied	mathematics	is	applied	analysis,	or	the	theory
that	underlies	the	methods.	But,	in	a	broader	sense,	applied	mathematics	is	about
mathematical	modeling	and	an	entire	process	that	 intertwines	with	the	physical
reality	that	underpins	its	origins.
By	 a	mathematical	model	 we	 mean	 an	 equation,	 or	 set	 of	 equations,	 that

describes	 some	 physical	 problem	 or	 phenomenon	 having	 its	 origin	 in	 science,
engineering,	 economics,	 or	 some	 other	 area.	 By	mathematical	modeling	 we
mean	 the	process	by	which	we	 formulate	and	analyze	 the	model.	This	process
includes	introducing	the	important	and	relevant	quantities	or	variables	involved
in	the	model,	making	model-specific	assumptions	about	those	quantities,	solving
the	model	equations	by	some	analytic	or	numerical	method,	and	then	comparing
the	 solutions	 to	 real	 data	 and	 interpreting	 the	 results.	 This	 latter	 process,
confronting	the	model	with	data,	is	often	the	most	difficult	part	of	the	modeling
process.	 It	 involves	 determining	 parameter	 values	 from	 the	 experimental	 data.
This	book	does	not	address	these	important	issues,	and	we	refer	to	texts	on	data-
fitting	techniques.	This	confrontation	may	lead	to	revision	and	refinement	until
we	are	satisfied	that	the	model	accurately	describes	the	physical	situation	and	is
predictive	of	other	similar	observations.	This	process	 is	depicted	schematically
in	 Fig.	 1.1.	 Thus,	 the	 subject	 of	 mathematical	 modeling	 involves	 physical
intuition,	formulation	of	equations,	solution	methods,	analysis,	and	data	fitting.
A	 good	 mathematical	 model	 is	 simple,	 applies	 to	 many	 situations,	 and	 is
predictive.



Figure	1.1	Schematic	of	the	modeling	process.

In	 summary,	 in	mathematical	modeling	 the	overarching	objective	 is	 to	make
quantitative	sense	of	the	world	as	we	observe	it,	often	by	inventing	caricatures	of
reality.	Scientific	exactness	is	sometimes	sacrificed	for	mathematical	tractability.
Model	 predictions	 depend	 strongly	 on	 the	 assumptions,	 and	 changing	 the
assumptions	 changes	 the	 model.	 If	 some	 assumptions	 are	 less	 critical	 than
others,	we	 say	 the	model	 is	 robust	 to	 those	 assumptions.	 They	 help	 us	 clarify
verbal	descriptions	of	nature	and	the	mechanisms	that	make	up	natural	law,	and
they	help	us	determine	which	parameters	and	processes	are	important,	and	which
are	unimportant.
Another	 issue	 is	 the	 level	 of	 complexity	of	 a	model.	With	modern	 computer

technology	 it	 is	 tempting	 to	 build	 complicated	 models	 that	 include	 every
possible	effect	we	can	think	of,	with	large	numbers	of	parameters	and	variables.
Simulation	models	like	these	have	their	place,	but	computer	runs	do	not	always
allow	 us	 to	 discern	 which	 are	 the	 important	 processes	 and	 which	 are	 not.	 Of
course,	the	complexity	of	the	model	depends	upon	the	data	and	the	purpose,	but
it	 is	 usually	 a	 good	 idea	 to	 err	 on	 the	 side	 of	 simplicity	 and	 then	 build	 in
complexity	as	it	is	needed	or	desired.
Finally,	authors	have	 tried	 to	classify	models	 in	several	ways—stochastic	vs.

deterministic,	 continuous	 vs.	 discrete,	 static	 vs.	 dynamic,	 quantitative	 vs.
qualitative,	descriptive	vs.	explanatory,	and	so	on.	In	this	book	we	are	interested
in	modeling	the	underlying	reasons	for	the	phenomena	we	observe	(explanatory)
rather	 than	 fitting	 the	 data	 with	 formulas	 (descriptive)	 as	 is	 often	 done	 in
statistics.	 For	 example,	 fitting	measurements	 of	 the	 size	 of	 an	 animal	 over	 its
lifetime	by	a	regression	curve	is	descriptive,	and	it	gives	some	information.	But
describing	 the	 dynamics	 of	 growth	 by	 a	 differential	 equation	 relating	 growth
rates,	 food	 assimilation	 rates,	 and	 energy	maintenance	 requirements	 tells	more
about	the	underlying	processes	involved.
Models	 are	 a	 blend	 of	 physical	 laws,	 such	 as	 conservation	 of	mass,	 energy,

etc.,	experimental	results	that	lead	to	constitutive	relations,	or	equations	based	on
experiment,	 and	 even	 ad	 hoc	 assumptions	 when	 more	 specific	 evidence	 is



lacking.	 The	 reader	 is	 already	 familiar	 with	 many	 models.	 In	 an	 elementary
science	or	calculus	course	we	learn	that	Newton’s	second	law,	force	equals	mass
times	 acceleration,	 governs	 mechanical	 systems	 like	 falling	 bodies;	 Newton’s
inverse-square	law	of	gravitation	describes	the	motion	of	the	planets;	Ohm’s	law
in	circuit	theory	dictates	the	voltage	drop	across	a	resistor	in	terms	of	the	current;
the	law	of	mass	action	in	chemistry	describes	how	fast	chemical	reactions	occur;
or	the	logistic	equation,	an	intuitive	ad	hoc	model	of	growth	and	competition	in	a
population.
The	first	step	in	modeling	is	to	select	the	relevant	variables	(independent	and

dependent)	and	parameters	that	we	need	to	describe	the	problem.	Usually	these
are	 based	 on	 available	 experimental	 data	 and	 natural	 laws.	 Physical	 quantities
have	dimensions	 like	time,	distance,	degrees,	and	so	on,	or	corresponding	units
like	 seconds,	 meters,	 and	 degrees	 Celsius.	 The	 equations	 we	 write	 down	 as
models	must	be	dimensionally	correct.	Apples	cannot	equal	oranges.	Verifying
that	each	term	in	our	model	has	the	same	dimensions	is	the	first	task	in	obtaining
a	correct	equation.	Also,	checking	dimensions	can	often	give	us	insight	into	what
a	term	in	the	model	might	be.	We	always	should	be	aware	of	the	dimensions	of
the	quantities,	both	variables	and	parameters,	in	a	model,	and	we	should	always
try	to	identify	the	physical	meaning	of	 the	terms	in	the	equations	we	obtain.	A
general	rule	is	to	always	let	the	physical	problem	and	the	data	available	drive	the
mathematics,	and	not	vice-versa.
It	would	be	a	limited	view	to	believe	that	applied	mathematics	consists	only	of

developing	techniques	and	algorithms	to	solve	problems	that	arise	in	a	physical
or	 applied	 context.	 Applied	 mathematics	 deals	 with	 all	 the	 stages	 of	 the
modeling	 process,	 not	merely	 the	 formal	 solution.	 It	 is	 true	 that	 an	 important
aspect	 of	 applied	 mathematics	 is	 studying,	 investigating,	 and	 developing
procedures	 that	 are	 useful	 in	 solving	 mathematical	 problems:	 these	 include
analytic	 and	 approximation	 techniques,	 numerical	 analysis,	 and	 methods	 for
solving	 differential	 and	 integral	 equations.	 It	 is	 more	 the	 case,	 however,	 that
applied	 mathematics	 deals	 with	 all	 phases	 of	 the	 problem.	 Formulating	 the
model	and	understanding	its	origin	in	empirics	are	crucial	steps.	Because	there	is
a	 constant	 interplay	 between	 the	 various	 stages,	 the	 scientist,	 engineer,	 or
mathematician	 must	 understand	 each	 phase.	 For	 example,	 the	 solution	 stage
sometimes	 involves	 making	 approximations	 that	 lead	 to	 a	 simplification;	 the
approximations	 often	 come	 from	a	 careful	 examination	 of	 the	 physical	 reality,
which	in	turn	suggests	what	terms	may	be	neglected,	what	quantities	(if	any)	are
small,	 and	 so	 on.	 The	 origins	 and	 analysis	 are	 equally	 important.	 Indeed,



physical	insight	forces	us	toward	the	right	questions	and	at	times	leads	us	to	the
theorems	 and	 their	 proofs.	 In	 fact,	 mathematical	 modeling	 has	 been,	 and
remains,	one	of	the	main	driving	forces	for	mathematics	itself.
In	 the	 first	 part	 of	 this	 chapter	 our	 aim	 is	 to	 focus	 on	 the	 first	 phase	 of	 the

modeling	 process.	 Our	 strategy	 is	 to	 formulate	 models	 for	 various	 physical
systems	while	emphasizing	the	interdependence	of	mathematics	and	the	physical
world.	Through	study	of	the	modeling	process	we	gain	insight	into	the	equations
themselves.	 In	addition	 to	presenting	some	concrete	examples	of	modeling,	we
also	 discuss	 two	 techniques	 that	 are	 useful	 in	 developing	 and	 interpreting	 the
model	equations.	One	technique	is	dimensional	analysis,	and	the	other	is	scaling.
The	 former	 permits	 us	 to	 understand	 the	 dimensional	 (meaning	 length,	 time,
mass,	 etc.)	 relationships	 of	 the	 quantities	 in	 the	 equations	 and	 the	 resulting
implications	 of	 dimensional	 homogeneity.	 Scaling	 is	 a	 technique	 that	 helps	 us
understand	 the	magnitude	 of	 the	 terms	 that	 appear	 in	 the	model	 equations	 by
comparing	the	quantities	to	intrinsic	reference	quantities	that	appear	naturally	in
the	 physical	 situation.	 A	 side	 benefit	 in	 scaling	 differential	 equations,	 for
example,	is	in	the	great	economy	it	affords;	more	often	than	not,	the	number	of
independent	parameters	can	be	significantly	reduced.



1.1.2	Dimensional	Methods
One	 of	 the	 basic	 techniques	 that	 is	 useful	 in	 the	 initial,	 modeling	 stage	 of	 a
problem	 is	 the	 analysis	 of	 the	 relevant	 quantities	 and	 how	 they	must	 relate	 to
each	other	in	a	dimensional	way.	Simply	put,	apples	cannot	equal	oranges	plus
bananas;	 equations	 must	 have	 a	 consistency	 to	 them	 that	 precludes	 every
possible	relationship	among	the	variables.	Stated	differently,	equations	must	be
dimensionally	 homogeneous.	 These	 simple	 observations	 form	 the	 basis	 of	 the
subject	known	as	dimensional	analysis.	 The	methods	 of	 dimensional	 analysis
have	led	to	 important	results	 in	determining	the	nature	of	physical	phenomena,
even	when	 the	 governing	 equations	were	 not	 known.	This	 has	 been	 especially
true	in	continuum	mechanics,	out	of	which	the	general	methods	of	dimensional
analysis	evolved.
The	 cornerstone	 result	 in	 dimensional	 analysis	 is	 known	 as	 the	Pi	 theorem.

The	Pi	theorem	states	that	if	there	is	a	physical	law	that	gives	a	relation	among	a
certain	 number	 of	 dimensioned	 physical	 quantities,	 then	 there	 is	 an	 equivalent
law	 that	can	be	expressed	as	a	 relation	among	certain	dimensionless	quantities
(often	 noted	 by	 π1,	 π2,…,	 and	 hence	 the	 name).	 In	 the	 early	 1900s,	 E.
Buckingham	formalized	the	original	method	used	by	Lord	Rayleigh	and	gave	a
proof	 of	 the	 Pi	 theorem	 for	 special	 cases;	 now	 the	 theorem	 often	 carries	 his
name.	Birkhoff	(1950)	can	be	consulted	for	a	bibliography	and	history.

Example	1.1
(Atomic	explosion)	To	communicate	the	flavor	and	power	of	this	classic	result,
we	consider	a	calculation	made	by	the	British	applied	mathematician	G.	I.	Taylor
in	the	late	1940s	to	compute	the	yield	of	the	first	atomic	explosion	after	viewing
photographs	of	the	spread	of	the	fireball.	In	such	an	explosion	a	large	amount	of
energy	E	 is	 released	 in	 a	 short	 time	 (essentially	 instantaneously)	 in	 a	 region
small	enough	to	be	considered	a	point.	From	the	center	of	the	explosion	a	strong
shock	wave	spreads	outward;	the	pressure	behind	it	is	on	the	order	of	hundreds
of	 thousands	 of	 atmospheres,	 far	 greater	 than	 the	 ambient	 air	 pressure	 whose
magnitude	can	be	accordingly	neglected	in	the	early	stages	of	the	explosion.	It	is
plausible	that	there	is	a	relation	between	the	radius	of	the	blast	wave	front	r,	time
t,	the	initial	air	density	ρ,	and	the	energy	released	E.	Hence,	we	assume	there	is	a
physical	law



(1.1)	
which	 postulates	 a	 functional	 relationship	 among	 these	 four	 dimensioned
quantities.	The	Pi	theorem	states	that	there	is	an	equivalent	physical	law	between
the	independent	dimensionless	quantities	that	can	be	formed	from	t,	r,	E,	and	ρ.
We	 note	 that	 t	 has	 dimensions	 of	 time,	 r	 has	 dimensions	 of	 length,	 E	 has
dimensions	of	mass	·	length2	·	time−2,	and	ρ	has	dimensions	of	mass	·	length−3.
Hence,	 the	 quantity	 r5ρ/t2E	 is	 dimensionless,	 because	 all	 of	 the	 dimensions
cancel	out	of	 this	quantity	 (this	 is	easy	 to	check).	 It	 is	not	difficult	 to	observe,
and	we	 shall	 show	 it	 later,	 that	 no	 other	 independent	 dimensionless	 quantities
can	 be	 formed	 from	 t,	 r,	 E,	 and	 ρ.	 The	 Pi	 theorem	 then	 guarantees	 that	 the
physical	 law	 (1.1)	 is	 equivalent	 to	 a	 physical	 law	 involving	 only	 the
dimensionless	quantities;	in	this	case

(1.2)	
because	 there	 is	 only	 one	 such	 quantity,	where	 f	 is	 some	 function	 of	 a	 single
variable.	From	(1.2)	it	follows	that	the	physical	law	must	take	the	form	(a	root	of
(1.2))

or

(1.3)	
where	C	 is	 a	 constant.	Therefore,	 just	 from	dimensional	 reasoning	 it	 has	 been
shown	that	the	radius	of	the	wave	front	depends	on	the	two-fifths	power	of	time.
Experiments	 and	 photographs	 of	 explosions	 confirm	 this	 dependence.	 The
constant	C	 depends	 on	 the	 dimensionless	 ratio	 of	 the	 specific	 heat	 at	 constant
pressure	 to	 the	 specific	 heat	 at	 constant	 volume.	 By	 fitting	 the	 curve	 (1.3)	 to
experimental	data	of	r	versus	t,	the	initial	energy	yield	E	can	be	computed,	since
C	and	ρ	are	known	quantities.	(See	Exercise	3.)	Although	this	calculation	is	only
a	 simple	 version	 of	 the	 original	 argument	 given	 by	 Taylor,	 we	 infer	 that
dimensional	 reasoning	 can	 give	 crucial	 insights	 into	 the	 nature	 of	 a	 physical
process	 and	 is	 an	 invaluable	 tool	 for	 the	 applied	 mathematician,	 scientist,	 or
engineer.

Example	1.2



(Height	of	a	projectile)	Let	us	imagine	going	outside	and	asking	how	high	we
can	 throw	 a	 baseball	 vertically	 upward.	 What	 would	 the	 maximum	 height	 h
depend	on?	We	may	 conjecture	 that	 it	 depends	 on	 the	mass	m	 of	 the	ball,	 the
acceleration	of	gravity	g,	 and	 the	velocity	v	with	which	we	propel	 it.	For	now
let’s	ignore	the	air	resistance,	which	could	be	another	issue.	We	can	learn	a	lot	by
dimensional	methods.	Assume	a	physical	law	of	the	form

relating	 the	four	quantities	we	selected.	All	of	 them	can	be	written	 in	 terms	of
fundamental	 dimensions	 M	 (mass),	 L	 (length),	 and	 T	 (time).	 If	 Π	 is	 a
dimensionless	quantity	that	can	be	formed	from	m,	g,	v,	and	h,	then

for	some	powers	a,	b,	c,	and	d.	This	means

Because	Π	is	dimensionless,	 the	dimensions	must	cancel	and	all	 the	exponents
must	be	zero;	we	obtain	the	homogeneous	system	of	equations

Clearly,	a	 =	 0,	 and	 the	 last	 two	 equations	 have	 one	 degree	 of	 freedom	 (three
unknowns	 and	 only	 two	 equations).	 So,	 pick	 c	 =	 −2,	which	 gives	 b	=	 d	 =	 1.
(Note	that	any	multiple	of	this	solution	is	also	a	solution.)	We	have	shown	that	a
dimensionless	quantity	Π	has	the	form

There	 is	 only	 one	 such	 independent	 dimensionless	 variable	 (modulo	 the
exponents	 being	multiplied	 by	 some	 constant).	We	 conclude	 that	 the	 physical
law	can	be	written	in	terms	of	this	single	dimensionless	variable,	or

where	C	is	some	constant.	This	means

so	the	maximum	height	depends	on	the	square	of	the	velocity	and	the	inverse	of
gravity.	 Based	 on	 minimal	 assumptions	 and	 dimensional	 reasoning	 we	 have
learned	a	 lot.	For	example,	 if	we	double	 the	velocity,	 the	height	 is	quadrupled.
How	would	we	determine	the	constant	C?	A	single	experiment	that	measures	h
and	v	suffices	(g	is	known).
As	an	aside,	there	is	another	aspect	of	dimensional	analysis	that	is	important	in

engineering,	 namely	 the	 design	 of	 small	 laboratory-scale	 models	 (say	 of	 an



airplane	 or	 ship)	 that	 behave	 like	 their	 real	 counterparts.	 A	 discussion	 of	 this
important	topic	is	not	treated	here,	but	can	be	found	in	many	engineering	texts,
especially	books	on	fluid	mechanics.

Example	1.3
(Air	resistance)	Those	who	bike	have	certainly	noticed	 that	 the	 force	F	 (mass
times	length,	per	time-squared)	of	air	resistance	appears	to	be	positively	related
to	 their	 speed	 v	 (length	 per	 time)	 and	 cross-sectional	 area	A	 (length-squared).
But	force	involves	mass,	so	it	cannot	depend	only	upon	v	and	A.	Therefore,	let	us
add	fluid,	or	air,	density	ρ	(mass	per	length-cubed),	and	assume	a	relation	of	the
form

for	some	function	 f	 to	be	determined.	What	are	 the	possible	 forms	of	 f?	To	be
dimensionally	correct,	the	right	side	must	be	a	force.	What	powers	of	ρ,	A,	and	v
would	combine	to	give	a	force,	that	is,

where	k	 is	 some	 constant	without	 any	units	 (i.e.,	 dimensionless).	 If	we	denote
mass	by	M,	length	by	L,	and	time	by	T,	then	the	last	equation	requires

Equating	exponents	of	M,	L,	and	T	gives

Therefore	x	=	1,	y	=	1,	and	z	=	2.	So	the	only	relation	must	be

Consequently,	the	force	must	depend	upon	the	square	of	the	velocity,	a	fact	often
used	 in	 problems	 involving	 fluid	 resistance,	 and	 it	 must	 be	 proportional	 to
density	 of	 air	 and	 area	 of	 the	 object.	 Again,	 substantial	 information	 can	 be
obtained	from	dimensional	arguments	alone.

EXERCISES
1.	A	pendulum	executing	small	vibrations	has	period	P	and	length	l,	and	m	is
the	mass	of	the	bob.	Can	P	depend	only	on	l	and	m?	If	we	assume	P	depends
on	l	and	the	acceleration	g	due	to	gravity,	then	show	that	P	=	constant	
2.	A	detonation	wave,	or	shock	front,	moves	through	a	high	explosive	with
velocity	D,	 thereby	 initiating	 an	 explosion	 that	 releases	 a	 specific	 energy
(energy	per	unit	mass)	E.	If	there	is	a	relationship	between	e	and	D,	what	can



be	concluded?
3.	 In	 the	blast	wave	problem	take	C	=	1	 (a	value	used	by	Taylor)	 in	 (1.3),
and	use	ρ	=	1.25	kg/m3.	Some	of	the	radius	(m)	vs.	time	(milliseconds)	data
for	the	Trinity	explosion	is	given	in	the	following	table:

Using	 these	data,	 estimate	 the	yield	of	 the	Trinity	 explosion	 in	kilotons	 (1
kiloton	equals	4.186(10)12	joules).	Compare	your	answer	to	the	actual	yield
of	approximately	21	kilotons.
Least	Squares:	Least	squares	is	a	popular	method	of	choosing	parameters	in
a	function,	or	curve,	in	order	to	give	the	best	fit	to	a	set	of	data	points.	The
philosophy	is	that	the	curve	of	best	fit	is	the	one	that	minimizes	the	sums	of
squares	of	the	vertical	distances	between	the	curve	and	the	data	points.	Let
(xi,	yi),	i	=	1,	2,…,	n	be	n	data	points,	and,	for	example,	let	y	=	F(x,	a,	b)	be	a
fitting	 function	 with	 two	 unknown	 parameters	 a	 and	 b.	 Then	 the	 least
squares	method	is	to	determine	a	and	b	such	that

From	calculus,	a	necessary	condition	for	D	to	be	minimum	is	that

which	 can	 be	 solved	 for	 a	 and	 b.	 With	 certain	 caveats,	 the	 least	 squares
method	can	be	extended	to	any	number	of	parameters.	Texts	on	data	fitting
can	be	consulted	for	additional	information.
4.	 In	 the	 blast	 wave	 problem	 in	 Example	 1.1,	 assume,	 instead	 of	 (1.1),	 a
physical	law	of	the	form

where	P	 is	 the	 ambient	 air	 pressure.	 By	 inspection,	 find	 two	 independent
dimensionless	 parameters	 formed	 from	 t,	 r,	 ρ,	 e,	 and	 P.	 Naming	 the	 two
dimensionless	parameters	π1	and	π2	and	assuming	the	law	is	equivalent	to

does	it	still	follow	that	r	varies	like	the	two-fifths	power	of	t?
5.	 The	 law	 governing	 the	 distance	 x	 an	 object	 falls	 in	 time	 t	 in	 a	 field	 of
constant	gravitational	acceleration	g	with	no	air	resistance	is	x	=	 gt2.	How
many	independent	dimensionless	quantities	can	be	formed	from	t,	x,	and	g?



Rewrite	 the	 physical	 law	 in	 terms	 of	 dimensionless	 quantities.	 Can	 the
distance	a	body	falls	depend	on	the	mass	m	as	well?	That	is,	can	there	be	a
physical	law	of	the	form	f(t,	x,	g,	m)	=	0?
6.	 A	 ball	 tossed	 upward	 with	 initial	 velocity	 v	 reaches	 a	 height	 at	 time	 t
given	by	x	=	− gt2+vt,	where	g	is	the	acceleration	due	to	gravity.	Show	this
law	 is	 dimensionally	 consistent.	 Find	 two	 independent	 dimensionless
variables	 (call	 them	 y	 and	 s)	 and	 rewrite	 the	 law	 only	 in	 terms	 of	 the
dimensionless	 quantities.	 Plot	 the	 dimensionless	 law	 in	 the	 sy	 plane,	 and
make	 an	 argument	 that	 the	 single,	 dimensionless	 plot	 contains	 all	 the
information	in	 the	graphs	of	all	 the	plots	of	x	=	− gt2	+	vt	 (x	vs.	 t),	 for	all
possible	parameter	values	g	and	v.



1.1.3	The	Pi	Theorem
The	Pi	theorem	states	that	it	is	generally	true	that	a	physical	law
(1.4)	

relating	m	dimensional	quantities	q1,	q2,…,	qm	is	equivalent	to	a	physical	law

that	relates	the	k	dimensionless	quantities	π1,	π2,…,	πk	 that	can	be	formed	from
q1,	q2,…,	qm.	There	are	 tremendous	values	 in	a	dimensionless	formulation	of	a
problem.	One,	the	formula	is	independent	of	the	set	of	units	used;	two,	there	are
fewer	 dimensionless	 quantities	 than	 the	 dimensioned	 ones,	 and	 thus	 there	 is
economy	 in	 the	 formulation;	 finally,	 important	 relations	 can	 be	 discovered
among	 the	 quantities.	 Before	 making	 a	 formal	 statement,	 we	 introduce	 some
basic	terminology.
First,	the	m	dimensional	quantities	q1,	q2,…,	qm,	which	are	like	the	quantities	t,

r,	ρ,	and	e	in	the	blast	wave	example,	Example	1.1,	are	dimensioned	quantities.
This	means	that	they	can	be	expressed	in	a	natural	way	in	terms	of	a	minimal	set
of	 fundamental	 dimensions	L1,	L2,…,	Ln	 (n	<	m),	 appropriate	 to	 the	 problem
being	studied.	In	the	blast	wave	problem,	time	T,	length	L,	and	mass	M	can	be
taken	to	be	the	fundamental	dimensions,	since	each	quantity	t,	r,	ρ,	and	e	can	be
expressed	in	terms	of	T,	L,	and	M.	For	example,	the	dimensions	of	the	energy	e
are	ML2T−2.	 In	 general,	 the	 dimensions	 of	 qi,	 denoted	 by	 the	 square	 brackets
notation	[qi],	can	be	written	in	terms	of	the	fundamental	dimensions	as

(1.5)	
for	some	choice	of	exponents	a1i,…,	ani.	If	[qi]	=	1,	then	the	quantity	qi	is	said	to
be	dimensionless.
We	proceed	as	follows.	If	π	is	a	quantity	of	the	form

a	monomial	in	the	dimensioned	quantities,	we	want	to	find	all	exponents	p1,…,
pm	for	which	π	is	dimensionless,	or	[π]	=	1.	Then,



The	 powers	 of	 the	 Li	 must	 sum	 to	 zero,	 and	 thus	 we	 obtain	 a	 homogeneous
system	of	n	equations	in	m	unknowns	p1,…,	pm,	given	in	matrix	form	by

where	p	=	[p1,…,	pm]T	 is	a	column	vector	of	 the	unknown	exponents,	and	A	is
the	n	×	m	matrix

called	the	dimension	matrix.	The	elements	in	the	ith	column	give	the	exponents
for	qi	in	terms	of	the	powers	of	L1,…,	Ln.	It	follows	from	a	key	result	in	linear
algebra	that	the	number	of	independent	solutions	is	m	−	r,	where	r	is	the	rank	of
A.	We	recall	that	the	rank	of	a	matrix	is	the	number	of	linearly	independent	rows,
which,	 when	 the	 matrix	 is	 reduced	 to	 row	 echelon	 form,	 is	 the	 number	 of
nonzero	 rows.	So,	 the	number	of	 independent	dimensionless	variables	 that	can
be	formed	from	q1,…,	qm	is	m	−	r.
What	assumptions	are	needed	to	show	equivalence	of	the	dimensionless	form

of	 the	 physical	 law?	 The	 fundamental	 assumption	 regarding	 the	 physical	 law
(1.4)	 goes	 back	 to	 the	 simple	 statement	 that	 apples	 cannot	 equal	 oranges.	We
assume	that	(1.4)	is	unit	free	in	the	sense	that	it	is	independent	of	the	particular
set	of	units	chosen	to	express	the	quantities	q1,	q2,…,	qm.	We	are	distinguishing
the	word	unit	 from	 the	word	dimension.	 By	 units	we	mean	 specific	 physical
units	like	seconds,	hours,	days,	and	years;	all	of	these	units	have	dimensions	of
time.	 Similarly,	 grams,	 kilograms,	 slugs,	 and	 so	 on	 are	 units	 of	 the	 dimension
mass.	 Any	 fundamental	 dimension	 Li	 has	 the	 property	 that	 its	 units	 can	 be
changed	upon	multiplication	by	the	appropriate	conversion	factor	λi	>	0	to	obtain

i	in	a	new	system	of	units.	We	write

The	units	of	derived	quantities	q	can	be	changed	in	a	similar	fashion.	If

then

gives	 q	 in	 the	 new	 system	 of	 units.	 The	 physical	 law	 (1.4)	 is	 said	 to	 be
independent	of	the	units	chosen	to	express	the	dimensional	quantities	q1,	q2,…,



qm,	or	unit-free,	 if	 f(q1,…,	qm)	=	0	and	 f( 1,…, m)	 =	 0	 are	 equivalent	 physical
laws.	More	formally:

Definition	1.4
The	physical	law	(1.4)	is	unit-free	if	for	all	choices	of	real	positive	numbers	λ1,
…,	λn	we	have	f( 1,…,	 m)	=	0,	if,	and	only	if,	f(q1,…,	qm)	=	0,.

Example	1.5
The	physical	law

(1.6)	
relates	the	distance	x	a	body	falls	in	a	constant	gravitational	field	g	to	the	time	t.
In	the	cgs	system	of	units,	x	is	given	in	centimeters	(cm),	t	in	seconds,	and	g	in
cm/sec2.	If	we	change	units	for	the	fundamental	quantities	x	and	t	to	inches	and
minutes,	then	in	the	new	system	of	units

where	 	(in/cm)	and	 	(min/sec).	Because	[g]	=	LT−2,	we	have

Then

Therefore	(1.6)	is	unit-free.
We	can	now	give	a	formal	statement	of	the	Pi	theorem.

Theorem	1.6
(Pi	theorem)	Let
(1.7)	

be	a	unit-free	physical	law	that	relates	the	dimensional	quantities	q1,	q2,…,	qm.
Let	L1,…,	Ln(n	<	m)	be	fundamental	dimensions	with

and	let	r	=	rank	A,	where	A	is	the	dimension	matrix	(1.5).	Then	there	exists	m–r
independent	dimensionless	quantities	π1,	π2,…,	πm–r	that	can	be	formed	from	q1,
…,	qm,	and	the	physical	law	(1.7)	is	equivalent	to	an	equation

(1.8)	



expressed	only	in	terms	of	the	dimensionless	quantities.
The	existence	of	a	physical	 law	(1.7)	 is	an	assumption.	 In	practice	one	must

conjecture	 which	 are	 the	 relevant	 variables	 in	 a	 problem	 and	 then	 apply	 the
machinery	of	the	theorem.	The	resulting	dimensionless	physical	law	(1.8)	must
be	checked	by	experiment,	or	whatever,	 in	an	effort	 to	establish	 the	validity	of
the	original	assumptions.
We	prove	the	Pi	theorem	after	more	examples.

Example	1.7
(Heat	transfer)	At	time	t	=	0	an	amount	of	heat	energy	e,	concentrated	at	a	point
in	space,	is	allowed	to	diffuse	outward	into	a	region	with	temperature	zero.	If	r
denotes	 the	 radial	 distance	 from	 the	 source	 and	 t	 is	 time,	 the	 problem	 is	 to
determine	 the	 temperature	 u	 as	 a	 function	 of	 r	 and	 t.	 This	 problem	 can	 be
formulated	as	a	boundary	value	problem	for	a	partial	differential	equation	 (the
heat	 equation,	 as	 in	 Chapter	 6),	 but	 here	 we	 see	 what	 can	 be	 learned	 from	 a
careful	 dimensional	 analysis	 of	 the	 problem.	 The	 first	 step	 is	 to	 make	 an
assumption	regarding	which	quantities	affect	the	temperature	u.	Clearly	t,	r,	and
e	 are	 relevant	 quantities.	 It	 also	 is	 reasonable	 that	 the	 heat	 capacity	 c,	 with
dimensions	of	energy	per	degree	per	volume,	of	the	region	plays	a	role,	as	will
the	rate	at	which	heat	diffuses	outward.	The	latter	is	characterized	by	the	thermal
diffusivity	k	of	dimensions	length-squared	per	time.	Therefore,	we	conjecture	a
physical	law	of	the	form

which	 relates	 the	 six	quantities,	 t,	 r,	 u,	 e,	 k,	 c.	The	next	 step	 is	 to	determine	 a
minimal	set	of	fundamental	dimensions	L1,…,	Ln	by	which	the	six-dimensional
quantities	can	be	expressed.	A	suitable	selection	would	be	the	four	quantities	T
(time),	L	(length),	Θ	(temperature),	and	E	(energy1).	Then

and	the	dimension	matrix	A	is	given	by



Here	m	=	6,	n	=	4,	and	the	rank	of	the	dimension	matrix	is	r	=	4.	Consequently,
there	are	m	−	r	=	2	dimensionless	quantities	that	can	be	formed	from	t,	r,	u,	e,	k,
and	c.	To	find	them	we	proceed	as	follows:	If	π	is	dimensionless,	then	for	some
choice	of	α1,…,	α6

Therefore,	 the	 exponents	must	 vanish	 and	we	 obtain	 four	 homogeneous	 linear
equations	for	α1,…,	α6,	namely

The	coefficient	matrix	of	this	homogeneous	linear	system	is	just	 the	dimension
matrix	A.	From	elementary	matrix	 theory	 the	number	of	 independent	 solutions
equals	the	number	of	unknowns	minus	the	rank	of	A.	Each	independent	solution
will	give	rise	to	a	dimensionless	variable.	Now	the	method	unfolds	and	we	can
see	 the	 origin	 of	 the	 rank	 condition	 in	 the	 statement	 of	 the	 Pi	 theorem.	 By
standard	methods	 for	 solving	 linear	 systems	we	 find	 two	 linearly	 independent
solutions

and

These	give	two	dimensionless	quantities

and

Therefore,	the	Pi	theorem	guarantees	that	the	original	physical	law	f(t,	r,	u,	e,	k,
c)	=	0	is	equivalent	to	a	physical	law	of	the	form

Solving	for	π2	gives



for	some	function	g,	or

(1.9)	
Again,	without	solving	an	equation	governing	the	diffusion	process,	we	are	able
via	 dimensional	 analysis	 to	 argue	 that	 the	 temperature	 of	 the	 region	 varies
according	to	(1.9).	For	example,	we	can	conclude	that	the	temperature	near	the
source	r	=	0	falls	off	like	t−3/2.

Example	1.8
(Blood	 flow	 in	 arteries)	 Used	 in	 conjunction	 with	 experiments,	 dimensional
analysis	 can	 be	 a	 powerful	 tool	 in	 obtaining	 theoretical	 results	 in	 all	 areas	 of
science	and	engineering.	In	this	example	we	study	how	blood	flows	in	veins	and
arteries,	 depending	on	 the	 radius	of	 the	 artery	 r,	 the	 length	of	 the	 artery	 l,	 the
density	 and	viscosity	of	blood,	ρ	 and	μ,	 and	 the	pressure	change	ΔP	 over	 that
length	segment.	Our	interest	is	the	volumetric	flow	rate	Q	(volume	of	blood	per
second)	and	how	those	quantities	affect	it.	Of	course,	what	we	say	applies	to	any
context	of	viscous	flow	in	a	pipe.
There	are	six	quantities.	It	is	fairly	clear	that	the	dimensions	of	five	of	them	are

but	 the	 viscosity	 may	 be	 less	 uncertain	 for	 many.	 Therefore	 we	 give	 a	 brief,
heuristic	 explanation	 of	 viscosity	 that	 reveals	 its	 dimensions.	We	 all	 have	 an
intuitive	idea	about	viscosity.	Honey	is	very	viscous,	oil	perhaps	a	little	less,	and
alcohol	less	yet.	Let	us	imagine	a	viscous	fluid	between	two	infinite	plates	made
of	metal,	for	example.	See	Fig.	1.2.	The	lower	plane	is	fixed,	and	we	pull	on	the
upper	plate	 in	 a	direction	 tangent	 to	 it,	 giving	a	 shear	 force	per	unit	 area.	The
basic	property	of	a	viscous	fluid	is	its	‘stickiness’	at	a	boundary;	it	adheres	to	a
boundary,	stationary	or	moving,	with	the	same	velocity	as	the	boundary.	So,	the
movement	of	the	upper	plate	drags	along	the	fluid	at	some	velocity;	at	the	lower
boundary	the	velocity	of	the	fluid	is	zero.	Therefore,	as	we	drag	along	the	plate,
the	 shear	 force	 imparts	 momentum	 to	 the	 fluid.	 As	 shown	 in	 the	 figure,	 the
velocity	 profile	 decreases	 from	 the	 top	 plate	 to	 zero	 at	 the	 lower	 plate.
Intuitively,	 it	 appears	 that	 the	 shear	 force	 should	 therefore	 be	 related	 to	 the
vertical	 change	 of	 the	 velocity.	As	 a	 constitutive	 assumption,	we	 take	 a	 linear
relationship	with	proportionality	constant	μ.	That	is,

Figure	1.2	A	viscous	fluid	between	a	fixed	lower	plate	and	an	upper	plate.	A



shear	force	on	the	upper	plate	transfers	momentum	downward	into	the	fluid.

force	per	area	=	μ.	change	in	velocity	per	unit	length.
Dimensionally,

or

Now	we	can	perform	a	dimensional	analysis	with	L,	T,	and	M	 as	 fundamental
dimensions.
We	make	the	assumption	there	is	a	relationship	among	these	six	quantities,	i.e.,

To	find	the	dimensionless	variables	we	set

Therefore,

and	so	the	exponents	for	the	six	quantities	must	satisfy	the	homogeneous	system

The	dimension	matrix	is

and	 it	 is	 already	 in	 reduced	 echelon	 form.	 Clearly,	 all	 three	 rows	 are	 linearly
independent	and	therefore	the	matrix	has	rank	3.	Thus,	6	−	3	=	3	dimensionless
variables	can	be	found.	Also,	from	the	properties	of	 the	matrix,	a,	c,	and	d	are



basic	variables	(the	pivot	positions)	and	b,	e,	and	f	are	free;	so	we	can	solve	for
the	three	basic	variables	in	terms	of	the	free	ones.	Using	backward	substitution,
the	solution	of	the	system	can	be	written

The	solution	can	be	written	in	vector	form	as

These	three	linearly	independent	vectors	define	the	three	sets	of	six	exponents	of
the	independent	pi	variables,	and	we	have

Note	 that	 various	 combinations	 (products	 and	 powers)	 of	 pi	 variables	 are	 also
dimensionless,	 and	we	need	 to	make	 the	appropriate	choice	 to	obtain	what	we
want,	namely	a	formula	for	Q.	There	are	 two	quantities	 that	depend	on	Q,	and
two	that	depend	on	ΔP.	We	can	eliminate	Q	by	forming	the	new	variable

Then,	the	Pi	theorem	guarantees	that	the	physical	law	is	equivalent	to

or

where	g	 is	an	arbitrary	function.	We	can	solve	for	 the	first	second	argument	 in
terms	of	the	other	two	to	get

where	G	is	again	arbitrary.	This	gives

At	 this	 point	 it	 appears	 we	 are	 at	 an	 impasse.	 However,	 we	 can	 perform
experiments	to	get	additional	information;	this	is	not	uncommon.	If	we	hold	all



of	the	quantities	fixed	except	Q	and	ΔP,	we	find	that	the	volumetric	flow	rate	Q
depends	 linearly	 on	 the	 pressure	 gradient	 ΔP.	 Then	 the	 arbitrary	 function	 G
cannot	depend	on	its	last	argument	and	we	obtain

where	H	is	arbitrary.	Next,	by	performing	another	experiment,	we	can	find	how
H	depends	on	 the	ratio	r/l.	Holding	all	 the	quantities	 fixed	but	r	and	 l,	we	can
plot	Qμ/r3ΔP	vs.	R/l,	and	we	find	that	H	is	linear.	Hence,

where	 C	 is	 a	 constant.	 In	 conclusion,	 we	 have	 deduced	 from	 dimensional
reasoning	and	experiment	that	the	volumetric	flow	rate	of	blood	depends	linearly
on	the	pressure	change	and	the	fourth	power	of	the	radius	of	the	artery.
It	is	interesting	to	note	that	the	theoretical	equations	of	viscous	fluid	dynamics,

which	we	examine	in	the	last	chapter,	imply	that	the	volumetric	flow	rate	is

Of	course,	we	used	a	lot	of	foresight	in	making	our	dimensional	calculations,	but
it	is	fairly	impressive	that	we	reached	almost	the	same	result!
One	 of	 the	 fundamental	 techniques	 for	 finding	 solutions	 to	 differential

equations	has	it	basis	in	dimensional	analysis.	Among	the	different	variables	and
parameters	in	the	problem	it	is	sometimes	possible	to	identify	new	variables	that
reduce	the	equation	to	a	much	simpler	one.	For	example,	it	may	be	possible	to
reduce	 a	 partial	 differential	 equation	 to	 an	 ordinary	 differential	 equation,	 or
transform	 a	 second-order	 differential	 equation	 into	 a	 first-order	 equation.	 This
method	works	because	of	natural	symmetries	in	the	problem	itself,	for	example,
invariance	under	a	stretching	transformation.	A	detailed	treatment	of	symmetries
and	 the	 discovery	of	 variables	 that	 simplify	 a	 problem	can	be	 found	 in	Logan
(2008),	 as	well	 as	 in	 a	 chapter	 in	 the	 first	 edition	of	 the	present	 text.	Here	we
give	a	simple	example	of	how	dimensionless	variables	can	be	used	in	this	type	of
reduction.

Example	1.9
(Diffusion	of	a	pollutant)	Imagine	a	long	canal	occupying	the	region	0	≤	x	<	∞
and	 filled	with	pollutant-free	water.	At	 its	 boundary,	x	 =	 0,	 suppose	 there	 is	 a



constant,	continual	concentration	u0	of	a	toxicant	that	diffuses	into	the	canal	over
time.	The	problem	is	to	determine	the	concentration	u	=	u(x,	t)	of	the	toxicant	at
any	x	>	0	for	all	time	t	>	0.	It	can	be	shown	(see	Chapter	6)	that	u(x,	t)	satisfies
the	partial	differential	equation

and	the	boundary	conditions

along	with	an	initial	condition

This	partial	differential	equation	is	called	the	diffusion	equation.	As	we	observe
later,	 it	 also	appears	 in	 the	context	of	heat	 conduction	and	 random	walks.	The
constant	D	 is	 called	 the	 diffusion	 constant	 and	 has	 dimensions	 length-squared
per	 time;	 it	 is	 a	 measure	 of	 how	 fast	 the	 toxicant	 diffuses	 through	 the	 water
medium.
If	 the	 preceding	 problem	 has	 a	 solution,	 then	 it	 is	 plausible	 that	 there	 is	 a

physical	law,	or	relationship,	among	the	five	quantities	involved,	or	f(x,	t,	D,	u,
u0)	=	0.	Let	us	perform	the	dimensional	analysis.	If	π	is	dimensionless,	then

Therefore,

The	dimension	matrix	is

The	matrix	 is	 already	 in	 row	 echelon	 form	 and	 has	 three	 linearly	 independent
rows;	 so	 the	 rank	 is	 3.	 Thus,	 there	 are	 5	 −	 3	 =	 2	 independent	 dimensionless
variables.	Clearly,	basic	variables	are	a,	b	and	e,	and	the	free	variables	are	c	and
e.	 Thus,	 a,	 b	 and	 e	 can	 be	 determined	 in	 terms	 of	 c	 and	 e.	 Easily,	 by	 back
substitution,

In	vector	form,	the	solution	to	the	homogeneous	system	is



where	 c	 and	 e	 are	 arbitrary	 real	 numbers.	 Therefore,	 two	 dimensionless
quantities	are

Of	course,	dimensionless	quantities	may	be	chosen	in	many	ways;	we	can	take
powers,	products,	and	quotients	and	still	maintain	independent	quantities.	Here,
for	convenience	in	subsequent	calculations,	we	take

From	the	Pi	 theorem	we	then	have	the	equivalent	 law	g(π1,	π2)	=	0,	or	solving
for	π2,

where	 F	 is	 an	 unknown	 function.	 This	 is	 the	 dependence	 given	 by	 the	 Pi
theorem.
However,	 we	 do	 not	 stop	 here.	We	 have	 a	 partial	 differential	 equation,	 the

diffusion	equation,	that	can	be	used	to	determine	F,	and	thus	u	=	u(x,	t).	To	this
end,	we	write

We	 are	 thinking	 now	 that	 the	 dimensionless	 quantity	 s	 is	 an	 independent
variable.	We	can	substitute	this	expression	into	the	diffusion	equation	as	follows.
By	the	chain	rule,

and

When	these	expressions	are	substituted	into	the	diffusion	equation,	we	obtain

or



Amazingly	 enough,	 the	 diffusion	 equation	 reduced	 to	 a	 ordinary	 differential
equation	for	F(s)!	This	cancellation	of	the	original	variables	x	and	t	 signals	 the
success	 of	 the	method.	 The	 variable	 s	 is	 called	 a	 similarity	 variable	 and	 the
solutions	we	obtain	subsequently	are	called	similarity	solutions.
This	 differential	 equation	 can	be	 solved	 easily	 by	 letting	G(s)	=	F’(s).	 Then

G’(s)	=	−(s/2)G(s),	immediately	giving	G(s)	=	C1	exp	[−s2/4].	Then

To	determine	the	constants	of	integration	we	apply	the	auxiliary	conditions.	We
have	u(0,	t)	=	u0F(0)	=	u0	and	so	F(0)	=	1.	Also	u(x,	0)	=	u0F(∞)	=	0,	or	F(∞)	=
0.	Therefore	C2	=	1	and

Using	the	well	known	integral	formula

we	get

Finally	we	can	write	the	solution	as

In	terms	of	the	original	variables,



1.1.4	Proof	of	the	Pi	Theorem
To	prove	the	Pi	theorem	we	demonstrate	two	propositions.

(i)	Among	the	quantities	q1,…,qm	there	are	m	−	r	independent	dimensionless
variables	that	can	be	formed,	where	r	is	the	rank	of	the	dimension	matrix	A.
(ii)	 If	 π1,…,	 πm–r	 are	 the	 m	 −	 r	 dimensionless	 variables,	 then	 (1.7)	 is
equivalent	to	a	physical	law	of	the	form	F(π1,…,	πm–r)	=	0.
The	 proof	 of	 (i)	 has	 been	 outlined	 earlier—the	 general	 argument	 proceeds

exactly	 like	 the	 construction	 of	 the	 dimensionless	 variables	 in	 the	 last	 several
examples.	It	makes	use	of	the	familiar	result	in	linear	algebra	that	the	number	of
linearly	 independent	 solutions	 of	 a	 set	 of	 n	 homogeneous	 equations	 in	 m
unknowns	is	m	−	r,	where	r	is	the	rank	of	the	coefficient	matrix.	For,	let	π	be	a
dimensionless	quantity.	Then
(1.10)	

for	some	p1,	p2,…,pm.	In	terms	of	the	fundamental	dimensions	L1,…,	Ln,

Because	[π]	=	1,	the	exponents	vanish,	or

(1.11)	
By	 the	 aforementioned	 theorem	 in	 linear	 algebra,	 the	 homogeneous	 system
(1.11)	 has	 exactly	 m	 −	 r	 independent	 (vector)	 solutions	 [p1,…,pm].	 (These
solutions	form	a	basis	for	the	nullspace,	or	kernel,	of	A.)	Each	solution	gives	rise
to	a	dimensionless	variable	via	 (1.10),	and	 this	completes	 the	proof	of	 (i).	The
independence	of	 the	dimensionless	variables	 is	 in	 the	 sense	of	 linear	 algebraic
independence.	 Note	 that	 we	 can	 always,	 for	 example,	 multiply	 a	 vector	 by	 a
constant,	say	1/2,	and	get	an	equivalent	dimensionless	variable,	 the	square	root
of	the	dimensionless	quantity.
The	proof	of	(ii)	makes	strong	use	of	the	hypothesis	that	the	law	is	unit-free.

The	argument	 is	subtle,	but	 it	can	be	made	almost	 transparent	 if	we	examine	a
particular	example.



Example	1.10
Consider	the	unit-free	law

(1.12)	
for	 the	 distance	 a	 particle	 falls	 in	 a	 gravitational	 field.	 If	 length	 and	 time	 are
chosen	as	fundamental	dimensions,	a	straightforward	calculation	shows	there	is
a	single	dimensionless	variable	given	by

The	remaining	variable	g	 can	be	expressed	as	g	=	xπ1/t2,	 and	we	 can	 define	 a
function	G	by

Clearly	the	law	G(x,	t,	π1)	=	0,	or

(1.13)	
is	equivalent	to	(1.12)	and	is	unit-free	because	f	is.	Then	F	is	defined	by

which	is	equivalent	to	(1.13)	and	(1.12).
We	present	the	proof	of	(ii)	in	the	special	case	when	m	=	4,	n	=	2,	and	r	=	2.

The	notation	will	be	easier,	 and	 the	general	 argument	 for	arbitrary	m,	n,	 and	 r
proceeds	in	exactly	the	same	manner.	Therefore	we	consider	a	unit-free	physical
law
(1.14)	

with

where	L1	and	L2	are	fundamental	dimensions.	The	dimension	matrix

is	assumed	to	have	rank	r	=	2.	If	π	is	a	dimensionless	quantity,	then

where	the	exponents	p1,	p2,	p3,	p4	satisfy	the	homogeneous	system	(1.11),	which
in	this	case	is

(1.15)	



We	wish	 to	 determine	p1,	p2,	p3,	p4,	 and	 the	 form	 of	 the	 two	 dimensionless
variables.	Without	loss	of	any	generality,	we	can	assume	the	first	two	columns	of
A	are	linearly	independent.	This	is	because	we	can	rearrange	the	indices	on	the	qj
so	that	the	two	independent	columns	appear	as	the	first	two.	Then	columns	three
and	four	can	be	written	as	linear	combinations	of	the	first	two,	or

(1.16)	

(1.17)	
for	some	constants	c31,	c32,	c41,	and	c42.	Substituting	into	(1.15)	gives

The	left	side	is	a	combination	of	linearly	independent	vectors,	and	therefore	the
coefficients	must	vanish,

Therefore,	we	can	solve	for	p1	and	p2	in	terms	of	p3	and	p4	and	write

The	 two	 vectors	 on	 the	 right	 represent	 two	 linearly	 independent	 solutions	 of
(1.15);	hence,	the	two	dimensionless	quantities	are

Next	define	a	function	G	by

The	physical	law
(1.18)	

holds	if,	and	only	if,	(1.14)	holds,	and	therefore	(1.18)	is	an	equivalent	physical
law.	Since	f	=	0	 is	unit-free,	 it	easily	 follows	 that	 (1.18)	 is	unit-free	 (note	 that	

	 under	 any	 change	 of	 units;	 that	 is,	 dimensionless	 variables
have	the	same	value	in	all	systems	of	units).	For	the	final	stage	of	the	argument
we	show	that	(1.18)	is	equivalent	to	the	physical	law



(1.19)	
which	will	give	 the	 result,	 for	 (1.19)	 implies	F(π1,	π2)	=	0,	where	F(π1,	π2)	
G(1,	1,	π1,	π2).	Because	(1.18)	is	a	unit-free,	we	must	have

(1.20)	
where

for	every	choice	of	the	conversion	factors	λ1,	λ2	>	0.	We	select	λ1	and	λ2	so	that	

1	=	 2	=	1.	We	are	able	to	make	this	choice	because

(1.21)	
implies

(1.22)	
And,	because	the	coefficient	matrix

in	(1.22)	is	nonsingular	(recall	the	assumption	that	the	first	two	columns	of	the
dimension	matrix	A	 are	 linearly	 independent),	 the	 system	 (1.22)	 has	 a	 unique
solution	(ln	λ1,	ln	λ2),	from	which	λ1	and	λ2	can	be	determined	to	satisfy	(1.21).
Thus	(1.19)	is	an	equivalent	physical	law	and	the	argument	is	complete.
The	general	argument	for	arbitrary	m,	n,	and	r	can	be	found	in	Birkhoff	(1950),

from	which	 the	 preceding	 proof	was	 adapted.	 This	 classic	 book	 also	 provides
additional	examples	and	historical	comments.2

In	 performing	 a	 dimensional	 analysis	 on	 a	 problem,	 two	 judgments	 are
required	at	the	beginning.

1.	The	selection	of	the	pertinent	variables.
2.	The	choice	of	the	fundamental	dimensions.
The	 first	 is	 a	 matter	 of	 experience	 and	 may	 be	 based	 on	 intuition	 or

experiments.	There	 is,	 of	 course,	 no	guarantee	 that	 the	 selection	will	 lead	 to	 a
useful	formula	after	the	procedure	is	applied.	Second,	the	choice	of	fundamental
dimensions	 may	 involve	 tacit	 assumptions	 that	 may	 not	 be	 valid	 in	 a	 given
problem.	For	example,	including	mass,	length,	and	time	but	not	force	in	a	given
problem	 assumes	 there	 is	 some	 relation	 (Newton’s	 second	 law)	 that	 plays	 an
important	 role	 and	 causes	 force	 not	 to	 be	 an	 independent	 dimension.	 As	 a
specific	 example,	 a	 small	 sphere	 falling	 under	 gravity	 in	 a	 viscous	 fluid	 is



observed	to	fall,	after	a	short	time,	at	constant	velocity.	Since	the	motion	is	un-
accelerated	we	need	not	make	use	of	the	proportionality	of	force	to	acceleration,
and	so	force	can	be	treated	as	a	separate,	independent	fundamental	dimension.	In
summary,	 intuition	 and	 experience	 are	 important	 ingredients	 in	 applying	 the
dimensional	analysis	formalism	to	a	specific	physical	problem.
Table	1.1	gives	dimensions	for	common	quantities,	including	key	relations	that

remind	us	of	 their	origins.	The	 reader	should	 review	 the	mks	units	 for	each	of
these	quantities	(e.g.,	energy	is	given	in	Joules),	some	of	which	are	listed.

Table	1.1	Dimensions	of	common	quantities	in	mechanics	and	thermodynamics.
Symbols	M,	L,	T,	and	Θ	(temperature)	are	fundamental	dimensions.
Quantity	(symbol) Dimensions Relation

velocity	(v) LT−1 length	per	time	(m/s)

acceleration	(a) LT−2 velocity	per	time-squared	(m/s2)

momentum	(p) MLT−1 mass	·	velocity

mass	density	(ρ) ML−3 mass	per	volume

force	(F) MLT−2 mass	·	acceleration	(N)

energy	(E),	work	(W) ML2T−2 force	·	distance	(Joules)

power	(P) ML2T−3 energy	per	time	(Watts)

pressure	(P),	stress	(σ) ML−1T−2 force	per	area	(Pascals)

frequency	(ω) T−1 per	time	(Hertz)

internal	energy	(U) ML2T−2 energy

specific	heat	(c) L2T−2Θ−1 energy	per	mass	per	degree

heat	flux	(ϕ) MT−3 energy	per	time	per	area

thermal	conductivity	(K) MLT−3Θ−1 flux	per	length	per	degree

diffusivity	(k) L2T−1 K/ρc

viscosity	(μ) ML−1T−1 mass	per	length	per	time

heat	loss	coefficient	(h) MT3Θ−1 energy	per	volume	·	deg	·	time

EXERCISES
1.	 (Waves)	 The	 speed	 v	 of	 a	 wave	 in	 deep	 water	 is	 determined	 by	 its
wavelength	λ	and	the	acceleration	g	due	to	gravity.	What	does	dimensional
analysis	imply	regarding	the	relationship	between	v,	λ,	and	g?
2.	(Allometry)An	ecologist	postulated	that	there	is	a	relationship	among	the
mass	m,	density	ρ,	volume	V,	and	surface	area	S	of	certain	animals.	Discuss



this	conjecture	in	terms	of	dimensionless	analysis.
3.	(Mechanics)	A	small	sphere	of	radius	r	and	density	ρ	is	falling	at	constant
velocity	 v	 under	 the	 influence	 of	 gravity	 g	 in	 a	 liquid	 of	 density	 ρl	 and
viscosity	μ	(given	in	mass	per	length	per	time).	It	is	observed	experimentally
that

Show	that	this	law	is	unit-free.
4.	A	 physical	 phenomenon	 is	 described	 by	 the	 quantities	P,	 l,	m,	 t,	 and	ρ,
representing	pressure,	 length,	mass,	 time,	and	density,	 respectively.	 If	 there
is	a	physical	law

relating	these	quantities,	show	that	there	is	an	equivalent	physical	law	of	the
form	G(l3ρ/m,	t6	P3/m2ρ)	=	0.	Find	P	in	terms	of	an	arbitrary	function.
5.	A	physical	system	is	described	by	a	law	f(E,	P,	A)	=	0,	where	E,	P,	and	A
are	energy,	pressure,	and	area,	respectively.	Show	that	PA3/2	/	E	=	const.
6.	(Allometry)	The	length	L	of	an	organism	depends	upon	time	t,	its	density
ρ,	its	resource	assimilation	rate	a	(mass	per	area	per	time),	and	its	resource
use	 rate	b	 (mass	 per	 volume	 per	 time).	 Show	 that	 there	 is	 a	 physical	 law
involving	two	dimensionless	quantities.
7.	 (Mechanics)	A	piece	of	 shrapnel	of	density	ρ	 is	driven	off	an	explosive
device	at	velocity	v.	The	density	of	the	explosive	is	ρe,	and	E	 is	its	Gurney
energy	(joules/kilogram),	or	the	specific	energy	available	in	the	explosive	to
do	work.	Determine	how	the	velocity	of	the	shrapnel	depends	upon	E.
8.	(Mechanics)	In	an	indentation	experiment,	a	slab	of	metal	of	thickness	h	is
subjected	 to	 a	 constant	 pressure	 P	 on	 its	 upper	 surface	 by	 a	 cylinder	 of
radius	a.	The	technician	then	measures	the	vertical	displacement	of	U	of	the
indentation.	 The	 displacement	 also	 depends	 upon	 two	material	 properties,
Poisson’s	 ratio	v,	which	 is	dimensionless,	 and	 the	Lamé	constant	μ,	which
has	 dimensions	 M/L3T2,	 where	 M	 is	 mass,	 L	 is	 length,	 and	 T	 is	 time.
Determine	 a	 set	 of	 dimensionless	 variables	 and	 show	 that	 the	 functional
form	of	U	is

9.	(Digestion)	In	modeling	the	digestion	process	in	insects,	it	is	believed	that



digestion	yield	rate	Y,	in	mass	per	time,	is	related	to	the	concentration	C	of
the	limiting	nutrient,	the	residence	time	T	in	the	gut,	the	gut	volume	V,	and
the	rate	of	nutrient	nutrient	breakdown	r,	given	in	mass	per	time	per	volume.
Show	that	for	fixed	T,	r,	C,	the	yield	is	positively	related	to	the	gut	volume.
10.	 (Reactors)	 A	 chemical	 C	 flows	 continuously	 into	 a	 reactor	 with
concentration	Ci	 and	 volumetric	 flow	 rate	 q	 (volume/time).	 While	 in	 the
reactor,	which	has	volume	V,	 the	substances	are	continuously	stirred	and	a
chemical	reaction	C→	products,	with	rate	constant	k	(1/time),	consumes	the
chemical.	 The	 mixture	 exits	 the	 reactor	 at	 the	 same	 flow	 rate	 q.	 The
concentration	of	C	 in	 the	reactor	at	any	time	 t	 is	C	=	C(t),	and	C(0)	=	C0.
Use	dimensional	analysis	to	deduce	that

where	a	=	C0/Ci	and	b	=	Vk/q	 are	dimensionless	 constants	 and	F	 is	 some
function.
11.	 (Mechanics)	 The	 problem	 is	 to	 determine	 the	 power	 P	 that	 must	 be
applied	to	keep	a	ship	of	 length	 l	moving	at	a	constant	speed	V.	 If	 it	 is	 the
case,	 as	 seems	 reasonable,	 that	P	 depends	 on	 the	 density	 of	 water	 ρ,	 the
acceleration	due	to	gravity	g,	and	the	viscosity	of	water	v	(in	length-squared
per	time),	as	well	as	l	and	V,	then	show	that

where	Fr	is	the	Froude	number	and	Re	is	the	Reynolds	number	defined	by

12.	A	spherical	gas	bubble	with	ratio	of	specific	heats	γ	is	surrounded	by	an
infinite	 sea	 of	 liquid	 of	 density	 ρl.	 The	 bubble	 oscillates	with	 growth	 and
contraction	periodically	with	small	amplitude	at	a	well-defined	frequency	ω.
Assuming	a	physical	law

where	P	 is	 the	mean	pressure	 inside	 the	 bubble	 and	R	 is	 the	mean	 radius,
show	 that	 the	 frequency	must	 vary	 inversely	with	 the	mean	 radius	R.	 The
constant	γ	is	dimensionless.
13.	 (Mechanics)	 Did	 you	 ever	 wonder	 how	 fast	 a	 long	 line	 of	 dominos
topple	 over?	 Let	 us	 imagine	 an	 experiment	 where	 we	 set	 up	 a	 line	 of
dominos	with	spacing	d	between	them.	Further,	we	assume	a	typical	domino



has	height	h	and	thickness	τ.	We	seek	a	formula	that	relates	these	quantities,
the	gravitational	constant	g,	and	the	velocity	v.

a)	Use	dimensional	analysis	to	show	that

Assume	 τ/h	 is	 very	 small	 and	 can	 be	 neglected.	 What	 does	 the	 law
become?
b)	Experiments	have	been	performed	 that	 show	 the	graph	of	v/ 	 vs.
d/h	is	approximately	constant,	1.5,	for	d/h	varying	over	the	range	0	to	0.8.
Using	h	=	0.05	meters,	what	is	the	velocity	of	the	toppling	dominos?

14.	A	 perfect	 gas	 in	 equilibrium	 has	 specific	 energy	E	 (energy	 per	mass),
temperature	 T,	 and	 Boltzmann	 constant	 k	 (specific	 energy	 per	 degree).
Derive	a	functional	relationship	of	the	form	E	=	f(k,	T).
15.	 (Environment)	 In	 tests	 for	 fuel	 economy,	 cars	 are	 driven	 at	 constant
speed	V	on	a	level	highway.	With	no	acceleration,	the	force	of	propulsion	F
must	be	 in	equilibrium	with	other	forces,	such	as	 the	air	 resistance,	and	so
on.	Assume	that	the	variables	affecting	F	are	the	velocity	V,	the	rate	C	 that
fuel	is	burned,	in	volume	per	time,	and	the	amount	of	energy	K	in	a	gallon	of
fuel,	in	mass	per	length	per	time-squared.	Determine	F	as	a	function	of	V,	C,
and	K.
16.	(Biology)	Across	a	cell	membrane	of	thickness	w	the	mass	concentration
of	 a	 biochemical	 molecule	 is	Ci	 on	 the	 inside	 of	 the	 cell,	 and	Co	 on	 the
outside.	The	diffusion	 constant	 in	 the	membrane	 is	d,	measured	 in	 length-
squared	per	time.	Use	dimensional	analysis	(not	guessing)	to	obtain	the	most
general	 relationship	 for	 the	 flux	 ϕ	 of	 the	 molecules	 (mass/(area·time)
through	the	membrane	in	terms	of	the	other	quantities.



1.2	Scaling

1.2.1	Characteristic	Scales
Another	 procedure	 useful	 in	 formulating	 a	 mathematical	 model	 is	 scaling.
Roughly,	 scaling	 means	 selecting	 new,	 usually	 dimensionless	 variables	 and
reformulating	the	problem	in	terms	of	those	variables.	Not	only	is	the	procedure
useful,	but	it	often	is	a	necessity,	especially	when	comparisons	of	the	magnitudes
of	various	 terms	 in	an	equation	must	be	made	 in	order	 to	neglect	 small	 terms.
This	 idea	 is	 particularly	 crucial	 in	 the	 application	 of	 perturbation	 methods	 to
identify	small	and	large	parameters.	Further,	scaling	usually	reduces	the	number
of	 parameters	 in	 a	 problem,	 thereby	 leading	 to	 great	 simplification,	 and	 it
identifies	what	combinations	of	parameters	are	important.
For	 motivation	 let	 us	 suppose	 that	 time	 t	 is	 a	 variable	 in	 a	 given	 problem,

measured	 in	units	of	 seconds.	 If	 the	problem	 involved	 the	motion	of	a	glacier,
clearly	the	unit	of	seconds	is	too	fast	because	significant	changes	in	the	glacier
could	not	be	observed	on	the	order	of	seconds.	On	the	other	hand,	if	the	problem
involved	 a	 nuclear	 reaction,	 then	 the	 unit	 of	 seconds	 is	 too	 slow;	 all	 of	 the
important	action	would	be	over	before	 the	first	second	ticked.	Evidently,	every
problem	 has	 an	 intrinsic	 time	 scale,	 or	 characteristic	 time	 tc,	 which	 is
appropriate	 to	 the	 given	 problem.	 This	 is	 the	 shortest	 time	 for	 discernible
changes	to	be	observed	in	the	physical	quantities.	For	example,	the	characteristic
time	for	glacier	motion	would	be	of	the	order	of	years,	whereas	the	characteristic
time	 for	 a	 nuclear	 reaction	 would	 be	 of	 the	 order	 of	 microseconds.	 Some
problems	 have	 multiple	 time	 scales.	 A	 chemical	 reaction,	 for	 example,	 may
begin	 slowly	 and	 the	 concentration	 changes	 little	 over	 a	 long	 time;	 then,	 the
reaction	may	 suddenly	 go	 to	 completion	with	 a	 large	 change	 in	 concentration
over	a	short	 time.	There	are	 two	 time	scales	 involved	 in	such	a	process.	Other
examples	 are	 in	 the	 life	 sciences,	 where	 multi-scale	 processes	 are	 the	 norm.
Spatial	 scales	 vary	 over	 as	much	 as	 1015	 orders	 of	magnitude	 as	we	 progress
from	processes	involving	genes,	proteins,	cells,	organs,	organisms,	communities,
and	ecosystems;	 time	scales	vary	from	times	 that	 it	 takes	 for	protein	 to	 fold	 to
times	for	evolution	to	occur.	Several	scales	can	occur	in	the	same	problem.	Yet
another	 example	 occurs	 in	 fluid	 flow,	 where	 the	 processes	 of	 heat	 diffusion,



advection,	and	possible	chemical	reaction	all	have	different	scales.
Once	a	characteristic	time	has	been	identified,	at	least	for	a	part	of	a	process,

then	a	new	dimensionless	variable	 	can	be	defined	by

If	tc	is	chosen	correctly,	then	the	dimensionless	time	 	is	neither	too	large	nor	too
small,	but	rather	of	order	unity.	The	question	remains	to	determine	the	time	scale
tc	 for	a	particular	problem,	and	 the	 same	question	applies	 to	other	variables	 in
the	problem	(e.g.,	length,	concentration,	and	so	on).	The	general	rule	is	that	the
characteristic	 quantities	 are	 formed	 by	 taking	 combinations	 of	 the	 various
dimensional	constants	 in	 the	problem	and	should	be	roughly	 the	same	order	of
magnitude	of	the	quantity	itself.
After	 characteristic	 scales,	 which	 are	 built	 up	 from	 the	 parameters	 in	 the

model,	are	chosen	 for	 the	 independent	and	dependent	variables,	 the	model	can
then	be	reformulated	in	terms	of	the	new	dimensionless	variables.	The	result	will
be	a	model	in	dimensionless	form,	where	all	the	variables	and	parameters	in	the
problem	 are	 dimensionless.	 This	 process	 is	 called	non-dimensionalization,	 or
scaling	a	problem.	By	the	Pi	theorem,	it	is	guaranteed	that	we	can	always	non-
dimensionalize	 a	 consistent,	 unit-free	 problem.	 The	 payoff	 is	 a	 simpler	model
that	is	independent	of	units	and	dimensions	and	that	has	fewer	parameters,	which
is	often	a	worthwhile	economy	of	complication.

Example	1.11
(Population	growth)	Let	p	=	p(t)	 denote	 the	 population	 of	 an	 animal	 species
located	in	a	fixed	region	at	 time	 t.	The	simplest	model	of	population	growth	is
the	classic	Malthus	model,3	which	states	that	the	per	capita	growth	rate	 	 is
constant.	This	means	that	the	growth	rate	 	is	proportional	to	the	population	p,
or	 	=	rp,	where	r	is	the	per	capita	growth	rate,	given	in	dimensions	of	inverse-
time.	 Easily,	 the	 Malthus	 model	 predicts	 that	 the	 population	 will	 grow
exponentially	 for	 all	 time,	 that	 is,	p	=	p0ert,	where	p0	 is	 the	 initial	 population.
Many	 books	 on	 an	 impending	 world	 population	 explosion	 have	 been	 written
with	 the	 Malthusian	 model	 as	 a	 premise.	 Clearly,	 however,	 as	 a	 population
grows,	 intraspecific	 competition	 for	 food,	 living	 space,	 and	 natural	 resources
limits	 the	growth.	We	can	modify	 the	Malthus	model	 to	 include	a	 competition
term.	 The	 simplest	 approach	 is	 to	 notice	 that	 if	 there	 are	 p	 individuals	 in	 the



system,	 then	 the	 number	 of	 encounters,	which	 is	 a	measure	 of	 competition,	 is
approximately	 p2;	 therefore,	 we	 subtract	 a	 term	 proportional	 to	 p2	 from	 the
growth	rate	to	obtain	the	model

(2.1)	
This	 is	 saying	 that	 the	 per	 capita	 growth	 rate	 is	 not	 constant,	 but	 decreases
linearly	with	population.	The	parameter	K	is	the	carrying	capacity,	which	is	the
number	of	 individuals	 that	 the	ecosystem	can	sustain.	When	p	=	K	 the	growth
rate	 is	 zero.	 The	 model	 (2.1)	 is	 called	 the	 logistic	model4;	 as	 the	 population
grows,	the	negative	p2	term	will	kick	in	and	limit	the	growth.	To	reduce	(2.1)	to
dimensionless	 form	 we	 select	 new	 dimensionless	 independent	 and	 dependent
variables.	The	time	scale	and	population	scale	are	formed	from	the	constants	in
the	problem,	r,	K,	and	p0.	Of	these,	only	r	contains	the	dimensions	of	time,	and
therefore	we	scale	time	by	1/r	giving	a	new,	dimensionless	time	τ	defined	by

There	are	two	choices	for	the	population	scale,	K	or	p0.	Either	will	work,	and	so
we	select	K	to	obtain	a	dimensionless	population	P	given	by

Thus,	we	measure	 population	 in	 the	 problem	 relative	 to	 the	 carrying	 capacity.
Using	these	dimensionless	variables,	it	is	straightforward	to	obtain

(2.2)	
where	α	 	p0/K	is	a	dimensionless	constant.	The	scaled	model	(2.2)	has	only	one
constant	 (α),	 a	 significant	 simplification	 over	 (2.1)	 where	 there	 are	 three
constants	(r,	K,	p0).	The	constant	α	represents	a	scaled,	initial	population.	There
is	a	 single	combination	of	 the	parameters	 in	 the	original	 that	 is	 relevant	 to	 the
dynamics.	The	initial	value	problem	(2.2)	can	be	solved	by	separating	variables
to	obtain

(2.3)	
Clearly

It	 follows	 that,	 confirming	 our	 earlier	 statement,	 the	 limiting	 population	 p	 is
equal	 to	 the	 carrying	 capacity	K.	We	 observe	 that	 there	 are	 two	 equilibrium



populations,	or	constant	solutions	of	(2.1),	p	=	K	and	p	=	0.	The	population	p	=
K	is	an	attractor;	that	is,	regardless	of	the	initial	population,	the	population	p(t)
tends	to	the	value	K	as	time	gets	large.



1.2.2	A	Chemical	Reactor	Problem
A	basic	problem	in	chemical	engineering	is	to	understand	how	concentrations	of
chemical	 species	 vary	 when	 undergoing	 a	 reaction	 in	 a	 chemical	 reactor.	 To
illustrate	the	concept	of	non-dimensionalization	and	scaling	we	analyze	a	simple
model	 of	 an	 isothermal,	 continuously	 stirred,	 tank	 reactor	 (see	 Fig.	 1.3).	 The
reactor	has	a	fixed	volume	V,	and	a	chemical	C	of	fixed	concentration	ci,	given
in	mass	per	volume,	enters	the	reactor	through	the	feed	at	a	constant	flow	rate	q,
given	 in	 volume	 per	 time;	 initially	 the	 concentration	 of	 the	 chemical	 in	 the
reactor	 is	 c0.	 When	 the	 chemical	 enters	 the	 reactor,	 the	 mixture	 is	 perfectly
stirred	 while	 undergoing	 a	 chemical	 reaction,	 and	 then	 the	 mixture	 exits	 the
reactor	at	the	same	flow	rate	q.	At	any	time	t,	we	denote	the	concentration	of	the
chemical	C	 in	 the	 reactor	 by	 c	 =	 c(t).	 The	 reactant	 chemical	 is	 assumed	 to
disappear,	 that	 is,	 it	 is	consumed	by	 reaction,	with	a	 rate	R,	given	 in	mass	per
unit	volume,	per	unit	time.	We	are	thinking	of	a	simple	reaction	of	the	form	C	→
products.	Usually	reaction	rates	depend	on	temperature,	but	here	we	assume	that
r	depends	linearly	only	on	the	concentration	c;	 this	 is	what	makes	our	problem
isothermal.	The	perfectly	stirred	 assumption	 is	 an	 idealization	and	 implies	 that
there	 are	 no	 concentration	 gradients	 in	 the	 reactor;	 otherwise,	 c	 would	 also
depend	on	a	spatial	variable.

Figure	1.3	Continuously	stirred	tank	reactor.

To	obtain	a	mathematical	model	of	this	problem	we	look	for	a	physical	law.	A
common	principle	that	is	fundamental	to	all	flow	problems	is	mass	balance.	That
is,	 the	 time	 rate	of	change	of	 the	mass	of	 the	chemical	 inside	 the	 reactor	must
equal	the	rate	mass	flows	in	(qci),	minus	the	rate	that	mass	flows	out	(qc),	plus
the	rate	that	mass	is	consumed	by	the	reaction	(VR).	At	any	given	time	the	mass
of	the	chemical	in	the	reactor	is	Vc.	In	symbols,	the	mass	balance	equation	is



Observe	 that	 the	 factor	V	 is	 required	 on	 the	 reaction	 term	 to	 obtain	 consistent
dimensions.	To	fix	the	idea,	let	us	take	the	reaction	rate	R	to	be	proportional	to	c,
that	is	R	=	kc,	where	k	 is	 the	rate	constant	having	dimensions	of	 inverse	 time.
Recall	that	this	is	the	law	of	mass	action	in	elementary	chemistry,	which	states
that	the	rate	of	a	reaction	is	proportional	to	the	product	of	the	concentrations	of
the	reactants.	Then,	the	mathematical	model	is	given	by	the	initial	value	problem

(2.4)	
(2.5)	

To	 non-dimensionalize	 the	 problem	we	 choose	 dimensionless	 independent	 and
dependent	 variables.	 This	 means	 we	 must	 select	 a	 characteristic	 time	 and	 a
characteristic	concentration	by	which	to	measure	the	real	time	and	concentration.
These	characteristic	values	are	formed	from	the	constants	in	the	problem:	ci,	c0,
V,	q,	k.	Generally,	we	measure	the	dependent	variable	relative	to	some	maximum
value	in	the	problem,	or	any	other	value	that	represents	the	order	of	magnitude
of	that	quantity.	There	are	two	constant	concentrations,	ci	and	c0,	and	either	one
of	 them	is	a	suitable	concentration	scale.	Therefore,	we	define	a	dimensionless
concentration	C	by

Therefore,	 all	 concentrations	 in	 the	 problem	 are	 measured	 relative	 to	 ci,	 the
concentration	of	 the	 feed.	To	select	a	 time	scale	we	observe	 that	 there	are	 two
quantities	with	dimensions	of	time	that	can	be	formed	from	the	constants	in	the
problem,	V/q	 and	 k−1.	 The	 former	 is	 based	 on	 the	 flow	 rate,	 and	 the	 latter	 is
based	 on	 the	 reaction	 rate.	 So	 the	 choice	 of	 a	 time	 scale	 is	 not	 unique.	Either
choice	 leads	 to	 a	 correct	 dimensionless	 problem.	 Let	 us	 hold	 up	 on	making	 a
selection	and	define	a	dimensionless	time	τ	by

where	T	is	either	V/q	or	k−1.	We	recast	the	model	in	dimensionless	form.	By	the
chain	rule

and	therefore	the	model	becomes



where	γ	is	a	dimensionless	constant	given	by	the	ratio

If	we	choose	T	=	V/q,	then	we	obtain	the	dimensionless	model

(2.6)	
(2.7)	

where

is	a	dimensionless	constant	representing	a	ratio	of	the	two	time	scales.	Therefore,
the	 problem	 has	 been	 reduced	 to	 dimensionless	 form,	 and	 any	 results	 that	 are
obtained	 are	 free	 of	 any	 specific	 set	 of	 units	 that	 we	 select.	 Moreover,	 the
number	of	parameters	has	been	decreased	from	five	to	two,	and	the	problem	is
simpler.	If	we	choose	the	other	time	scale,	T	=	k−1,	then	the	problem	reduces	to
the	dimensionless	form

(2.8)	
(2.9)	
Is	 there	any	advantage	of	one	over	 the	other?	Yes.	 In	 some	problems,	where

the	terms	differ	in	order	of	magnitude,	it	is	important	to	choose	the	correct	scale,
so	that	each	term	reflects	the	correct	magnitude.	For	example,	suppose	reaction
occurs	on	a	slow	time	scale	compared	to	the	flow	through	the	reactor.	Then	k	is
small	 compared	 to	 the	 flow	 rate	 q/V.	 We	 write	 k	 <<	 q/V.	 Therefore	 the
dimensionless	parameter	β	is	small,	or	β	 	1.	Of	the	two	dimensionless	models
(2.6)–(2.7)	 or	 (2.8)–(2.9),	 which	 best	 reflects	 this	 assumption?	We	 expect	 the
reaction	 term	to	be	small	compared	 to	 the	flow	rate	 term,	so	 the	best	choice	 is
(2.6)–(2.7),	which	means	we	should	scale	time	on	the	more	dominant	flow	rate.
If	 reaction	 is	 fast	 compared	 to	 the	 flow	 rate,	 then	 β	 is	 large	 (β	 	 1),	 and	we
should	choose	a	reaction	time	scale,	giving	(2.8)–(2.9);	this	choice	puts	the	small
term	1/β	correctly	on	the	flow	rate	term.
Making	 the	 correct	 choice	when	 terms	have	different	orders	of	magnitude	 is

especially	essential	when	we	want	to	make	an	approximation	by	deleting	small



terms	 in	 the	 equation.	 This	 is	 a	 very	 common	 strategy	 in	 equations	 that	 we
cannot	solve,	for	example,	most	nonlinear	equations.	For	example,	if	β	 	1	and
we	scale	by	the	flow	rate,	the	model	is	(2.6)–(2.7).	Ignoring	the	small	term	gives
the	approximation

which	 gives	 approximation	 C(τ)	 =	 1	 +	 (γ	 −	 1)e−τ.	 This	 approximation	 is
believable;	 the	 reaction	 is	 slow	 and	 the	 concentration	 approaches	 the
concentration	 of	 the	 feed.	 On	 the	 other	 hand,	 the	 model	 (2.8)–(2.9)	 gives	

,	 which,	 upon	 neglecting	 the	 small	 terms,	 provides	 the
approximation	 C	 =	 1.	 This	 approximation	 does	 not	 even	 satisfy	 the	 initial
condition.

Remark	1.12
In	 summary,	 if	 approximations	 are	 to	 be	 made	 by	 deleting	 small	 terms,	 it	 is
important	 how	 we	 non-dimensionalize	 the	 problem.	 The	 common	 scaling
strategy	is	to	non-dimensionalize	the	problem	using	a	generic	time	scale	T	that	is
chosen	 later	 to	make	 the	 coefficients	 of	 the	 terms	 in	 the	 equation	 reflect	 their
size	 or	 reflect	what	 terms	balance	 in	 the	process.	Ultimately,	 proper	 scaling	 is
learned	through	experience	and	careful	analysis.



1.2.3	The	Projectile	Problem
The	projectile	problem,	as	first	pointed	out	by	Lin	and	Segel	(1974),	 is	a	good
illustration	of	 the	importance	of	choosing	correct	scales,	particularly	when	it	 is
desired	 to	 make	 a	 simplification	 by	 neglecting	 small	 quantities.	 Terms	 in	 an
equation	 that	 appear	 small	 are	 not	 always	 as	 they	 seem,	 and	 proper	 scaling	 is
essential	in	determining	the	orders	of	magnitude	of	the	terms.
We	analyze	the	motion	of	a	projectile	thrust	vertically	upward	from	the	surface

of	the	earth.	At	time	t	=	0	on	the	surface	of	the	earth,	with	radius	R	and	mass	M,
an	object	of	mass	m	 is	given	a	vertical	upward	velocity	of	magnitude	V.	To	be
determined	is	the	height	h	above	the	earth’s	surface	that	the	mass	reaches	at	time
t	(see	Fig.	1.4).	Generally,	forces	on	the	object	are	the	gravitational	force	and	the
force	 due	 to	 air	 resistance.	 But	 we	 assume	 the	 force	 due	 to	 air	 resistance	 is
negligible	 in	 the	 particular	 problem	 we	 are	 considering.	 In	 general,	 as	 a	 first
approximation	 it	 is	 common	 to	 neglect	 what	 are	 believed	 to	 be	 small	 effects,
since	 in	 that	 case	 the	 equations	 are	 more	 tractable	 for	 analysis.	 Should	 the
analytic	results	compare	unfavorably	with	experiment	or	should	a	more	detailed
description	be	required,	then	additional	effects	can	be	included.

Figure	1.4	The	projectile	problem.

The	governing	equation,	or	mathematical	model,	comes	from	a	physical	 law.
Newton’s	universal	gravitational	law,	which	states	that	the	force	between	the	two
objects	is	proportional	to	the	product	of	the	masses	and	inversely	proportional	to
the	square	of	the	distance	between	them,	where	the	mass	of	each	object	can	be
regarded	as	concentrated	at	its	center.	By	Newton’s	second	law	the	force	equals
the	mass	times	acceleration,	or



where	G	is	the	proportionality	constant	in	the	universal	gravitational	law.
When	h	=	0,	that	is,	at	the	earth’s	surface,	the	gravitational	force	equals	−mg,	and
therefore

Thus

(2.10)	
with	initial	conditions

(2.11)	
The	 initial	 value	 problem	 (2.10)	 and	 (2.11)	 is	 the	mathematical	model	 for	 the
problem.
At	 this	 point	 we	 undertake	 a	 dimensional	 analysis	 of	 the	 problem	 and	 gain

considerable	insight	without	actually	attempting	a	solution.	Prom	our	model	the
relevant	dimensional	quantities	are	t,	h,	R,	V,	and	g	having	dimensions

(2.12)	

(2.13)	
(2.14)	

We	can	use	T	 (time)	and	L	 (length)	 as	 fundamental	dimensions.	Following	 the
procedure	described	earlier,	if	π	is	a	dimensionless	combination	of	t,	h,	R,	V,	and
g,	then

Therefore,

(2.15)	
This	 system	 has	 rank	 two	 and	 so	 there	 are	 three	 independent	 dimensionless
variables.	 Either	 by	 inspection	 or	 solving	 (2.15),	 we	 find	 dimensionless
quantities

(2.16)	
By	 the	Pi	 theorem,	 if	 there	 is	a	physical	 law	relating	 t,	h,	R,	V,	and	g	 (and	we



assume	there	must	be,	since	in	theory	we	could	solve	(2.10)	and	(2.11)	to	obtain
that	law),	then	there	is	an	equivalent	law	that	can	be	expressed	as

(2.17)	
for	some	function	f(π2,	π3).
Actually	there	is	considerable	information	in	(2.17).	For	example,	suppose	we

are	interested	in	finding	the	time	tmax	 that	is	required	for	the	object	to	reach	its
maximum	height	for	a	given	velocity	V.	Then	differentiating	(2.17)	with	respect
to	t	and	setting	h’(t)	equal	to	zero	gives

or

(2.18)	
for	 some	 function	 F.	 Remarkably,	 with	 little	 analysis	 beyond	 dimensional
reasoning,	 we	 have	 found	 that	 the	 time	 to	 maximum	 height	 depends	 on	 the
dimensionless	 combination	 	 The	 value	 in	 knowing	 this	 kind	 of
information	 lies	 in	 the	 efficiency	 of	 (2.18);	 a	 single	 graph	 of	 tmax/(R/V)	 vs.	

	contains	all	of	the	data	of	the	graphs	of	tmax	versus	V	for	all	choices	of	g
and	R.	For	example,	an	experimenter	making	measurements	on	different	planets
of	tmax	versus	V	would	not	need	a	separate	plot	of	data	for	each	planet.	An	entire
atlas	can	be	replaced	by	a	single	map	when	we	plot	dimensionless	quantities.
Now	we	 select	 characteristic	 time	 and	 length	 scales	 and	 recast	 the	 problem

represented	by	(2.10)	and	(2.11)	into	dimensionless	form.	The	problem	is	more
subtle	than	it	originally	appears.	The	general	method	requires	us	to	choose	a	new
dimensionless	dependent	variable	 	and	independent	variable	 	by

(2.19)	
where	tc	is	an	intrinsic	time	scale	and	hc	is	an	intrinsic	length	scale;	the	values	of
tc	 and	 hc	 should	 be	 chosen	 by	 taking	 combinations	 of	 the	 constants	 in	 the
problem,	 which	 in	 this	 case	 are	 R,	 V,	 and	 g.	 This	 problem	 presents	 several
choices.	For	a	length	scale	hc	we	could	take	either	R	or	V2/g.	Possible	time	scales
are	 R/V,	 ,	 and	 V/g.	 Which	 choice	 is	 the	 most	 appropriate?	 Actually,
equations	(2.19)	represent	a	legitimate	transformation	of	variables	for	any	choice



of	tc	and	hc;	after	the	change	of	variables	an	equivalent	problem	results.	Prom	a
scaling	 viewpoint,	 however,	 one	 particular	 choice	 is	 advantageous.	 The	 three
choices

(2.20)	

(2.21)	
and

(2.22)	
lead	 to	 the	 following	 three	 dimensionless	 problems,	 which	 are	 equivalent	 to
(2.10)	and	(2.11):

(2.23)	

(2.24)	
and

(2.25)	
respectively,	where	ε	is	a	dimensionless	parameter	defined	by

To	illustrate	how	difficulties	arise	in	selecting	an	incorrect	scaling,	let	us	modify
our	original	problem	by	examining	the	situation	when	ε	is	known	to	be	a	small
quantity;	that	is,	V2	is	much	smaller	than	gR.	Then	one	may	be	tempted,	in	order
to	make	an	approximation,	to	delete	the	terms	involving	ε	in	the	scaled	problem.
Problem	(2.23)	then	becomes

which	has	no	solution,	and	problem	(2.24)	becomes

which	 has	 no	 physically	 valid	 solution	 (the	 graph	 of	 ( )	 passes	 though	 the



origin	with	 zero	 slope	 and	 is	 concave	downward,	 thereby	making	 	negative).
Therefore	it	appears	that	terms	involving	small	parameters	cannot	be	neglected.
This	is	indeed	unfortunate	because	this	kind	of	technique	is	common	practice	in
making	approximations	 in	applied	problems.	What	went	wrong	was	 that	 (2.20)
and	(2.21)	 represent	 incorrect	 scalings;	 in	 these	 cases,	 terms	 that	 appear	 small
may	not	in	fact	be	small.	For	example,	 in	the	term	εd2 /d 2,	 the	parameter	ε	is
small	 but	 d2 /d 2	 may	 be	 large,	 and	 hence	 the	 term	 may	 not	 be	 negligible
compared	to	other	terms	in	the	equation.
If,	on	the	other	hand,	the	term	ε 	is	neglected	in	(2.25),	then	d2 /d 2	=	−1,	or	

=	 	−	 2/2,	after	applying	the	initial	conditions.	Therefore

and	 we	 have	 obtained	 an	 approximate	 solution	 that	 is	 consistent	 with	 our
experience	 with	 falling	 bodies	 close	 to	 the	 earth.	 In	 this	 case	 we	 are	 able	 to
neglect	 the	 small	 term	and	obtain	a	valid	approximation	because	 the	scaling	 is
correct.	 That	 (2.22)	 gives	 the	 correct	 time	 and	 length	 scales	 can	 be	 argued
physically.	 If	 V	 is	 small,	 then	 the	 body	 will	 be	 acted	 on	 by	 a	 constant
gravitational	 field;	 hence,	 launched	with	 speed	V,	 it	 will	 uniformly	 decelerate
and	 reach	 its	maximum	height	 in	V/g	 units	of	 time,	which	 is	 the	characteristic
time.	It	will	travel	a	distance	of	about	(V/g)	times	its	average	velocity	1/2(V	+	0),
or	V2/2g.	 Hence	V2/g	 is	 a	 good	 selection	 for	 the	 length	 scale.	Measuring	 the
height	 relative	 to	 the	 radius	 of	 the	 earth	 is	 not	 a	 good	 choice	 for	 small	 initial
velocities.
In	 general,	 if	 a	 correct	 scaling	 is	 chosen,	 then	 terms	 in	 the	 equations	 that

appear	small	are	indeed	small	and	may	be	safely	neglected.	Formally:
Principle	 of	 Scaling.	 The	 goal	 of	 scaling	 is	 to	 select	 intrinsic,	 characteristic
reference	 quantities	 so	 that	 each	 term	 in	 the	 dimensional	 equation	 transforms
into	 a	 term	 in	 such	 a	 manner	 that	 the	 dimensionless	 coefficient	 in	 the
transformed	term	represents	the	order	of	magnitude	or	approximate	size	of	that
term.	Schematically,

By	order	of	unity	we	mean	a	term	that	is	neither	extremely	large	nor	small.



EXERCISES
1.	Let	u	=	u(t),	0	≤	t	≤	b,	be	a	given	smooth	function.	If	M	=	max|u(t)|,	then	u
can	be	scaled	by	M	to	obtain	the	dimensionless	dependent	variable	U	=	u/M.
A	 time	 scale	can	be	 taken	as	 tc	=	M/max	 |u’(t)|,	 the	 ratio	of	 the	maximum
value	of	the	function	to	the	maximum	slope.	Find	M	and	tc	for	the	following
functions:

a)	u(t)	=	A	sinωt,	t	>	0.
b)	u(t)	=	Ae−λt,	t	>	0.
c)	u(t)	=	Ate−λt,	0	≤	t	≤	2/λ.

2.	Consider	a	process	described	by	the	function	u(t)	=	1+e−t/ε	on	the	interval
0	≤	 t	 ≤	 1,	where	 ε	 is	 a	 small	 number.	Use	Exercise	 1	 to	 determine	 a	 time
scale.	 Is	 this	 time	scale	appropriate	for	 the	entire	 interval	 [0,	1]?	(Sketch	a
graph	of	u(t)	when	ε	=	0.05.)	Explain	why	two	time	scales	might	be	required
for	a	process	described	by	u(t).
3.	The	growth	rate	of	an	organism	is	often	measured	using	carbon	biomass
as	the	“currency.”	The	von	Bertalanffy	growth	model	is

where	m	is	its	biomass,	x	is	some	characteristic	length	of	the	organism,	a	is
its	 biomass	 assimilation	 rate,	 and	 b	 is	 its	 biomass	 use	 rate.	 Thus,	 it
assimilates	 nutrients	 proportional	 to	 its	 area,	 and	 it	 uses	 nutrients
proportional	to	its	volume.	Assume	m	=	ρx3	and	rewrite	the	model	in	terms
of	the	length	x.	Determine	the	dimensions	of	the	constants	a,	b,	and	ρ.	Select
time	and	length	scales	ρ/b	and	a/b,	 respectively,	and	reduce	the	problem	to
dimensionless	form.	If	x(0)	=	0,	find	the	length	x	at	time	 t.	Does	 this	seem
like	a	reasonable	model?
4.	 A	mass	 hanging	 on	 a	 spring	 is	 given	 a	 positive	 initial	 velocity	V	 from
equilibrium.	The	ensuing	displacement	x	=	x(t)	 from	equilibrium	(x	=	0)	 is
governed	by

where	−ax|x’|	is	a	nonlinear	damping	force	and	−kx	is	a	linear	restoring	force
of	the	spring.	First	make	a	table	of	the	quantities	and	their	dimensions.	What
are	 possible	 time	 scales,	 and	 on	 what	 physical	 processes	 are	 they	 based.
What	are	possible	length	scales?	If	the	restoring	force	is	small	compared	to



the	 damping	 force,	 choose	 appropriate	 time	 and	 length	 scales	 and	 non-
dimensionalize	 the	 model	 so	 that	 the	 small	 term	 appears	 in	 the	 damping
force.
5.	The	dynamics	of	a	nonlinear	spring-mass	system	are	described	by

where	x	 is	 the	displacement,	−ax’	 is	 a	 linear	 damping	 term,	 and	−kx3	 is	 a
nonlinear	restoring	force.	Initially,	the	displacement	is	zero	and	the	mass	m
is	given	an	impulse	I	that	starts	the	motion.

a)	Determine	the	dimensions	of	the	constants	I,	a,	and	k.
b)	 Recast	 the	 problem	 into	 dimensionless	 form	 by	 selecting
dimensionless	variables	τ	=	t/T,	u	=	ax/I,	where	the	time	scale	T	is	yet	to
be	determined.
c)	 In	 the	special	case	 that	 the	mass	 is	very	small,	choose	an	appropriate
time	 scale	 T	 and	 find	 the	 correct	 dimensionless	 model.	 (A	 small
dimensionless	parameter	should	occur	on	the	terms	involving	the	mass	in
the	original	model.)

6.	 In	 a	 classic	 work	 modeling	 the	 outbreak	 of	 the	 spruce	 bud	 worm	 in
Canada’s	 balsam	 fir	 forests,	 researchers	 proposed	 that	 the	 bud	 worm
population	n	=	n(t)	was	governed	by	the	law

where	r	and	K	 are	 the	growth	 rate	 and	carrying	capacity,	 respectively,	 and
p(n)	is	a	bird	predation	term	given	by

where	a	and	b	are	positive	constants.
a)	Determine	the	dimensions	of	the	parameters	in	the	problem.
b)	Select	time	and	population	scales	T	and	N0	so	that	the	model	equation
becomes,	in	dimensionless	form,

where	q	 	K/a	and	s	 	ar/b.
c)	Researchers	are	often	interested	in	equilibrium	populations,	or	constant
solutions	 of	 the	 differential	 equation.	 Working	 with	 the	 dimensionless



model,	 show	 graphically	 that	 there	 is	 always	 at	 least	 one	 nonzero
equilibrium	population,	and	that	there	may	be	two	or	three,	depending	on
the	 values	 of	 the	 parameters.	 (Hint:	 Plot	 the	 per	 capita	 growth	 rate
G(N)/N	and	the	per	capita	predation	rate	P(N)/N	on	the	same	set	of	N,	1/N
axes.)
d)	Find	the	equilibrium	populations	when	q	=	12	and	s	=	0.25	and	when	q
=	35	and	s	=	0.4.
e)	 In	the	case	q	=	35	and	s	=	0.4,	use	a	numerical	differential	equations
solver	(e.g.,	in	MATLAB)	to	plot	population	curves	N	=	N(τ)	when	initial
populations	are	given	by	N(0)	=	40,	25,	2,	and	0.05,	respectively.

7.	A	 rocket	 blasts	 off	 from	 the	 earth’s	 surface.	During	 the	 initial	 phase	 of
flight,	fuel	is	burned	at	the	maximum	possible	rate	α,	and	the	exhaust	gas	is
expelled	downward	with	velocity	β	relative	to	the	velocity	of	the	rocket.	The
motion	is	governed	by	the	following	set	of	equations:

where	m(t)	 is	 the	mass	of	 the	rocket,	v(t)	 is	 the	upward	velocity,	x(t)	 is	 the
height	above	the	earth’s	surface,	M	is	the	initial	mass,	g	 is	the	gravitational
constant,	and	R	is	the	radius	of	the	earth.	Reformulate	the	problem	in	terms
of	dimensionless	variables	using	appropriate	scales	for	m,	x,	v,	t.	(Hint:	Scale
m	and	x	by	obvious	choices;	then	choose	the	time	scale	and	velocity	scale	to
ensure	that	the	terms	in	the	v	equation	and	x	equation	are	of	the	same	order.
Assume	 that	 the	 acceleration	 is	 due	 primarily	 to	 fuel	 burning	 and	 that	 the
gravitational	force	is	relatively	small.)
8.	 In	 the	 chemical	 reactor	 problem	 assume	 that	 the	 reaction	 is	C	 +	C	→
products,	 and	 the	 chemical	 reaction	 rate	 is	 r	 =	 kc2,	 where	 c	 =	 c(t)	 is	 the
concentration	and	k	is	the	rate	constant.	What	is	the	dimension	of	k?	Define
dimensionless	variables	and	reformulate	the	problem	in	dimensionless	form.
Solve	the	dimensionless	problem	to	determine	the	concentration.
9.	The	 temperature	T	=	T(t)	of	 a	 chemical	 sample	 in	a	 furnace	at	 time	 t	 is
governed	by	the	initial	value	problem



where	T0	is	the	initial	temperature	of	the	sample,	Tf	is	the	temperature	in	the
furnace,	and	q,	k,	 and	A	 are	 positive	 constants.	The	 first	 term	on	 the	 right
side	is	the	heat	generation	term,	and	the	second	is	the	heat	loss	term	given	by
Newton’s	law	of	cooling.

a)	What	are	the	dimensions	of	the	constants	q,	k,	A?
b)	Reduce	the	problem	to	dimensionless	form	using	Tf	as	the	temperature
scale	and	choosing	a	time	scale	to	be	one	appropriate	to	the	case	when	the
heat	loss	term	is	large	compared	to	the	heat	generated	by	the	reaction.

10.	A	ball	of	mass	m	is	tossed	upward	with	initial	velocity	V.	Assuming	the
force	caused	by	air	resistance	is	proportional	to	the	square	of	the	velocity	of
the	 ball	 and	 the	 gravitational	 field	 is	 constant,	 formulate	 an	 initial	 value
problem	for	the	height	of	the	ball	at	any	time	t.	Choose	characteristic	length
and	time	scales	and	recast	the	problem	in	dimensionless	form.
11.	A	particle	 of	mass	m	moves	 in	 one	 dimension	on	 the	x-axis	 under	 the
influence	of	a	force

where	k	and	a	are	positive	constants.	Initially	the	particle	is	located	at	x	=
L	and	has	zero	velocity.
a)	Set	up	an	initial	value	problem	for	the	location	x	=	x(t)	of	the	particle
at	time	t.
b)	 Identify	 the	 length	 and	 time	 scales	 in	 the	 problem,	 and	 introduce
dimensionless	variables	in	two	different	ways,	reformulating	the	problem
in	dimensionless	form	in	both	cases.

12.	 An	 aging	 spring	 is	 sometimes	 modeled	 by	 a	 force	F(x,	 t)	 =	 −kxe−t/a,
where	 k	 is	 the	 stiffness	 of	 the	 spring	 and	 a	 is	 constant.	 Set	 up	 and	 non-
dimensionalize	a	model	for	oscillation	of	a	mass	m	on	an	aging	spring	if	x(0)
=	L	and	x’(0)	=	V.
13.	(Fishery	management)	A	fishing	industry	on	the	East	Coast	has	fished	an
area	to	near	depletion	and	has	stopped	its	activity	(assume	this	occurs	at	time
zero	with	 fish	 population	 x0).	 The	management	 assumes	 that	 the	 fish	will
recover	 and	 grow	 logistically	with	 growth	 rate	 r	 and	 carrying	 capacity	K.
The	question	is:	when	should	fishing	resume?	Let	x(t)	be	the	fish	population,
b(t)	the	number	of	fishing	boats,	and	q	be	the	catchability,	given	in	units	of
per	boat	per	time,	so	that	the	harvesting	rate	is	h(t)	=	qb(t)x(t).



a)	 If	 tf	 is	 the	 time	 fishing	 is	 resumed,	 find	 differential	 equations	 that
govern	the	fish	population	for	t	>	tf	and	t	<	tf.
b)	Assume	that	the	fleet	is	constant,	b(t)	=	B,	and	non-dimensionalize	the
model	 in	 Part	 (a),	 choosing	 the	 growth	 rate	 as	 the	 time	 scale	 and	 the
carrying	capacity	as	the	population	scale.
c)	Determine	the	(dimensionless)	time	τ	that	fishing	begins	as	a	function
of	the	dimensionless	fleet	size	β	=	qB/r,	subject	to	the	condition	that	the
fish	 population	 should	 remain	 at	 constant	 for	 times	 greater	 than	 τ.
Translate	this	relation	into	dimensioned	form	to	find	tf	=	tf(B).
d)	Under	the	conditions	of	Part	(c),	what	is	the	optimum	number	of	boats
and	the	maximum	sustainable	catch,	i.e.,	the	maximum	harvesting	rate?
e)	Suppose	p	is	the	selling	price	per	fish,	cb	is	the	cost	of	maintenance	per
boat	per	time,	w	 is	a	fisherman’s	wage	per	time,	and	n	 is	 the	number	of
fishermen	per	boat.	Argue	that	the	rate	money	is	earned	from	the	fishing
is	ph(t)	−	b(t)(cb	+	nw).	If	the	value	of	money	is	discounted	at	rate	R	over
time,	conclude	that	the	net	profit	can	be	written	as	a	function	of	the	fleet
size	as

f)	Under	 the	 condition	of	 a	 constant	 fleet	 size,	b(t)	=	B,	 at	what	 time	 tf
should	the	fleet	resume	fishing	to	maximize	the	profit	J(B)?	What	is	the
optimal	fleet	size?
g)	Use	parameter	values	R	=	0.7,	p	=	2,	q	=	0.5,	K	=	50,	r	=	0.55,	x0	=	2,
cb	+	nw	=	2,	to	plot	J(B)	in	Part	(f),	and	find	the	maximum	starting	time,
the	optimal	fleet	size,	and	the	maximum	profit.

14.	A	pendulum	of	length	l	with	a	bob	of	mass	m	executes	a	(dimensionless)
angular	displacement	θ	=	θ(t)	from	its	attachment	point,	with	θ	=	0	when	the
pendulum	is	vertically	downward.	See	Fig.	1.5.	Use	Newton’s	law	to	derive
the	equation	of	motion	 for	 the	pendulum	by	noting	 that	 the	acceleration	 is
d2s/dt2,	where	s	=	lθ	is	the	length	of	the	circular	arc	traveled	by	the	bob;	the
force	is	−mg	vertically	downward,	and	only	the	component	tangential	to	the
arc	of	oscillation	affects	the	motion.	The	model	is

Figure	1.5	Pendulum.



If	 the	 bob	 is	 released	 from	 a	 small	 angle	 θ0	 at	 time	 t	 =	 0,	 formulate	 a
dimensionless	initial	value	problem	describing	the	motion.	(Observe	that
the	 radian	measurement	 θ	 is	 dimensionless,	 but	one	 can	 still	 scale	 θ	by
θ0.)

15.	The	initial	value	problem	for	the	damped	pendulum	equation	is

a)	Find	three	time	scales	and	comment	upon	what	process	each	involves.
b)	 Non-dimensionalize	 the	 model	 with	 a	 time	 scale	 appropriate	 to
expecting	damping	to	have	a	small	contribution.
c)	Non-dimensionalize	the	model	with	a	time	scale	based	on	the	fact	that
damping	has	an	effect.

16.	In	a	simple	model	of	predation	a	fraction	of	the	prey	take	refuge	and	are
not	subject	to	predation.	If	H	=	H(t)	is	the	number	of	prey,	and	P	=	P(t)	is	the
number	of	predators,	the	model	takes	the	form

where	r	 is	 the	 prey	 growth	 rate,	 k	 is	 the	 predator	mortality	 rate,	Hr	 is	 the
number	of	prey	 in	 refuge	 (constant),	 and	a	and	b	 are	 predation	 rates.	Find
dimensionless	variables	so	that	the	model	reduces	to	the	dimensionless	form



for	appropriate	choices	of	α	and	β.



1.3	Differential	Equations
The	 first	 subsection	below	contains	a	very	brief	 review	of	elementary	 solution
techniques	for	first-	and	second-order	differential	equations.	This	review	may	be
safely	omitted	for	those	who	have	fresh	knowledge	of	elementary	methods.	The
Exercises	review	standard	applications	with	which	the	reader	should	be	familiar;
working	through	some	of	these	may	introduce	the	reader	to	new	applications	and
scaling	methods.	 [Differential	 equations	 can	 be	 reviewed	 in	Logan	 (2010),	 for
example,	or	numerous	other	elementary	textbooks.]



1.3.1	Review	of	Elementary	Methods
In	calculus,	one	focus	is	on	finding	derivatives	of	given	functions.	In	differential
equations	 the	 focus	 is	 on	 the	 reverse	 problem,	 namely,	 given	 a	 relationship
between	 an	 unknown	 function	 u	 =	 u(t)	 and	 some	 of	 its	 derivatives,	 find	 the
function	 itself.	 The	 given	 relationship	 is	 called	 a	 differential	 equation.	 The
simplest	differential	equation	is	the	pure	time	equation
(3.1)	

where	 g	 is	 a	 given	 continuous	 function.	 We	 recognize,	 by	 definition,	 that	 a
solution	u	=	u(t)	must	be	an	antiderivative	of	g.	By	the	fundamental	theorem	of
calculus,	all	antiderivatives	are	given	by

(3.2)	
where	C	 is	 an	 arbitrary	 constant	 of	 integration	 and	 a	 is	 any	 lower	 limit	 of
integration.	Thus	(3.2)	gives	all	solutions	of	the	pure	time	equation	(3.1).
Antiderivatives	are	sometimes	denoted	by	the	usual	indefinite	integral	sign

but	 this	 representation	 is	 only	 symbolic	 and	 useless	 if	 we	 cannot	 find	 an
expression	for	ƒ	g(t)	dt.

Example	1.13
If	g(t)	=	exp(−t2),	then	there	is	no	simple	formula	for	the	antiderivative,	and	thus
we	cannot	find,	for	example,	the	antiderivative	evaluated	at	a	specific	value	of	t.
Therefore	we	write	the	antiderivative	as

A	multiple	of	this	function	is	the	common	special	function

which	is	the	error	or	“erf”	function.
In	general,	a	first-order	differential	equation	has	the	form
(3.3)	



where	 t	 ranges	 over	 some	 specified	 interval	 I	 of	 time.	 A	 solution	 is	 a
differentiable	 function	 u	 =	 u(t)	 that,	 when	 substituted	 into	 (3.3),	 satisfies	 it
identically	 for	 all	 t	 in	 the	 interval	 I.	 Often	 the	 differential	 equation	 is
accompanied	by	an	initial	condition	of	the	form
(3.4)	

which	specifies	that	the	solution	curve	pass	through	the	point	(t0,	u0),	or	that	the
system	is	in	state	u0	at	time	 t0.	The	problem	of	solving	(3.3)	subject	 to	 (3.4)	 is
called	the	initial	value	problem	associated	with	the	differential	equation.	If	f(t,
u)	 is	a	continuous	 function	 in	 some	open	 region	of	 the	 tu-plane	containing	 the
point	 (t0,	 u0),	 then	 one	 can	 show	 that	 there	 is	 a	 solution	 to	 the	 initial	 value
problem	in	some	interval	containing	t0.	If,	in	addition,	the	partial	derivative	fut,	u
is	 continuous	 in	 the	 domain,	 then	 the	 solution	 is	 unique.	 See,	 for	 example,
Kelley	&	Peterson	(2010).
Separable	Equations.	Some	differential	equations	of	first	order	can	be	solved,
at	least	in	principle.	A	differential	equation	is	separable	if	it	has	the	form

In	this	case	we	can	divide	both	sides	by	h(u)	and	integrate	over	t	to	obtain

Here	we	have	written	explicit	dependence	on	t.	Also,	as	noted	above,	sometimes
the	 antiderivatives	 must	 be	 written	 as	 definite	 integrals	 with	 a	 variable	 upper
limit	of	integration.	Next	we	can	change	variables	in	the	integral	on	the	left:	u	=
u(t),	du	=	u’(t)	dt.	Then

which,	 when	 the	 integrals	 are	 resolved,	 gives	 the	 solution	 u	 implicitly	 as	 a
function	of	 t.	One	may,	or	may	not,	be	able	 to	solve	for	u	and	find	an	explicit
form	 for	 the	 solutions.	 An	 autonomous	 equation,	 where	 the	 right	 side	 of	 the
differential	equation	does	not	depend	on	time	t,

has	implicit	solution

An	example	of	a	simple,	separable	equation	is	the	growth-decay	equation,	u’	=
λu,	 from	which	 one	 easily	 obtains	 the	 general	 solution	u	 =	Ceλt.	 The	 solution



models	exponential	growth	if	λ	>	0	and	exponential	decay	if	λ	<	0.
Linear	Equations.	A	first-order	linear	equation	has	the	form
(3.5)	

Multiplying	this	equation	by	an	integrating	factor	eƒp(t)dt	turns	the	left	side	into	a
total	derivative	and	(3.5)	becomes

Now,	both	 sides	 can	be	 integrated	 to	determine	u.	We	 illustrate	 this	 procedure
with	an	example.

Example	1.14
Find	an	expression	for	the	solution	to	the	initial	value	problem

The	 integrating	 factor	 is	 exp( 	 2t	 dt)	 =	 exp(t2).	Multiplying	 both	 sides	 of	 the
equation	by	the	integrating	factor	makes	the	left	side	a	total	derivative,	or

Integrating	from	0	to	t	(while	changing	the	dummy	variable	of	integration	to	s)
gives

Solving	for	u	gives

As	is	often	the	case,	the	integrals	in	this	example	cannot	be	performed	easily,	if
at	all,	and	we	must	write	the	solution	in	terms	of	integrals	with	variable	limits.

Example	1.15
Some	 first-order	 equations	 can	 be	 solved	 by	 substitution.	 For	 example,
Bernoulli	equations	are	differential	equations	having	the	form

The	 transformation	of	dependent	variables	w	=	u1−n	 turns	 a	Bernoulli	 equation
into	a	linear	equation	for	w	=	w(t).
Second-Order	 Linear	 Equations.	 The	 linear	 equation	 with	 constant
coefficients,



(3.6)	
where	a,	b,	and	c	are	constants,	occurs	frequently	in	modeling	RCL	circuits	and
spring-mass-damping	 systems.	 We	 recall	 that	 if	 u1(t)	 and	 u2(t)	 are	 two
independent	solutions	to	a	second-order,	linear,	homogeneous	equation,	then	the
general	solution	is	u	=	c1u1(t)	+	c2u2(t),	where	c1	and	c2	are	arbitrary	constants.
Equation	(3.6)	has	solutions	of	 the	form	u	=	emt,	where	m	 is	 to	be	determined.
Substitution	 of	 this	 exponential	 form	 into	 the	 equation	 leads	 to	 the
characteristic	equation

This	 quadratic	 will	 have	 two	 roots,	m1	 and	m2.	 Three	 possibilities	 can	 occur:
unequal	real	roots,	equal	real	roots,	and	complex	roots	(which	must	be	complex
conjugates).

(a)	m1,	m2	real	and	unequal.	Two	independent	solutions	of	(3.6)	are	em1t	and
em2t.
(b)	m1,	m2	real	and	equal,	i.e.,	m1	=	m2	 	m.	Two	independent	solutions	of
(3.6)	are	emt	and	temt.
(c)	m	=	α	±	iβ	are	complex	conjugate	roots.	Two	real,	independent	solutions
of	 (3.6)	 are	 eαt	 sin	 βt	 and	 eαt	 cos	 βt.	 This	 follows	 from	 an	 application	 of
Euler’s	formula,

and	 the	 fact	 that	 the	 real	and	 imaginary	parts	of	a	complex	solution	are
both	real	solutions

Example	1.16
Of	 particular	 importance	 are	 the	 two	 equations,	 u″	 +	 a2u	 =	 0,	 which	 has
oscillatory	 solutions	 u	 =	 c1	 cos	 at	 +	 c2	 sin	 at,	 and	 u″	 −	 a2u	 =	 0,	 which	 has
exponential	solutions	u	 =	c1e−at+c2eat;	we	 can	 also	write	 this	 latter	 solution	 in
terms	of	hyperbolic	functions	as	u	=	c1	cosh	at+c2	sinh	at.	These	two	equations
occur	so	frequently	that	it	is	best	to	memorize	them.
It	 is	 difficult	 to	 find	 analytic	 solution	 formulas	 for	 second	 order	 linear

equations	with	variable	coefficients,

Often	power	series	methods	are	applied,	and	they	lead	to	solution	representations



as	 power	 series	 that	 define	 special	 functions	 like	 Bessel	 functions,	 Airy
functions,	Legendre	and	Hermite	polynomials,	and	so	on.

Example	1.17
There	 is	 a	 special	 variable	 coefficient	 equation	 that	 can	be	 solved	with	 simple
formulas,	namely	the	Cauchy–Euler	equation:
(3.7)	

This	equation	admits	power	functions	as	solutions	of	the	form	u	=	tm,	where	m	is
to	be	determined.	Upon	substitution,	we	obtain	the	characteristic	equation

This	quadratic	equation	has	two	roots,	m1	and	m2,	and	there	are	three	cases:
(a)	m1,	m2	are	real	and	unequal.	Two	independent	solutions	of	(3.7)	are	 tm1

and	tm2.
(b)	m1,	m2	are	real	and	equal,	i.e.,	m1	=	m2	 	m.	Two	independent	solutions
of	(3.7)	are	tm	and	tm	ln	t.
(c)	m	=	α	±	iβ	are	complex	conjugate	roots.	Two	real,	independent	solutions,
determined	from	the	real	and	 imaginary	parts	of	 the	complex	solution	 tα+iβ

(3.7)	are	tα	sin	(β	ln	t)	and	tα	cos(β	ln	t).
Nonhomogeneous	 Equations.	 The	 general	 solution	 of	 the	 linear
nonhomogeneous	equation
(3.8)	

is

where	u1	 and	u2	 are	 independent	 solutions	 of	 the	 homogeneous	 equation	 (i.e.,
when	f(t)	 	0),	and	uP	is	any	particular	solution	to	(3.8).	This	structure	result	is
valid	for	all	linear	equations	of	any	order:	The	general	solution	is	the	sum	of	the
general	 solution	 to	 the	 homogeneous	 equation	 and	 a	 particular	 solution	 to	 the
nonhomogeneous	 equation.	 For	 constant	 coefficient	 equations	 a	 particular
solution	can	sometimes	be	inferred,	or	judiciously	guessed,	from	the	form	of	the
forcing	 term	 f(t)	when	 it	 is	 a	 polynomial,	 sine	 or	 cosine	 function,	 exponential
function,	 or	 sums	 and	 products	 of	 these	 functions.	 This	 is	 the	 method	 of
undetermined	 coefficients.	 In	 any	 case,	 however,	 there	 is	 a	 general	 formula,
called	 the	variation	of	parameters	 formula,	 that	gives	a	particular	 solution	 in
terms	 of	 the	 linear	 independent	 solution	 of	 the	 homogeneous	 equation.	 In	 the



case	 of	 the	 second-order	 equation	 (3.8)	with	 linearly	 independent	 solutions	u1
and	u2,	the	formula	is

where	 W(s)	 =	 u1(s)u’2(s)	 −	 u2(s)u’1(s)	 is	 the	 Wronskian.	 Any	 elementary
differential	 equation	 book	 has	 a	 detailed	 discussion	 of	 these	 methods	 (e.g.,
Logan,	2010).
Nonlinear	 Equations.	 Some	 second-order,	 nonlinear	 equations	 can	 be
immediately	 reduced	 to	 a	 first-order	 equation.	 For	 example,	 we	 consider
Newton’s	second	law	of	motion,	a	dynamical	equation	of	the	form

where	the	dependent	variable	is	x	=	x(t),	representing	position;	m	is	the	mass	and
F	is	the	force.	If	the	force	does	not	depend	on	position	x,	then	the	substitution	y
=	x’	immediately	reduces	the	equation	to	the	first-order	equation	in	the	velocity
y:

Once	y	is	obtained,	integration	gives	the	solution	x.	If	the	force	does	not	depend
explicitly	on	the	time	t,	that	is,	it	has	the	form

then	 we	 again	 define	 y	 =	 x’.	 Then,	 using	 the	 chain	 rule,	
,	and	the	equation	becomes

which	 is	 a	 first-order	 equation	 for	 the	 velocity	 in	 terms	 of	 position,	 y	 =	 y(x).
Then	we	can	obtain	x	=	x(t)	by	solving

There	 is	 one	 additional	 important	 case	 when	 the	 force	 depends	 only	 on
position	and	is	conservative,	that	is,	when	there	is	a	potential	function	V	=	V(x)
for	which

Then	the	equation	of	motion	becomes



or,	upon	separating	variables,

Integrating	both	sides	gives

where	the	constant	of	integration	in	denoted	by	E.	This	 last	equation	expresses
the	fact	that	the	total	energy	in	the	system	(kinetic	energy	plus	potential	energy)
is	 constant.	 Therefore,	 if	 the	 force	 F(x)	 is	 conservative,	 then	 total	 energy	 is
conserved.	The	energy	constant	E	can	be	computed	from	the	initial	position	and
velocity,	x(0)	and	y(0).	Later,	these	models	are	discussed	in	detail.

EXERCISES
1.	Find	the	general	solution	of	the	following	differential	equations:

2.	A	 differential	 equation	 of	 the	 form	u’	 =	 f(u/t)	 is	 called	 a	 homogeneous
equation.	(The	word	homogeneous	in	this	case	is	used	differently	from	that
of	an	equation	whose	right	side	is	zero.)	Show	that	the	change	of	variables	y
=	u/t	transforms	the	equation	into	a	separable	equation	for	y.
3.	 (Mechanics)	 From	 the	 conservation	 of	 energy	 law	 for	 a	 conservative
force,	show	that	the	position	x	=	x(t)	satisfies	the	equation

where	C	is	a	constant	of	integration.
4.	 (Reactor	 dynamics)	 Consider	 a	 chemical	 reactor	 of	 constant	 volume	V
where	a	chemical	C	is	pumped	into	the	reactor	at	constant	concentration	and
constant	 flow	 rate	q.	While	 in	 the	 reactor	 it	 reacts	 according	 to	C	 +	C	→
products.	The	law	of	mass	action	dictates	that	the	rate	of	the	reaction	is	r	=
kC2,	where	k	is	the	rate	constant.	If	the	concentration	of	C	in	the	reactor	is
given	by	C(t),	then	mass	balance	leads	to	the	governing	equation



Non-dimensionalize	the	model	by	selecting	the	concentration	scale	to	be	cin,
the	 input	 concentration,	 and	 a	 time	 scale	 based	 on	 the	 flow-through	 rate.
Determine	 the	 equilibria,	 or	 constant	 solutions,	 and	 find	 a	 formula	 for	 the
concentration	as	a	function	of	time.
5.	(Heat	transfer)	The	goal	of	this	exercise	is	to	derive	a	differential	equation
for	 the	 changing	 temperature	T	 =	T(t)	 of	 a	 small,	 uniform	object	 of	 initial
temperature	T0	 placed	 in	 an	 environment	 of	 temperature	Te.	 (Think	 of	 an
object	placed	 in	 an	oven.)	The	 result	 is	Newton’s	 law	of	 cooling,	 and	 the
reader	is	asked	to	follow	through	the	steps.	To	this	end,	let	U	be	the	internal
energy	of	the	object.	Then

where	 ρ	 is	 the	 density	 (mass	 per	 volume)	 and	 cv	 is	 the	 specific	 heat	 at
constant	 volume	 (energy	 per	 mass,	 per	 degree).	 We	 assume,	 based	 on
empirical	data,	that	the	rate	of	change	of	energy	in	the	object	is	proportional
to	the	difference	between	the	temperature	of	the	object	and	its	environmental
temperature,	or

where	h	is	the	heat	loss	coefficient.	Show	that	[h]	=	energy	per	volume,	per
degree	per	time.	Why	is	there	a	minus	sign	on	the	right	side	of	the	equation?
Finally,

where	k	=	h/ρcv.	Note	that	 this	argument	depends	on	uniform	conditions	in
the	object,	no	temperature	gradients,	and	so	on.

a)	Determine	the	temperature	T	=	T(t)	of	the	object	and	sketch	a	generic
plot	of	temperature	vs.	time	if	T0	<	Te.
b)	 Find	 an	 analytic	 formula	 for	 the	 temperature	 if	 the	 environmental
temperature	varies	according	to	Te	=	θ(t).
c)	Next,	think	of	a	small	exothermic	animal	(a	lizard,	or	snake)	emerging
from	 a	 cool	 nest	 at	 midday.	 In	 addition	 to	 exchanging	 heat	 with	 its
environment,	 it	also	heated	by	solar	 radiation	S	 (power	per	area)	 falling
on	its	effective	body	area.	Then,	its	temperature	is	governed	by



What	are	the	dimensions	of	the	constant	a?
6.	 (Advertising)	 This	 exercise	 develops	 a	 simple	 model	 to	 assess	 the
effectiveness	of	an	advertising	campaign.	Let	S	=	S(t)	be	the	monthly	sales
of	 an	 item.	 In	 the	 absence	 of	 advertising	 it	 is	 observed	 from	 sales	 history
data	that	sales	decrease	at	a	constant	per	capita	rate	a.	If	there	is	advertising,
then	 sales	 rebound	 and	 tend	 to	 saturate	 at	 some	 maximum	 value	 S	 =	M,
because	there	are	only	finitely	many	consumers.	The	rate	of	increase	in	sales
due	 to	advertising	 is	 jointly	proportional	 to	 the	advertising	rate	A(t)	 and	 to
the	degree	the	market	is	not	saturated,	that	is,

The	constant	r	measures	the	effectiveness	of	the	advertising	campaign,	and	
	 is	 a	 measure	 of	 the	 market	 share	 that	 has	 still	 not	 purchased	 the

product.	Combining	natural	sales	decay	and	advertising	gives	the	model

If	S(0)	=	S0	and	the	advertising	is	constant	over	a	fixed	time	period	T	and	is
then	removed,	that	is,

find	a	formula	for	the	sales	S(t).
7.	 (Biogeography)	 The	 MacArthur–Wilson	 model	 of	 the	 dynamics	 of
species	(e.g.,	bird	species)	that	inhabit	an	island	located	near	a	mainland	was
developed	in	the	1960s.	Let	N	be	the	number	of	species	in	the	source	pool	on
the	 mainland,	 and	 let	 S	 =	 S(t)	 be	 the	 number	 of	 species	 on	 the	 island.
Assume	that	the	rate	of	change	of	the	number	of	species	is

where	χ	is	colonization	rate	and	μ	is	the	extinction	rate.	In	the	MacArthur–
Wilson	model,

where	 I	 and	 E	 are	 the	 maximum	 colonization	 and	 extinction	 rates,
respectively.

a)	Over	a	long	time,	what	is	the	expected	equilibrium	for	the	number	of



species	inhabiting	the	island?
b)	Given	S(0)	=	S0,	find	an	analytic	formula	for	S(t).
c)	Suppose	there	are	two	islands,	one	large	and	one	small,	with	the	larger
island	having	the	smaller	maximum	extinction	rate.	Both	have	 the	same
colonization	rate.	Show	that	the	smaller	island	will	eventually	have	fewer
species.

8.	 (Chemical	 reactors)	 A	 large	 industrial	 retention	 pond	 of	 volume	 V,
initially	 free	 of	 pollutants,	 was	 subject	 to	 the	 inflow	 of	 a	 contaminant
produced	in	the	factory’s	processing	plant.	Over	a	period	of	b	days	the	EPA
found	that	the	inflow	concentration	of	the	contaminant	decreased	linearly	(in
time)	to	zero	from	its	 initial	 initial	value	of	a	 (grams	per	volume),	 its	flow
rate	q	(volume	per	day)	being	constant.	During	the	b	days	the	spillage	rate	to
the	 local	 stream	was	 also	q.	What	 is	 the	 concentration	 in	 the	 pond	 after	b
days?	Take	V	=	6000	cubic	meters,	b	=	20	days,	a	=	0.03	grams	per	cubic
meter,	and	q	=	50	cubic	meters	per	day.	With	these	data,	how	long	would	it
take	for	the	concentration	in	the	pond	to	get	below	a	required	EPA	level	of
0.00001	grams	per	cubic	meter	if	fresh	water	is	pumped	into	the	pond	at	the
same	 flow	 rate,	 with	 the	 same	 spill	 over?	 [Use	 software	 to	 perform	 the
calculations.]
9.	(Circuits)	An	electrical	(RCL)	circuit	(Fig.	1.6)	has	an	 inductor,	 resistor,
and	 capacitor	 connected	 in	 series,	 along	 with	 an	 electromotive	 force	 that
supplies	energy.	The	governing	equation,	obtained	by	Kirchhoff’s	law,	is

Figure	1.6	An	RCL	circuit	containing	an	inductor,	capacitor,	and	resistor	in
series	with	electromotive	force	E(t).

where	q	=	q(t)	 is	 the	charge	on	 the	capacitor,	L	 is	 the	 inductance,	R	 is	 the
resistance,	C	 is	 the	 capacitance,	 I0	 is	 the	 initial	 current,	 and	 E(t)	 is	 the



electromotive	force	(voltage)	supplied	by	a	battery	or	generator.	Each	term
in	 Kirchhoff’s	 is	 the	 work	 required	 to	 move	 a	 unit	 charge	 across	 the
corresponding	circuit	element	Table	1.2	shows	the	dimensional	relations	for
the	various	parameters.
Table	1.2	Fundamental	dimensions	of	various	quantities	occurring	in	electrical	circuits.	Charge	Q	is	a
fundamental	dimension.	Note	that	the	quantities	can	be	written	in	terms	current	I	instead	of	Q;	also,
mass	may	be	replaced	by	appropriate	expressions	involving	force	F	and/or	energy	E.
Quantity	(symbol) Dimensions Relation

charge	(q) Q

current	(I) QT−1 charge	per	time

voltage	(V) ML2T−2Q−1 energy	(work)	per	charge

capacitance	(C) Q2T2M−1L−2 charge	per	voltage

resistance	(R) ML2T−2Q−1 voltage	per	current

inductance	(L) ML2Q−1 voltage	per	current	per	time

a)	(Units)	In	rhe	mks	system	of	units	time	is	measured	in	seconds,	length
in	meters,	 and	mass	 in	 kilograms.	 Then	 force	 is	measured	 in	 newtons,
energy	in	joules,	and	charge	in	coulombs.	Using	the	dimensional	relations
in	 Table	 1.2,	 find	 the	 mks	 units	 of	 current,	 voltage,	 resistance,
capacitance,	 and	 inductance	 (these	 are	 called	 amperes,	 volts,	 ohms,
farads,	and	henrys,	respectively).	Verify	that	each	term	in	Kirchhoff’s	law
has	dimensions	of	work	per	charge.
b)	If	E(t)	=	V0	 (volts)	 is	constant,	what	 is	 the	behavior,	or	dynamics,	of
the	 circuit	 in	 the	 three	 cases:	 R2	 >	 4L/C,	 R2	 =	 4L/C,	 and	 R2	 <	 4L/C.
Answer	 this	question	using	 terms	 like	decay,	oscillatory,	 frequency,	and
amplitude.

10.	 In	an	RC	circuit	 the	charge	q	=	q(t)	 on	 a	 capacitor	 is	 governed	by	 the
first-order	equation

If	q(0)	=	q0,	find	the	charge	as	a	function	of	time.	If	the	electromotive	force
is	constant,	E(t)	=	V,	what	is	the	long-time	charge	on	the	capacitor?
11.	 (Electricity)	 The	 basic	 law	 of	 electricity	 is	 Coulomb’s	 law,	 an
experimental	 result	 that	 states,	 in	 a	 vacuum,	 the	 force	 F	 on	 two	 charged
particles	q1	and	q2	separated	by	a	distance	r	is



where	 ε0	 is	 an	 experimental	 constant,	 depending	 on	 the	 units,	 called	 the
(electric)	permittivity	of	free	space.	In	mks	units,	ε0	=	8.85	·	10−12	farads	per
meter.	 (a)	 Find	 the	 dimensions	 of	 ε0	 in	 terms	 of	 mass,	 length,	 time,	 and
current.	(b)	Calculate	the	force	required	to	maintain	a	separation	distance	of
1	meter	between	two	positive,	1	coulomb	charges.	Is	this	a	large	force?	What
does	this	result	say	about	the	magnitude	of	1	coulomb?
12.	(Thermistors)	A	thermistor	is	a	resistor	that	depends	on	temperature;	as	it
gets	hotter,	resistance	increases.	They	are	used	in	fuses	and	and	in	electrical
appliances	to	prevent	devices	from	overheating.	A	typical	thermistor	may	be
a	 dime-shaped	 ceramic	 having	metal	 contacts	 on	 the	 flat	 surfaces.	 Let	 us
assume	 that	 a	 constant	 voltage	V	 is	 applied	 across	 the	 thermistor,	 and	 the
temperature	 in	 the	 thermistor	 is	uniform	and	depends	only	on	 time,	or	T	=
T(t).	On	one	hand,	ohmic	heating	causes	the	thermistor	to	heat	up,	and	on	the
other	hand	heat	is	lost	to	the	constant	temperature	environment	Te	(Newton’s
law	 of	 cooling).	 Show	 that	 energy	 balance	 in	 the	 thermistor	 leads	 to	 the
model

where	m	and	c	are	the	mass	and	specific	heat	of	the	thermistor,	h	is	the	heat
loss	coefficient,	and	R(T)	is	the	resistance.	Assuming	that	R(T)	is	a	linearly
increasing	 function	 of	 temperature,	 show	 that	 there	 is	 equilibrium,	 or
constant,	solution	to	the	model.
13.	(Ecology)	A	population	N	=	N(t)	is	governed	by	the	logistic	law

where	 the	 carrying	 capacity	varies	 according	 to	K	 =	K(t).	 Find	 an	 integral
form	of	the	solution	N	=	N(t).



1.3.2	Stability	and	Bifurcation
First-order	autonomous	equations	arise	frequently	in	applications;	they	have	the
form
(3.9)	

where	 there	 is	 no	 explicit	 dependence	 on	 time.	Because	 (3.9)	 is	 separable,	we
can	immediately	obtain	an	implicit,	general	solution	of	the	form

In	 only	 the	 simplest	 equations	 can	 the	 integral	 be	 resolved,	 and	 so	we	 almost
always	 resort	 to	 a	 geometric,	 or	 qualitative,	 analysis	 of	 (3.9),	which	 gives	 the
essential	behavior	of	the	solutions.	If	the	qualitative	behavior	is	important,	then
we	can	perform	numerical	methods	(e.g.,	a	Runge–Kutta	method).

Example	1.18
This	example	(see	Strogatz,	1994)	well	illustrates	that	the	analytic	solution	to	a
differential	equation	 is	not	often	 transparent,	and	actually	sometimes	useless	 in
understanding	its	qualitative	features.	Consider	the	simple	initial	value	problem

Separating	variables	and	integrating	immediately	leads	to	the	implicit	form

What	are	the	qualitative	features	of	the	solution	for	different	values	of	the	initial
condition	a?	This	question	would	draw	a	collective	groan	from	a	class.	There	is
a	better	way	to	address	this	question.
Key	to	the	qualitative	analysis	is	to	determine	the	equilibria	of	an	equation	and

the	dynamics	near	the	equilibria.	An	equilibrium	solution	of	(3.9)	is	a	constant
solution,	which	is	clearly	a	root	of	the	algebraic	equation	f(u)	=	0.	Thus,	u(t)	=
u*	is	an	equilibrium	solution	if,	and	only	if,	f(u*)	=	0.	Geometrically,	the	values
u*	 are	 the	 points	 where	 the	 graph	 of	 f(u)	 versus	 u	 intersects	 the	 u	 axis.	 We
always	assume	the	equilibria	are	isolated,	i.e.,	if	u*	is	an	equilibrium,	then	there
is	an	open	interval	containing	u*	that	contains	no	other	equilibria.	Fig.	1.7	shows
a	generic	plot	of	f(u),	where	the	equilibria	are,	say,	u*	=	a,	b,	c.	In	between	the
equilibria	 we	 observe	 the	 values	 of	 u	 for	 which	 u	 is	 increasing	 (f(u)	 >	 0)	 or
decreasing	 (f(u)	 <	 0).	We	 may	 place	 arrows	 on	 the	 u	 axis,	 or	 phase	 line,	 in



between	 the	equilibria	 showing	direction	of	 the	 flow	of	u	 =	u(t)	 (increasing	or
decreasing)	as	time	increases.	If	desired,	the	information	from	the	phase	line	can
be	translated	into	time	series	plots	of	u(t)	versus	t	(Fig.	1.8).

Figure	1.7	Generic	phase	line	plot.	The	u	axis	is	interpreted	as	a	one-
dimensional	state,	or	phase,	space	on	which	the	solution	u	=	u(t)	moves	in	time.
The	arrows	indicate	the	direction	of	movement.

Figure	1.8	Time	series	plots	for	various	initial	conditions	of	the	equation	whose
phase	line	plot	is	shown	in	the	phase	line	diagram.

On	the	phase	line,	if	arrows	on	both	sides	of	an	equilibrium	point	toward	that
equilibrium	point,	then	we	say	the	equilibrium	point	is	an	attractor,	or	a	locally
asymptotically	 stable	 equilibrium.	 If	 both	 of	 the	 arrows	 point	 away,	 the
equilibrium	 is	 a	 repeller	 and	 is	unstable.	 The	 terms	 sink	 and	 source	 are	 also
used.	 If	 one	 arrow	 points	 toward	 the	 equilibrium	 and	 one	 points	 away,	 the
equilibrium	 is	 hyperbolic;	 some	 authors	 call	 these	 equilibria	 semi-stable.
Repellers	 and	 hyperbolic	 equilibria	 are	 unstable	 equilibria.	 Suppose	 an



equilibrium	is	an	attractor	and	the	system	is	in	that	constant	equilibrium	state;	if
it	is	given	a	small	perturbation	(i.e.,	a	change	or	“bump”)	to	a	nearby	state,	then
it	 returns	 to	 that	 state	as	 t	→	+∞.	 In	one-dimensional	 systems	we	often	us	 the
word	 stable	 in	 place	 of	 the	 wordy	 expression	 ‘locally	 asymptotic	 stable’;	 in
higher-dimensional	 systems	 we	 must	 distinguish	 between	 these	 two	 terms.	 It
seems	 plausible	 that	meaningful	 physical	 and	 biological	 systems	will	 seek	 out
stable	 states.	 Repellers	 and	 hyperbolic	 points	 are	 unstable	 because	 a	 small
perturbation	can	cause	the	system	to	go	to	a	different	equilibrium,	or	even	blow
up.
One	 point	 of	 clarification:	 if	 the	 domain	 for	 the	 dependent	 variable	 is,	 for

example,	 u	 ≥	 0,	 as	 in	 a	 population	 model,	 and	 u	 =	 0	 is	 an	 equilibrium
representing	extinction,	then	we	use	the	words	stable	and	unstable	in	a	one-sided
sense,	ignoring	the	phase	line	for	u	<	0.
When	 we	 state	 that	 an	 equilibrium	 u*	 is	 locally	 asymptotically	 stable,	 the

understanding	 is	 that	 it	 is	with	 respect	 to	 small	 perturbations.	 To	 fix	 the	 idea,
consider	a	population	of	fish	 in	a	 lake	 that	 is	 in	a	 locally	asymptotically	stable
equilibrium	u*.	A	small	death	event,	say	caused	by	some	toxic	chemical	that	is
dumped	 into	 the	 lake,	 will	 cause	 the	 population	 to	 drop.	 Local	 asymptotic
stability	 means	 that	 the	 system	 will	 return	 the	 original	 state	 u*	 over	 time.	 If
many	fish	are	killed	by	the	pollution	event,	then	the	perturbation	is	not	small	and
there	is	no	guarantee	that	the	fish	population	will	return	to	the	original	state	u*;
for	example,	it	may	go	to	some	other	equilibrium	state	or	become	extinct.	If	the
population	returns	to	the	state	u*	for	all	perturbations,	no	matter	how	large,	then
the	 state	 u*	 is	 called	 globally	 asymptotically	 stable.	 A	 precise	 definition	 of
local	asymptotic	stability	can	be	given	as	follows.

Definition	1.19
An	isolated	equilibrium	state	u*	of	(3.9)	is	locally	asymptotically	stable	if	there
is	an	open	interval	I	containing	u*	with	limt→+∞	u(t)	=	u*	for	any	solution	u	=
u(t)	of	(3.9)	with	u(0)	in	I.	That	is,	each	solution	starting	in	I	converges	to	u*.
Graphically,	 stability	 can	 be	 determined	 from	 the	 slope	 of	 the	 tangent	 line

f’(u*)	to	the	graph	of	f(u)	vs.	u	at	the	equilibrium	state.	If	f’(u*)	<	0,	the	graph	of
f(u)	 through	 the	 equilibrium	 falls	 from	 positive	 to	 negative	 values,	 giving	 an
arrow	pattern	of	an	attractor.	Similarly,	if	f’(u*)	>	0,	we	obtain	the	arrow	pattern
of	a	repeller.	If	f’(u*)	=	0,	then	u*	may	be	an	attractor,	repeller,	or	hyperbolic.
Using	 linearization,	 we	 can	 confirm	 these	 graphical	 criteria	 analytically.	 If



(3.9)	is	in	an	equilibrium	state	u*	and	U	=	U(t)	 represents	a	small	perturbation
from	that	state,	then	u(t)	=	u*	+	U(t)	and,	using	Taylor’s	theorem,

where	the	dots	denote	higher-order	terms	in	U.	Ignoring	all	but	the	linear	terms,
we	get

which	 is	 called	 the	 linearization,	 or	 the	 perturbation	 equation,	 about	 the
equilibrium	u*.	This	is	a	linear	growth-decay	equation	and	its	solution	is	simply
U(t)	=	Ceλt,	where	λ	=	f’(u*),	a	constant.	If	λ	<	0,	the	perturbation	decays,	and	if
λ	>	0,	the	perturbation	grows,	implying	local	asymptotic	stability	and	instability,
respectively.
If	λ	=	0,	then	we	must	analyze	higher-order	terms	in	the	Taylor	expansion	to

determine	stability.	For	example,	the	term	f“(u*)	relates	to	concavity.	Or,	we	can
just	plot	the	function	f(u)	and	observe	its	behavior.

Remark	1.20
As	an	exercise,	the	reader	should	now	consider	answering	the	question	posed	in
Example	1.18.

Example	1.21
(Logistic	model)	The	logistic	model	of	population	growth	is

where	r	is	the	growth	rate	and	K	is	the	carrying	capacity.	The	equilibria	are	p*	=
0,	K,	found	by	setting	the	right	side	f(p)	=	rp	(1	−	p/K)	=	0.	The	equilibrium	p*	=
K	 is	 asymptotically	 stable	 because	 f’(K)	 =	 −r	 <	 0,	 and	 the	 zero	 population	 is
unstable	because	f’(0)	=	r	>	0.

Example	1.22
(Uniqueness)	The	simple	initial	value	problem

reveals	 another	 important	 issue,	 namely	 uniqueness.	 There	 are	 clearly	 two
solutions	to	this	problem,	u	=	0	and	u	=	(2/3	 t)3/2,	both	valid	 for	all	 t	≥	0.	The
phase	 line	diagram	gives	 incomplete	and	even	confusing	 information.	The	plot



of	f(u)	=	u1/3	has	an	infinite	derivative	at	u	=	0	and	is	not	defined.	What	would	a
particle	do	if	it	started	at	u	=	0?	Remain	at	u	=	0	or	follow	the	nonzero	solution?
This	 issue	 is	 avoided	 when	 there	 exist	 unique	 solutions	 to	 an	 initial	 value
problem.	It	is	proved	in	more	advanced	texts	that	unique	solutions	exist	for	the
initial	value	problem	u’	=	 f(u),	u(0)	=	u0	when	 f	and	 f’	are	continuous	 in	some
open	interval	containing	u0;	the	unique	solution	u	=	u(t)	is	guaranteed	to	exist	in
some	interval	–τ	<	t	<	τ.

Remark	1.23
(Oscillatory	solutions)	Notice	 that	 uniqueness	 implies	 that	 a	 solution	u	 =	u(t)
plotted	 on	 the	 phase	 line	 cannot	 enter	 an	 equilibrium	 at	 finite	 time.	 It	 also
ensures	 that	 oscillatory	 solutions	 cannot	 exist;	 they	 cannot	 ever	 turn	 around
because	of	the	monotonicity	of	the	of	direction	arrows.
The	qualitative	behavior	of	the	one-dimensional	dynamical	equation	u’	=	f(u)

seems	straightforward.	But	what	is	interesting,	and	not	always	straightforward,	is
how	 the	 behavior	 of	 solutions	 can	 change	 as	 one	 or	 more	 parameters	 in	 the
model	equation	changes.	A	simple	example	illustrates	the	point.

Example	1.24
(Harvesting)	More	often	than	not,	differential	equations	contain	parameters.	Let
us	modify	 the	 logistic	model	 by	 adding	 a	harvesting	 term.	That	 is,	 consider	 a
population	p(t)	(e.g.,	fish)	that	is	governed	by	logistic	growth,	while	at	the	same
time	it	is	harvested	(fishing)	at	a	constant	rate	H	>	0.	Then	the	dynamics	is

(3.10)	
There	are	three	parameters	in	this	problem,	r,	K,	and	H,	and	we	want	to	examine
how	 the	 solutions	 change	 as	 the	 harvesting	 rate	H	 varies,	 with	 r	 and	K	 held
fixed.	 To	 simplify	 the	 analysis	 we	 non-dimensionalize	 the	 problem	 by
introducing	a	scaled	population	u	and	a	scaled	time	τ	defined	by

Therefore,	 we	 measure	 population	 relative	 to	 the	 carrying	 capacity	 and	 time
relative	to	the	reciprocal	of	the	growth	rate.	Then	equation	(3.10)	becomes

(3.11)	



where	 h	 	H/rK	 is	 the	 dimensionless	 harvesting	 parameter.	 Treating	 h	 as	 a
control	parameter,	we	inquire	 if	equilibrium	populations	exist.	These	are	easily
found	by	setting	du/dt	=	0,	or

Solving	for	u	gives	equilibria

(3.12)	
Therefore,	 if	 the	 harvesting	 parameter	 exceeds	 1/4,	 then	 no	 equilibrium
populations	exist.	If	0	<	h	<	1/4,	then	there	are	two	positive	equilibrium	states.
We	 can	 sketch	 the	 locus	 (3.12)	 on	 a	 hu*-coordinate	 system	 (with	 h	 the
independent	variable)	to	graphically	indicate	the	dependence	of	the	equilibrium
solutions	on	the	parameter	h.	Such	a	graph	is	shown	in	Fig.	1.9	and	 is	called	a
bifurcation	 diagram;	 in	 this	 context,	 the	 harvesting	 parameter	 h	 is	 called	 a
bifurcation	parameter.	We	observe	that	if	h	is	too	large	(i.e.,	there	is	too	much
harvesting	of	 the	population),	 then	no	equilibrium	populations	exist	 and	 (3.11)
shows	that	du/dτ	<	0,	so	that	the	population	dies	out.	As	harvesting	is	decreased,
there	is	a	critical	value	of	h	(h	=	1/4)	below	which	two	equilibrium	populations
can	 exist;	 in	 these	 two	 populations,	 there	 is	 a	 balance	 between	 growth	 and
harvesting.	The	point	B	on	the	graph	where	the	two	solutions	appear	is	called	a
bifurcation	point.	Next	we	ask	if	nature	prefers	one	of	these	equilibria	over	the
other.	 The	 resolution	 of	 this	 question	 lies	 in	 the	 stability	 properties	 of	 those
states.	We	would	expect	nature	to	select	out	a	stable	state	over	an	unstable	one;
for,	 if	 a	 small	 change	 is	 made	 in	 an	 unstable	 state	 (and	 small	 deviations	 are
always	present),	then	the	system	would	leave	that	state	permanently;	if	the	state
were	 stable,	 then	 small	 perturbations	 will	 decay	 away.	 We	 could	 perform	 a
linearized	stability	analysis	as	in	the	preceding	subsection	to	determine	which,	if
any,	of	 the	 two	equilibrium	populations	given	by	 (3.12)	 is	 unstable.	But	 let	 us
proceed	a	different	way	and	plot	the	phase	line	of	the	differential	equation	(3.11)
when	0	<	h	<	1/4.	Let	u+	and	u−	denote	the	two	equilibrium	populations	in	(3.12)
with	the	plus	and	minus	signs,	respectively.	A	plot	of	the	right	side	of	(3.11)	for	a
fixed	0	<	h	<	1/4	is	shown	in	Fig.	1.10.	The	phase	line	clearly	indicates	that	the
larger	 equilibrium	 u+	 is	 stable,	 and	 the	 smaller	 u−	 is	 unstable.	 Consequently,
nature	would	select	out	the	larger	equilibrium	population	for	a	given	harvesting
rate	0	<	h	<	1/4.	In	terms	of	the	bifurcation	diagram	in	Fig.	1.8,	the	upper	branch
is	stable	and	 the	 lower	branch	 is	unstable.	A	bifurcation	 is	said	 to	occur	at	 the
point	B.	Note	 that	we	can	also	use	 the	analytic	derivative	criterion,	 the	sign	of



f’(u*),	to	determine	stability.

Figure	1.9	Bifurcation	diagram	showing	equilibrium	solutions	u*	vs.	the
parameter	h.	There	are	two	branches,	the	upper	branch,	which	is	stable,	and	the
lower	branch,	which	is	unstable.

Figure	1.10	Plot	of	f(u)	vs.	u	and	the	phase	line	corresponding	to	Fig.	1.9	for	a
fixed	h	<	1/4.	As	h	increases,	the	parabola	moves	down	until	eventually	no
equilibria	exist.

Example	1.25
(Ecology)	In	this	example	we	set	up	a	simple	model	of	a	plant–herbivore	system
and	 study	 its	 bifurcation	 properties.	 Bifurcations	 are	 highly	 important	 in	 all
physical	 and	 biological	 phenomena,	 and	 theoretical	 ecology	 offers	 easily
accessible	 examples	without	 the	 details	 of	 complicated	 physical	 and	 chemical
concepts.	 Let	 P	 =	 P(t)	 be	 the	 plant	 biomass	 and	 assume	 the	 plant	 grows
logistically	with	growth	rate	r	and	carrying	capacity	K.	Thus,	without	herbivores,

In	 this	ecological	 system	we	assume	 there	are	H	 herbivores	and	 they	consume



plant	biomass	at	the	rate

per	 herbivore.	 Notice	 that	 this	 consumption	 rate	 saturates	 at	 the	 value	 a/b,
reflecting	 satiation	 on	 the	 part	 of	 herbivores.	 The	 constant	 a	 is	 measured	 in
dimensions	 of	 ‘per	 time	 per	 herbivore,’	 and	 b	 is	 ‘per	 plant	 biomass.’	 The
governing	model	for	the	plant	biomass	is	therefore

Because	 of	 the	 number	 of	 parameters	 (5),	 it	 is	wise	 to	 scale	 the	 equation.	We
introduce	dimensionless	quantities

It	is	easily	checked	that	the	dimensionless	model	becomes

(3.13)	
with	introduction	of	the	dimensionless	parameters

Generally,	the	carrying	capacity	is	large	and	so	we	assume	for	the	analysis	that	c
>	1,	and	c	 is	 fixed.	Our	 interest	 is	 in	examining	 the	model	when	 the	herbivore
population	varies;	so,	h	is	the	bifurcation	parameter.
The	equilibria	N*	are	determined	by	setting	dN/dτ	=	0,	and	we	obtain

Thus	N*	=	0	(for	all	values	of	h)	and

Here,	it	is	difficult	to	plot	equilibria	as	a	function	of	h,	but	it	is	easy	to	plot	h	vs.
N*.	Solving	for	h,

which	is	a	concave	down	parabola	with	positive	root	N*	=	1.	By	simple	calculus
we	find	the	maximum	value	occurs	at

We	can	turn	this	parabola	on	its	side	to	obtain	a	plot	of	the	bifurcation	diagram



with	N*	vs.	h;	this	is	shown	in	Fig.	1.11	along	with	the	zero	equilibrium.

Figure	1.11	Bifurcation	diagram	for	the	model	equation	(3.13).	As	h	increases
from	a	small	value,	the	two	equilibria	bifurcate	at	h	=	1	into	three;	then,	at	h	=
(c+1)2/2c	the	two	nonzero	equilibria	coalesce	and	only	the	zero	equilibrium
remains.

We	 can	 determine	 the	 stability	 of	 the	 various	 branches	 in	 Fig.	 1.11	 using	 a
phase	 line.	Figure	1.12	 shows	 the	 three	 plots	 for	 the	 three	 possible	 cases.	We
graph	the	fixed	growth	rate	N	(1	−	N)	and	the	consumption	rate	hN/(1	+	cN)	 in
each.	They	show	that	 the	upper	branch	of	 the	parabola	 is	stable,	and	 the	 lower
branch	is	unstable.

Figure	1.12	Phase	line	diagram	for	the	equilibria	in	model	equation	(3.13).

Remark	1.26
(Functional	responses)	Ecology	provides	a	rich	source	of	problems	in	nonlinear
dynamics	 involving	 predation,	 cooperation,	 and	 disease	 transmission.	 Many
models	relating	to	resource	dynamics	(plants–herbivores,	predator–prey)	involve



a	consumption,	or	predation,	rate.	To	fix	the	context,	let	x	be	the	number	of	prey
and	y	be	the	number	of	predators.5	The	number	of	total	possible	encounters	is	xy,
and	a	fraction	of	 those,	axy,	are	effective;	 that	 is,	 they	result	 in	predation.	This
effective	 contact	 rate	 is	 also	 called	mass	action,	 and	 later	we	observe	 it	 is	 the
reaction	rate	of	two	reacting	chemical	species.	So,	the	rate	of	predation	(prey	per
time,	 per	 predator)	 is	 proportional	 to	 the	 number	 of	 prey,	 i.e.,	 ax.	 Thinking
carefully	 about	 this	 leads	 to	 concerns.	 Increasing	 the	 prey	 density	 indefinitely
leads	 to	 an	 extremely	 high	 per	 predator	 consumption	 rate,	 which	 is	 clearly
impossible	for	any	consumer.	It	seems	more	reasonable	that	the	rate	of	predation
would	 have	 a	 limiting	 value	 as	 prey	 density	 gets	 large.	 In	 the	 late	 1950s,	 C.
Holling	 developed	 a	 functional	 form	 that	 has	 this	 limiting	 property	 by
partitioning	the	 time	budget	of	 the	predator.	He	reasoned	that	 the	number	N	of
prey	captured	by	a	single	predator	 is	proportional	 to	 the	number	x	 of	prey	and
the	 time	 Ts	 allotted	 for	 searching.	 Thus	N	 =	 aTsx,	 where	 the	 proportionality
constant	a	 is	 the	 effective	 encounter	 rate.	But	 the	 total	 time	T	 available	 to	 the
predator	must	be	partitioned	into	search	time	and	total	handling	time	Th,	or	T	=
Ts	+	Th.	The	total	handling	time	is	proportional	to	the	number	captured,	Th	=	hN,
where	h	is	the	time	for	a	predator	to	handle	a	single	prey.	Hence	N	=	a(T	−	hN)x.
Solving	for	N/T,	which	is	the	predation	rate	(prey	per	time,	per	predator),	gives

This	 function	 for	 the	predation	 rate	 is	called	a	Holling	 type	 II	 response,	or	 the
Holling	 disk	 equation.	 Note	 that	 limx→∞	 ax/(1	 +	 ahx)	 =	 1/h,	 so	 the	 rate	 of
predation	approaches	a	constant	value.	This	quantity,	N/T,	 is	measured	 in	 prey
per	 time,	 per	 predator,	 so	multiplying	 by	 the	 number	 of	 predators	 y	 gives	 the
predation	rate	for	y	predators.
If	the	encounter	rate	a	is	a	function	of	the	prey	density	(e.g.,	a	linear	function	a

=	bx),	the	the	predation,	or	feeding,	rate	is

which	is	called	a	Holling	type	III	response.	Figure	1.13	compares	different	types
of	 predation	 rates	 used	 by	 ecologists.	 For	 a	 type	 III	 response	 the	 predation	 is
turned	 on	 once	 the	 prey	 density	 is	 high	 enough;	 this	 models,	 for	 example,
predators	that	must	form	a	“prey	image”	before	they	become	aware	of	the	prey,
or	 predators	 that	 eat	 different	 types	 of	 prey.	 At	 low	 densities	 prey	 go	 nearly
unnoticed;	 but	 once	 the	 density	 reaches	 an	 upper	 threshold	 the	 predation	 rises



quickly	 to	 its	maximum	 rate.	 In	 ecology	 literature	 one	 often	 encounters	 these
types	of	consumption	rates.

Figure	1.13	Three	types	of	functional	responses,	or	consumption	rates,	studied
in	ecology.	The	consumption	rate	is	measured	in	prey	per	time,	per	predator.

Example	1.27
(Non-isothermal	 tank	 reactor)	 In	 this	 section	 we	 set	 up	 a	 model	 for
determining	 the	 temperature	 	 and	 concentration	 	 of	 a	 heat-releasing,
chemically	 reacting	 substance	 in	 a	 continuously	 stirred	 tank	 reactor.	 (We	 are
using	over-bars	in	the	variables	in	anticipation	of	using	unbarred	dimensionless
variables	later.)	The	reaction	takes	place	in	a	tank	of	volume	V	(see	Fig.	1.2)	that
is	 stirred	 continuously	 in	 order	 to	 maintain	 uniform	 temperature	 and
concentration.	It	is	fed	by	a	stream	of	constant	flow	velocity	q,	constant	reactant
concentration	 ci,	 and	 constant	 temperature	 θi.	 After	 mixing	 and	 reacting,	 the
products	are	removed	at	the	same	volume	rate	q.	We	assume	that	the	exothermic
reaction	C	→	products	is	first-order	and	irreversible,	and	the	reactant	disappears
at	the	rate

where	A	and	k	are	positive	constants.	The	temperature-dependent	factor	 	in
the	rate	is	the	Arrhenius	factor,	where	A	is	proportional	to	the	activation	energy
(A	 is	 the	 activation	 energy	 divided	 by	 the	 gas	 constant	R),	 or	 the	 amount	 of
kinetic	energy	needed	for	 the	reaction	to	occur.	The	amount	of	heat	released	is
assumed	to	be	given	by

where	h	is	a	positive	constant,	the	specific	heat	of	reaction,	measured	in	energy
per	mass.



We	 are	 able	 to	 write	 a	 system	 of	 two	 differential	 equations	 that	 govern	 the
concentration	 ( )	 and	 the	 temperature	 	 of	 the	 reactant	 in	 the	 tank.	 One
equation	 comes	 from	 balancing	 the	mass	 of	 the	 reactant,	 and	 the	 other	 arises
from	conservation	of	(heat)	energy.	First,	mass	balances	gives	(see	Section	1.2.2)

(3.14)	
This	equation	states	that	the	rate	of	change	of	mass	of	reactant	in	the	tank	equals
the	mass	 in,	 less	 the	mass	 out,	 plus	 the	 rate	 at	which	 the	mass	of	 the	 reactant
disappears	in	the	chemical	reaction.	Next,	heat	balance	gives

(3.15)	
where	C	is	the	heat	capacity	of	the	mixture,	measured	in	energy	per	volume	per
degree.	These	 equations	 can	 be	 reduced	 to	 dimensionless	 form	by	 introducing
dimensionless	variables

and	dimensionless	constants

In	this	case	the	mass	and	energy	balance	equations	(3.14)	and	(3.15)	become

(3.16)	

(3.17)	
This	pair	of	equations	can	be	 reduced	 to	a	 single	equation	using	 the	 following
argument.	If	we	multiply	(3.16)	by	b	and	add	it	to	(3.17),	we	get

which	integrates	to

where	D	is	a	constant.	Assuming	θ	+	bc	at	t	=	0	is	1	+	b	gives	D	=	0;	then	θ	+	bc
=	1	+	b.	Consequently	the	heat	balance	equation	becomes

which	is	a	single	differential	equation	for	θ.	Introducing	u	=	θ	−	1,	this	equation



becomes

(3.18)	
which	is	the	final	form	that	we	shall	study.
By	definition,	 the	parameter	μ	 in	 (3.18)	 can	 be	 identified	 as	 the	 ratio	 of	 the

flow	 rate	 to	 the	 reaction	 rate,	 and	 it	 acts	 as	 the	 bifurcation	 parameter	 in	 our
analysis	 because	we	wish	 to	 study	 equilibrium	 solutions	 as	 a	 function	 of	 flow
rate.	The	equilibrium	solutions	are	given	by	solutions	to	the	equation

(3.19)	
Because	 (3.19)	 cannot	 be	 solved	 in	 analytic	 form,	 we	 resort	 to	 graphical
techniques.	We	can	plot	μ	vs.	u*	easily	and	then	reflect	the	plot	through	u*	=	μ
to	obtain	a	bifurcation	diagram	with	abscissa	μ.	Figure	1.14	shows	one	case	(b	=
5,	 γ	 =	 8,	 not	 drawn	 to	 scale).	 For	 a	 small	 value	 μ	 =	 μ1	 there	 is	 one	 large
temperature	equilibrium.	As	μ	increases	slowly,	to	maintain	equilibrium,	there	is
a	bifurcation	at	point	C	to	two,	then	three,	equilibria.	As	μ	increases	still	further,
say	 up	 to	 μ	 =	 μ3,	 there	 is	 a	 bifurcation	 at	 point	 B	 back	 to	 a	 single,	 lower,
equilibrium	temperature.	To	determine	the	stability	of	the	branches	AB,	CB,	and
CD	let	us	write	u’	=	 	(−μu	+	g(u)),	where	g(u)	=	(b	−	u)	e−γ/(u+1).	The	equilibria
occur	when	the	graphs	of	g(u)	and	μu	intersect.	Figure	1.15	shows	three	cases:	μ
=	μ1,	μ	=	μ2,	μ	=	μ3.	For	μ	values	where	g(u)	>	μu	we	have	u’	>	0,	and	μ	values
where	g(u)	<	μu	we	have	u’	>	0.	This	means	the	upper	temperature	branch	AB
must	be	asymptotically	stable,	the	middle	branch	BC	must	be	unstable,	and	the
lower	temperature	branch	must	be	asymptotically	stable.

Figure	1.14	Bifurcation	diagram.	The	top	branch	from	A	to	B	and	the	bottom
branch	from	C	to	D	are	stable;	the	middle	branch	B	to	C	is	unstable.



Figure	1.15	Plot	of	the	left	and	right	sides	of	equation	(3.19).	Intersections	show
the	equilibria	and	how	they	change	as	μ	changes.

Physically,	if	the	flow	rate	μ	is	fast,	say	μ	=	μ3,	the	reactor	is	operating	at	a	low
temperature.	If	it	is	slowly	decreased,	the	temperature	changes	along	the	lower,
stable	 branch	CD	until	 it	 reaches	 the	 point	C.	At	 that	 time	 a	 bifurcation	must
occur,	 and	 further	 decrease	 in	 μ	will	 cause	 the	 temperature	 to	 jump	 suddenly
(and	 dynamically)	 to	 the	 upper,	 hotter	 branch.	 We	 say	 ignition	 has	 occurred.
Conversely,	 if	 the	flow	rate	is	 increased	from	μ1,	on	reaching	state	B	 there	is	a
sudden	 jump	 to	 the	 lower	 temperature	 state	 along	 the	 stable	 branch	CD.	 This
bifurcation	is	called	quenching	 the	 reaction.	 In	summary,	 the	flow	rate	 through
the	reactor	controls	its	performance;	when	the	flow	rate	is	large	it	operates	at	a



higher	 temperature,	and	at	a	 low	rate	 it	operates	at	a	 low	temperature.	 It	 is	not
difficult	to	understand	why	bifurcation	phenomena	are	important	in	the	operation
of	nuclear	reactors.

EXERCISES
1.	(Ecology)	In	the	usual	Malthus	growth	law	p’	=	rp	for	a	population	of	size
p,	assume	the	growth	rate	is	a	linear	function	of	food	availability	F;	that	is,	r
=	bF,	where	b	 is	 the	conversion	factor	of	food	into	newborns.	Assume	that
FT	 is	 the	 total,	 constant	 food	 in	 the	 system	with	FT	=	F	 +	cp,	where	cp	 is
amount	of	food	already	consumed.	Write	down	a	differential	equation	for	the
population	p.	What	is	the	population	as	t	gets	large?	Find	the	population	as	a
function	of	time	if	p(0)	=	p0.
2.	(Biology)	A	model	of	tumor	growth	is	the	Gompertz	equation

where	R	=	R(t)	is	the	tumor	radius,	and	a	and	k	are	positive	constants.	Find
the	equilibria	and	analyze	their	stability.	Find	the	solution	R	=	R(t)	and	plot
several	solution	curves.
3.	 (Ecology)	 When	 a	 population	 gets	 small,	 the	 members	 may	 find	 it
difficult	 to	 locate	 mates,	 causing	 the	 growth	 rate	 to	 be	 negative.	 This
phenomenon	is	called	the	Allee	effect.	Explain	how	the	model	explains	this
effect.

4.	(Harvesting)	A	fish	population	in	a	lake	is	harvested	at	a	constant	rate	H,
and	 it	 grows	 logistically.	 The	 growth	 rate	 is	 0.2	 per	 month,	 the	 carrying
capacity	 is	 40	 (thousand),	 and	 the	 harvesting	 rate	 is	 1.5	 (thousand	 per
month).	 Write	 down	 the	 model	 equation,	 find	 the	 equilibria,	 and	 classify
them.	Will	the	fish	population	ever	become	extinct?	What	is	the	most	likely
long-term	fish	population?
5.	(Harvesting)	A	deer	population	grows	logistically,	but	it	is	harvested	at	a
rate	 proportional	 to	 its	 population	 size.	 Conclude	 that	 the	 dynamics	 of
population	growth	is	given	by



where	H	is	the	per	capita	harvesting	rate.	Non-dimensionalize	the	model	and
use	 a	 bifurcation	 diagram	 to	 explain	 the	 effects	 on	 the	 equilibrium	 deer
population	when	H	is	slowly	increased	from	a	small	value.
6.	Draw	a	bifurcation	diagram	for	the	model	u’	=	u3	−	u	+	h,	where	h	is	the
bifurcation	parameter,	using	h	as	the	abscissa.	Label	branches	of	the	curves
as	stable	or	unstable.	(Hint:	first	plot	h	vs.	u.)
7.	For	the	following	equations,	find	the	equilibria	and	sketch	the	phase	line.
Determine	the	type	and	stability	of	all	the	equilibria.

a)	u’	=	u2(3	−	u).
b)	u’	=	2u(1	−	u)	−	1/2u.
c)	u’	=	(4	−	u)(2	−	u)3.
d)	u’	=	u	−	cos	u.	(Hint:	plot	u	and	cos	u	separately.)
e)	u’	=	eu	−	cos	u.

8.	The	following	models	contain	a	parameter	h.	Find	the	equilibria	in	terms
of	h	and	determine	 their	stability.	Construct	a	bifurcation	diagram	showing
how	 equilibria	 depend	 upon	 h,	 and	 label	 the	 branches	 of	 the	 curves	 as
unstable	or	stable.

a)	u’	=	hu	−	u2.
b)	u’	=	hu	−	u3.
c)	u’	=	(1	−	u)	(u2	−	h).
d)	u’	=	h	−	u	−	e−u.
e)	u’	=	−u	+	h	tanh	u.

9.	Consider	the	model	u’	=	(λ	−	b)u	−	au3,	where	a	and	b	are	fixed	positive
constants	and	λ	is	a	parameter	that	varies.

a)	 If	 λ	 <	 b	 show	 that	 there	 is	 a	 single	 equilibrium	 and	 that	 it	 is
asymptotically	stable.
b)	If	λ	>	b	find	all	equilibria	and	determine	their	stability.
c)	 Sketch	 the	 bifurcation	 diagram	 showing	 how	 equilibria	 vary	with	 λ.
Label	 each	 branch	 of	 the	 curves	 shown	 in	 the	 bifurcation	 diagram	 as
stable	or	unstable.

10.	 (Ecology)	An	animal	species	of	population	u	grows	exponentially	with
growth	rate	r.	At	the	same	time	it	is	subjected	to	predation	at	a	rate	au/1+bu,
which	depends	upon	its	population.	The	constants	a	and	b	are	positive,	and
the	dynamics	are



a)	Non-dimensionalize	the	model	so	that	 there	is	a	single	dimensionless
parameter	h.
b)	 Sketch	 a	 bifurcation	 diagram,	 and	 determine	 the	 stability	 of	 the
equilibria	as	a	function	of	h;	indicate	the	results	on	the	diagram.

11.	Repeat	the	last	problem	for	the	model

12.	 (Ecology)	 The	 biomass	 P	 of	 a	 plant	 grows	 logistically	 with	 intrinsic
growth	rate	r	and	carrying	capacity	K.	At	the	same	time	it	is	consumed	at	a
rate

per	herbivore,	where	a	and	b	are	positive	constants.	The	model	is	therefore

with	r,	K,	a,	and	b	fixed	parameters.
a)	Non-dimensionalize	the	model	to	obtain

for	appropriate	dimensionless	parameters	R	and	k.
b)	On	the	same	set	of	axes,	plot	 the	per	capita	growth	and	consumption
rate	 as	 functions	 of	N,	 indicating	 the	 possible	 equilibria	 that	 can	 occur
depending	on	the	values	of	R	and	k.
c)	For	fixed	R	<	0.5,	sketch	a	bifurcation	diagram	of	the	equilibria	vs.	the
bifurcation	parameter	k.	Label	each	branch	as	stable	or	unstable.
d)	 Explain	 in	 words	 what	 happens	 in	 the	 model	 when	 k	 is	 slowly
increased	from	a	small	value	to	a	large	value.

13.	A	one-dimensional	system	is	governed	by	the	dynamical	equation

where	a	and	h	are	positive	constants.	Holding	ft,	constant,	draw	a	bifurcation
diagram	 with	 respect	 to	 the	 parameter	 a.	 Indicate	 the	 stable	 and	 unstable
branches.	Hint:	Plot	both	terms	on	the	same	set	of	axes.
14.	Consider	the	two-parameter	model



where	 h	 and	 r	 are	 real	 numbers.	 Carry	 out	 each	 step	 to	 understand
completely	the	dynamics	of	this	model.

a)	For	r	<	0,	sketch	the	bifurcation	diagram	of	x*	vs.	h.	(Hint:	plot	y	=	h
and	y	=	x3	−	rx	on	the	same	set	of	axes	to	find	equilibria.)
b)	For	r	>	0,	sketch	the	bifurcation	diagram	of	x*	vs.	h.	(Hint:	plot	y	=	h
and	y	=	x3	−	rx	on	the	same	set	of	axes,	and	let	ft	vary	to	find	equilibria.)
c)	From	part	(b),	calculate	the	critical	values	of	h	=	hc(r)	(depending	on	r)
where	bifurcations	occur.	Answer:

d)	In	the	rh	plane,	sketch	the	regions	where	1,	2,	or	3	equilibria	exist,	and
find	the	equation(s)	for	the	boundaries	of	these	regions.



REFERENCES	AND	NOTES
Birkhoff,	 G.	 1950.	 Hydrodynamics:	 A	 Study	 in	 Logic,	 Fact,	 and	 Similitude,
Princeton	University	Press,	Princeton,	NJ.
Fowler,	A.	C.	1997.	Mathematical	Models	 in	 the	Applied	Sciences,	Cambridge
University	Press,	Cambridge.
Hirsch,	 M.	 W.,	 Smale,	 S.	 &	 Devaney.	 R.	 L.	 2004.	 Differential	 Equations,
Dynamical	Systems,	and	an	Introduction	to	Chaos,	2nd	ed.,	Academic	Press,	San
Diego.
Holmes,	 M.	 H.	 2009.	 An	 Introduction	 to	 the	 Foundations	 of	 Applied
Mathematics,	Springer,	NY.
Illner,	 R.,	 Bohun,	 C.	 S.,	McCollum,	 S.	 &	 van	 Roode,	 T.	 2005.	Mathematical
Modelling:	 A	 Case	 Studies	 Approach,	 American	 Mathematical	 Society,
Providence.
Kelley,	W.	G.	&	Peterson,	A.	C.	2010.	The	Theory	of	Differential	Equations,	2nd
ed.,	Springer,	NY.
Lin,	C.	C.	&	Segel,	L.	A.	1974.	Mathematics	Applied	to	Deterministic	Problems
in	 the	 Natural	 Sciences,	 Macmillan,	 New	 York	 [reprinted	 by	 SIAM	 (Soc.
Industr.	&	Appl.	Math.),	Philadelphia,	1988].
Logan,	J.	D.	2006.	Applied	Mathematics,	3rd	ed.,	Wiley	Interscience,	New	York.
Logan,	J.	D.	2010.	A	First	Course	in	Differential	Equations,	2nd	ed.,	Springer,
NY.
Strogatz,	 S.	 H.	 1994.	 Nonlinear	 Dynamics	 and	 Chaos,	 Addison-Wesley,
Reading,	MA.

1Alternately,	because	energy	E	involves	mass	M,	the	fundamental	dimensions
T,	L,	Θl,	and	E	can	be	replaced	by	T,	L,	Θ,	and	M.

2	A	simple	proof	of	the	Pi	theorem	in	a	linear	algebraic	setting	is	contained	in
J.	 D.	 Logan,	 et	 al.,	 1982.	Dimensional	 analysis	 and	 the	 Pi	 theorem,	Linear
Algebra	and	Its	Applications	47,	117-126.

3	Thomas	Malthus	(1766–1834)	was	an	English	essayist	who	was	one	of	the
first	individuals	to	address	demographics	and	food	supply.



4	The	 logistic	model	was	 introduced	by	P.	Verhulst	 (1804–1849)	as	a	model
for	the	population	of	France.

5We	are	 thinking	of	x	 and	y	 as	 population	 numbers,	 but	we	 can	 also	 regard
them	 as	 population	 densities,	 or	 animals	 per	 area.	 There	 is	 always	 an
underlying	fixed	area	where	the	dynamics	are	occurring.



Chapter	2

Two-Dimensional	Dynamical	Systems

It	 is	easily	imagined	that	most	models	in	science	and	engineering	require	more
than	 one	 state	 variable	 to	 describe	 them.	 In	 this	 chapter	 we	 study	 two-
dimensional,	 or	 planar,	 systems	 of	 linear	 and	 nonlinear	 differential	 equations.
The	 last	 two	 sections	 introduce	 dynamics	 of	 chemical	 reactions	 and	 the
propagation	of	pathogens,	or	viruses	and	other	infections,	in	disease	dynamics.



2.1	Phase	Plane	Phenomena
We	 extend	 the	 analysis	 of	 differential	 equations	 to	 a	 system	 of	 two	 coupled,
simultaneous	equations

(1.1)	
in	 two	unknowns	x	=	x(t)	and	y	=	y(t).	The	 functions	P	 and	Q	 are	 assumed	 to
have	continuous	partial	derivatives	of	all	orders	in	a	domain	D	of	the	xy	plane.	A
system	of	the	type	(1.1)	in	which	the	independent	variable	t	does	not	appear	in	P
and	Q	is	said	to	be	autonomous.	Under	these	assumptions	on	P	and	Q,	it	can	be
shown	 that	 there	 is	 a	 unique	 solution	 x	 =	 x(t),	 y	 =	 y(t)	 to	 the	 initial	 value
problem

(1.2)	
where	t0	is	an	instant	of	time	and	(ξ0,	η0)	 	D.	The	solution	is	defined	in	some
interval	α	<	t	<	β	containing	t0.	(See	Kelley	and	Peterson,	2010.)
There	are	two	ways	to	graphically	represent	solutions.	They	can	be	plotted	as

time	series	in	state	space	(x	and	y	vs.	t).	Or,	if	x(t)	and	y(t)	are	not	both	constant
functions,	then	x	=	x(t)	and	y	=	y(t)	define	parametric	equations	of	a	curve	that
can	be	plotted	in	the	xy	plane,	called	the	phase	plane.	Such	a	curve	is	called	an
orbit,	path,	or	 trajectory,	of	 the	system	(1.1).	Examples	of	both	 the	 time	series
and	a	corresponding	orbit	are	shown	in	Fig.	2.1.	The	orbit	is	directed	in	the	sense
that	it	is	traced	out	in	a	certain	direction	as	t	increases;	this	direction	is	indicated
by	 the	 direction	 of	 the	 tangent	 vector	 (x′,	 y′)	 along	 the	 curve.	 Because	 the
solution	to	the	initial	value	problem	is	unique,	 it	follows	that	at	most	one	orbit
passes	 through	 each	 point	 of	 the	 phase	 plane,	 and	 all	 of	 the	 orbits	 cover	 the
entire	phase	plane	without	intersecting	each	other.

Figure	2.1	Time	series	representation	of	a	solution	curve	and	and	its
corresponding	orbit	in	the	phase	plane.



A	 constant	 solution	 x(t)	 =	 x0,	 y(t)	 =	 y0	 of	 (1.1)	 is	 called	 an	 equilibrium,	 a
steady-state	 solution,	 or	 a	 critical	 point.	 Such	 a	 solution	 does	 not	 define	 a
curve	in	the	phase	plane	but	plots	as	a	single	point.	Clearly,	critical	points	occur
where	both	P	and	Q	vanish,	that	is,

It	is	evident	that	no	orbit	can	pass	through	a	critical	point;	otherwise,	uniqueness
would	 be	 violated.	 The	 totality	 of	 all	 the	 orbits,	 their	 directions,	 and	 critical
points	 graphed	 in	 the	 phase	 plane	 is	 called	 the	 phase	 plane	 diagram	 of	 the
system	(1.1).	Indeed,	the	qualitative	behavior	of	all	the	orbits	in	the	phase	plane
is	determined	to	a	large	extent	by	the	location	of	the	critical	points	and	the	local
behavior	of	orbits	near	those	points.	One	can	prove	the	following	results,	which
essentially	form	the	basis	of	the	Poincaré–Bendixson	theorem:1

(i)	An	orbit	cannot	approach	a	critical	point	in	finite	time;	that	is,	if	an	orbit
approaches	a	critical	point,	then	necessarily	t	→	±∞.
(ii)	An	orbit	is	either	a	critical	point,	or,	as	t	→	±∞,	it	moves	along	a	closed
orbit,	it	approaches	a	closed	orbit,	or	it	leaves	every	bounded	set.
A	closed	orbit	corresponds	to	a	periodic	solution	of	(1.1).	These	facts	severely

limit	 the	 behavior	 of	 solutions	 in	 the	 phase	 plane.	 We	 discuss	 these	 matters
further	in	the	sequel.

Example	2.1
Consider	the	system

(1.3)	
Here	 P(x,	 y)	 =	 y	 and	 Q(x,	 y)	 =	 −x	 and	 (0,0)	 is	 the	 only	 critical	 point
corresponding	 to	 the	 equilibrium	 solution	x(t)	=	0,	y(t)	 =	 0.	One	way	 find	 the
orbits	is	to	turn	the	system	into	a	single	linear	equation



Then

give	 the	 solution,	 where	 c1	 and	 c2	 are	 constants.	 We	 can	 eliminate	 the	 time
parameter	t	by	squaring	and	adding	to	obtain

Therefore	 the	 orbits	 are	 circles	 centered	 at	 the	 origin;	 the	 phase	 diagram	 is
shown	 in	Fig.	2.2.	 The	 critical	 point	 surrounded	 by	 periodic	 orbits	 is	 called	 a
center.	Alternatively,	we	may	 divide	 the	 two	 equations	 in	 the	 system	 (1.3)	 to
obtain2

Figure	2.2	Circular	orbits	of	(1.3)	surrounding	the	critical	point	(0,	0),	which	is
called	a	center.	The	orbits	are	counterclockwise	because	x′	>	0	when	y	>	0,	and	x′
<	0	when	y	<	0.

This	can	be	solved	directly	to	obtain	the	orbits

In	 this	 example	 all	 the	 paths	 are	 closed	 and	 each	 corresponds	 to	 a	 periodic
solution	of	period	2π	because	x(t	+	2π)	=	x(t),	y(t	+	2π)	=	y(t).	Initial	conditions
fix	a	value	of	C	and	therefore	a	single	orbit.



Example	2.2
The	autonomous	system

is	uncoupled	and	each	equation	can	be	solved	separately	to	obtain	the	solution

The	 origin	 (0,0)	 is	 the	 only	 critical	 point.	 The	 orbits	 can	 be	 found	 either	 by
eliminating	t	from	the	parametric	equations,	or	by	integrating	the	equation

In	any	case	we	obtain	y2	=	cx3,	where	c	is	a	constant,	and	the	orbits	are	plotted	in
Fig.	2.3.	A	critical	point	having	this	 local	structure,	where	orbits	emanate	from
the	origin	as	t	→	−∞	and	tend	to	infinity	as	t	→	∞,	is	called	a	node.	Because	the
orbits	are	leaving	the	origin	(the	tangent	vector	field	(2x,	3y)	points	away	from
the	 origin),	 the	 origin	 is	 an	 unstable	 critical	 point,	 repeller,	 or	 source.	 (All	 of
these	terms	are	used.)

Figure	2.3	Phase	diagram	showing	an	unstable	node	at	(0,0).

Remark	2.3
It	is	a	fact	that	any	linear	system,	x’	=	ax	+	by,	y	=	cx	+	dy,	can	be	transformed
into	a	second-order	linear	equation	with	constant	coefficients.	(The	reader	should
be	able	to	easily	figure	out	how	to	do	this.)	The	converse	is	also	true.



Example	2.4
(Mechanics)	Consider	a	particle	of	mass	m	moving	in	one	dimension	x	 subject
to	a	force	f(x,	x′).	By	Newton’s	second	law	the	governing	equation	of	motion	is

(1.4)	
Equation	 (1.4)	 may	 be	 recast	 as	 a	 system	 of	 two	 first-order	 equations	 by
introducing	velocity	y	as	a	new	variable:	y	=	x’.	Then

(1.5)	
Critical	 points	 occur	 at	 (x*,	 0),	where	 f(x*,	 0)	 =	 0;	 these	 correspond	 to	 points
where	 the	 velocity	 and	 the	 acceleration	 vanish.	 Thus	 the	 particle	 is	 in
equilibrium	and	no	forces	are	acting	on	it.

Example	2.5
(Conservative	forces)	 If	 f	depends	only	on	position,	 f	=	 f(x),	 then	 the	 force	 is
conservative	 and	 there	 is	 a	 potential	 function	 V	 =	 V(x)	 defined	 by	

.	 In	 this	 special	 case	 the	 total
energy	(kinetic	plus	potential	energy)	is	conserved,	or

(1.6)	
where	E	is	the	energy	constant.	This	follows	from

For	conservative	systems	we	can	draw	the	phase	diagram	by	solving	(1.6)	for	y
(velocity)	as	a	function	of	x	(position)	to	get

(1.7)	
Each	 total	 energy	 level	 E,	 determined	 by	 the	 particle’s	 initial	 position	 and
velocity,	defines	an	orbit,	or	orbits,	in	intervals	where	E	>	V(x).	The	orbit	can	be
obtained	quickly	by	plotting	both	 the	 (generic)	 potential	V(x)	 and	 the	constant
energy	level	E	on	the	same	graph	(the	top	plot	in	Fig.	2.4);	then	the	positive	right
side	of	(1.7)	can	be	plotted	by	subtracting	and	taking	the	square	root	graphically.
Reflecting	the	positive	plots	through	the	x	axis	gives	the	lower	plot.	Figure	2.4



shows	 a	 generic	 potential	 energy	 function	 and	 one	 such	 orbit.	We	 can	 get	 an
entire	 phase	 diagram	 by	 carrying	 out	 this	 graphical	 procedure	 for	 several
different	energy	levels	E.	Note	that	in	spatial	intervals	where	E	<	V(x)	there	are
no	orbits;	values	of	x	for	which	E	=	V(x)	are	called	turning	points.

Figure	2.4	In	a	conservative	mechanical	system	with	generic	potential	energy
V(x),	orbits	showing	constant	energy	curves	(lower	plot).	Many	such	orbits	can
be	drawn	for	several	values	of	the	energy	to	obtain	the	phase	diagram.	Equilibria
occur	at	points	where	the	potential	energy	has	a	maximum,	minimum,	or	zero
derivative.

We	 can	 also	 interpret	 the	 system	 (1.1)	 in	 the	 context	 of	 a	 fluid	 flow	 in	 the
plane.	Physically,	the	functions	P	and	Q	on	the	right	side	can	be	regarded	as	the
components	of	a	vector	field	v(x,	y)	=	P(x,	y),	Q	(x,	y) 	representing	the	velocity
of	a	 two-dimensional	 fluid	motion,	or	 flow.	The	orbits	x	=	x(t),	y	 =	y(t)	 of	 the
fluid	particles	are	tangent	to	v	and	therefore	satisfy	(1.1).	The	critical	points	are
points	where	v	=	0,	 or	where	 the	 fluid	particles	 are	 at	 rest.	 In	 fluid	mechanics
these	points	are	called	stagnation	points.
In	 practice,	 to	 plot	 the	 orbital	 structure	 of	 the	 phase	 diagram,	we	 often	 plot



separately	the	locus	P(x,	y)	=	0	(where	the	vector	field	is	vertical)	and	the	locus
Q(x,	y)	=	0	(where	the	vector	field	is	horizontal);	these	loci	are	called	the	x	and	y
nullclines,	 respectively	 (also	 isoclines).	The	x	 and	y	 nullclines	 intersect	 at	 the
critical	points.	Sketching	nullclines	and	critical	points,	and	plotting	the	directions
of	 the	 vector	 field	 facilitate	 drawing	 the	 phase	 plane	 diagram.	 Typically,	 we
usually	 indicate	 some	 key	 orbits	 that	 characterize	 the	 flow.	 Software	 can	 be
useful	to	plot	the	vector	field	as	well	as	the	orbits.
In	 principle	 the	 critical	 points	 of	 (1.1)	 can	 be	 found	 by	 solving	 the

simultaneous	equations	P(x,	y)	=	0	and	Q(x,	y)	=	0.	As	observed	in	the	examples,
the	 orbits	 in	 the	 phase	 plane	 can	 sometimes	 be	 found	 by	 integrating	 the
differential	relationship,

particularly	when	P	and	Q	are	fairly	simple	expressions.
A	critical	point	of	(1.1)	is	said	to	be	isolated	if	there	is	an	open	neighborhood

of	the	critical	point	that	contains	no	other	critical	points.	There	are	four	types	of
isolated	critical	points	that	occur	in	linear	system,	where	both	P	and	Q	are	linear
functions	of	x	and	y;	these	critical	points	are	called	centers,	nodes,	saddles,	and
spirals.	 In	Fig.	2.5	 these	 critical	 points	 are	drawn	 schematically	with	 the	 local
orbital	structure.

Figure	2.5	The	four	types	of	isolated	critical	points	for	a	linear	system.	Centers
are	surrounded	by	closed,	periodic	orbits,	either	clockwise	or	counterclockwise;
at	a	node	or	spiral	point,	all	orbits	either	approach	the	origin	as	t	→	±∞,	or	all
orbits	approach	the	origin	as	t	→	−∞.	Near	a	saddle	point,	all	orbits	veer	away
from	the	origin	except	for	special	straight	line	orbits	where	one	opposing	pair
enters	the	origin	as	t	→	±∞,	and	the	other	opposing	pair	approaches	the	origin	t
→	−∞.	The	details	of	these	constructions	are	discussed	in	the	next	section.



In	nonlinear	systems	different	types	of	critical	points	can	occur.	For	example,	a
critical	point	could	have	a	nodal	structure	on	one	side	and	a	saddle	structure	on
the	other,	as	shown	in	Fig.	2.6

Figure	2.6	A	possible	orbital	structure	near	an	critical	point	in	a	nonlinear
system.

Critical	 points	 represent	 equilibrium,	or	 constant,	 solutions	of	 (1.1).	Another
important	issue	is	their	stability.	That	is,	does	the	equilibrium	solution	have	some
degree	 of	 permanence	 to	 it	 when	 it	 is	 subjected	 to	 small	 changes	 or
perturbations?	For	example,	we	might	expect	a	predator–prey	system	to	have	a
state	where	the	two	species	coexist.	Roughly	speaking,	a	critical	point	is	stable	if



all	paths	that	start	nearby	the	critical	point	remain	near	the	point	for	all	time	t	>
0.	All	meaningful	physical	systems	must	have	this	property.	We	now	formulate
this	concept	in	mathematical	terms.

Definition	2.6
Suppose	the	origin	(0,0)	is	an	isolated	critical	point	of	(1.1).

(i)	The	critical	point	(0,	0)	is	stable	if	for	each	 	>	0	there	exists	a	positive
number	δ 	 such	 that	every	path	 that	 starts	 inside	 the	circle	of	 radius	δ 	at
some	time	t0	(e.g.,	t0	=	0)	remains	inside	the	circle	of	radius	 	for	all	t	>	 t0
(see	Fig.	2.7).	This	type	of	stability	is	sometimes	called	Lyapunov	stability.

Figure	2.7	The	definition	of	stability.	Orbits	that	start	at	t	=	0	close	to	a
stable	critical	point	remain	close	for	all	time	t	>	0.

(ii)	The	critical	point	is	locally	asymptotically	stable	if	it	is	stable	and	there
exists	a	circle	of	radius	δ 	such	that	every	path	that	is	inside	this	circle	at	t	=
t0	approaches	(0,	0)	as	t	→	∞.
(iii)	If	(0,	0)	is	not	stable,	then	it	is	unstable.
For	 a	 linear	 system,	 from	 Fig.	 2.5,	 we	 note	 that	 a	 center	 is	 stable,	 but	 not

asymptotically	 stable;	 a	 saddle	 is	 unstable.	 A	 spiral	 is	 either	 asymptotically
stable	 or	 unstable,	 depending	 on	 the	 direction	 of	 the	 paths,	 and	 similarly	 for
nodes.
To	 determine	 analytic	 criteria	 for	 stability	 we	 can	 proceed	 as	 we	 did	 for	 a

single	differential	equation,	namely	to	linearize	near	 the	critical	point.	Suppose
(x0,	y0)	is	an	isolated	critical	point	of	(1.1).	This	means	x(t)	=	x0,	y(t)	=	y0,	is	an
equilibrium,	or	constant,	solution.	Let



where	 u(t)	 and	 v(t)	 represent	 small	 perturbations	 from	 the	 equilibrium	 state.
Substituting	 into	 (1.1)	 gives	 the	 perturbation	 equations	 (or,	 equations	 for	 the
perturbations)

By	Taylor’s	theorem,

where	a	=	Px(x0,	y0)	and	b	=	Py(x0,	y0),	and	the	dots	represent	higher	order	terms
in	u	and	v.	Similarly,

where	c	=	Qx(x0,	y0)	and	d	=	Qy(x0,	y0).	Neglecting	 the	higher-order	 terms,	we
obtain	the	linearized	perturbation	equations,	or	the	linearization	near	the	critical
point:

(1.8)	
To	 emphasize	 the	 idea,	 the	 preceding	 equations	 express	 how	 the	 perturbations
behave.	The	matrix	associated	with	this	linearization,

is	called	the	Jacobian	matrix	of	the	system	at	the	equilibrium	(x0,	y0).	It	seems
reasonable	 that	 the	 stability	of	 the	equilibrium	 (x0,	y0)	 of	 the	nonlinear	 system
(1.1)	 is	 indicated	 by	 the	 stability	 of	 (0,0)	 of	 the	 associated	 linearized	 system
(1.8).	Under	suitable	conditions,	discussed	in	subsequent	sections,	this	is	true.	In
the	next	section	we	analyze	linear	systems.
In	 ecological	 contexts,	 where	 these	 ideas	 are	 central,	 the	 Jacobian	 is	 often

called	the	community	matrix.

EXERCISES



1.	In	the	xy	phase	plane	sketch	several	orbits	of	a	conservative	mechanical
system	governed	by	mx″	=	F(x)	if	the	potential	energy	function	is	V(x)	=	x3(1
−	x)2.	Take	m	=	1.	For	which	values	of	 the	 total	energy	E	does	 the	system
oscillate?
2.	Work	Exercise	1	if	the	force	is	F(x)	=	3x2	−	1.
3.	For	the	system

find	 the	 critical	 points,	 nullclines,	 and	 the	 direction	 of	 the	 orbits	 in	 the
regions	separated	by	the	nullclines.	Next,	find	the	equations	of	the	orbits	and
plot	the	phase	plane	diagram.	Is	the	origin	stable	or	unstable?
4.	Repeat	the	questions	in	the	last	exercise	for	the	system

5.	Find	the	linearization	of	the	system

about	 the	 equilibrium	 point	 (1,1).	 Draw	 the	 nullclines	 and	 indicate	 the
direction	 of	 the	 orbits	 in	 each	 region	 separated	 by	 the	 nullclines.	Can	you
conclude	anything	about	the	stability	of	the	critical	point?



2.2	Linear	Systems
In	 the	 preceding	 section	we	 noted	 the	 role	 of	 the	 linear	 approximation	 near	 a
critical	point.	Linear	systems	are	also	interesting	in	themselves	and	occur	often
in	physics,	 engineering,	 and	other	 contexts.	Consider	 a	 two-dimensional	 linear
system

(2.1)	
where	 a,	 b,	 c,	 and	 d	 are	 constants.	 We	 assume	 that	 the	 coefficient	 matrix	 is
nonsingular,	or
(2.2)	

This	guarantees	that	the	algebraic	system

has	only	 the	 trivial	 solution	 and	 the	 linear	 system	has	 only	 an	 isolated	 critical
point	at	the	origin.	Otherwise,	if	ad	−	bc	=	0,	there	is	an	entire	line	of	nonisolated
critical	points.
It	 is	 easier	 to	 examine	 (2.1)	 using	 matrix	 notation.	 This	 is	 advantageous

because	the	notation	generalizes	immediately	to	higher	dimensions.	Letting

(2.1)	can	be	written
(2.3)	
Condition	(2.2)	is	then

Following	our	experience	with	single	linear	equations	with	constant	coefficients,
we	try	a	solution	of	(2.3)	of	the	form

(2.4)	
where	 v	 and	 λ	 are	 to	 be	 determined.	 Substituting	 (2.4)	 into	 (2.3)	 gives,	 after
simplification,
(2.5)	

which	is	the	algebraic	eigenvalue	problem.	The	number	λ	is	an	eigenvalue	of



A	 and	 the	 nonzero	 vector	 v	 is	 an	 associated	 eigenvector.	 (Observe	 that	 any
multiple	 of	 an	 eigenvector	 is	 also	 an	 eigenvector	 belonging	 to	 the	 same
eigenvalue.)	 The	 eigenvalues	 of	 A	 are	 found	 as	 roots	 of	 the	 characteristic
equation

(2.6)	
and	 the	 corresponding	 eigenvector(s)	 are	 then	 determined	 by	 solving	 the
homogeneous	system

(2.7)	
In	terms	of	the	elements	of	the	matrix	A,	equation	(2.6)	is

where	 tr	 A	 =	 a	 +	 d	 is	 the	 trace	 of	 A.	 This	 quadratic	 equation	 is	 called	 the
characteristic	equation	associated	with	A.	It	will	have	two	roots:	both	real	and
unequal,	 both	 real	 and	 equal,	 or	 complex	 conjugate	 roots.	 Note	 that	 the
assumption	det	A	≠	0,	so	λ	=	0	is	not	an	eigenvalue	in	this	case.	In	other	contexts,
zero	can	be	an	eigenvalue.
In	 summary,	 each	 eigenpair	 λ	 and	 v	 gives	 a	 solution	 x	 =	 veλt	 to	 the	 linear

system.	We	summarize	the	solution	structure	in	all	of	the	cases.
Case	 I.	 If	 the	 eigenvalues	 λ1,	 λ2	 are	 not	 equal,	 then	 the	 corresponding
eigenvectors	v1,	v2	are	linearly	independent	and	the	linear	combination

(2.8)	
is	a	solution	to	the	linear	system	for	all	constants	c1	and	c2.	This	expression
is	the	general	solution	to	(2.3)	because	it	contains	all	solutions.	The	initial
value	 problem	 consisting	 of	 (2.3)	 and	 the	 initial	 condition	 x(0)	 =	 x0
determine	the	two	constants	c1	and	c2	uniquely.

Case	II.	When	there	 is	a	single	eigenvalue	λ	 	λ1	=	λ2	of	multiplicity	 two,	 the
general	 solution	depends	on	whether	 there	are	one	or	 two	 linearly	 independent
eigenvectors.

(a)	 If	v1	 and	 v2	 are	 linearly	 independent	 eigenvectors	 corresponding	 to	 λ,
then	the	general	solution	of	(2.3)	is

(b)	If	v	is	the	only	eigenvector	corresponding	to	λ,	then	veλt	is	a	solution	of



(2.3).	It	is	easily	checked	that	a	second	linearly	independent	solution	has	the
form	(w	+	vt)eλt	for	a	vector	w	satisfying

Therefore	the	general	solution	is

Case	III.	If	the	eigenvalues	are	complex,	that	is,

then	the	corresponding	eigenvectors	are	complex,

Then	a	complex	solution	of	(2.3)	is

Using	Euler’s	formula,	exp(iθ)	=	cos	θ	+	i	sin	θ,	we	can	expand	this	to

The	 real	 and	 imaginary	 parts	 of	 a	 complex	 solution	 are	 independent	 real
solutions,	and	therefore	the	general	solution	(2.3)	is

The	other	eigenvalue	gives	the	same	two	independent	solutions.	Notice	that
the	 two	functions	w	cos	βt	−	v	 sin	βt	and	w	 sin	βt	+	v	 cos	βt	 are	 periodic
functions	with	period	2π/β,	and	the	factor	eαt	is	an	amplitude	factor.	If	α	=	0,
then	the	solution	is	periodic	with	period	2π/β.	Therefore	the	orbits	are	closed
curves	and	(0,	0)	is	a	center.	If	α	<	0,	the	amplitude	of	x	decreases	and	the
orbits	form	spirals	that	wind	into	the	origin;	these	are	decaying	oscillations
and	 the	 origin	 is	 an	 asymptotically	 stable	 spiral	 point.	 If	 α	 >	 0,	 the
amplitude	 of	 x	 increases	 and	 the	 orbits	 are	 unstable	 spirals,	 representing
growing	oscillations,	and	the	origin	is	an	unstable	spiral	point.
The	preceding	discussion	completely	characterizes	the	solution	structure	near

an	isolated	critical	point	(0,0)	of	the	linear	system	(2.3).	We	summarize	the	key
stability	 result	 in	 the	 following	 theorem,	whose	 proof	 easily	 follows	 from	 the
form	of	the	various	solutions.

Theorem	2.7
The	critical	point	(0,	0)	of	the	linear	system



is	asymptotically	stable	if,	and	only	if,	the	eigenvalues	of	A	are	negative	or	have
negative	real	parts.

Remark	2.8
In	the	two-dimensional	case	the	characteristic	equation	can	be	written	simply	as

where	 tr	A	 =	 a	 +	 d	 is	 the	 trace	 of	 the	 matrix	A.	 Therefore,	 by	 the	 quadratic
equation,	the	eigenvalues	are	given	by

where	p	=	tr	A	and	q	=	det	A.	It	follows	that	the	eigenvalues	have	negative	real
parts	if,	and	only	if,

or,

These	 conditions	on	 the	 trace	 and	determinant	 are	necessary	and	 sufficient	 for
asymptotic	stability.
In	 Case	 (III)	 above,	 when	 the	 eigenvalues	 are	 complex	 (p2	 −	 4q	 <	 0),	 we

completely	characterize	the	phase	diagram	as	centers	when	p	=	0	or	spirals	(p	≠
0).	Now	we	examine	 the	geometrical	 structure	of	 the	phase	plane	 in	Cases	 (I)
and	(II),	when	the	eigenvalues	are	real.
If	λ,	v	is	an	eigenpair,	the	solution	x(t)	=	veλt	is	a	straight	line,	or	linear	orbit.

Note	that	x(0)	=	v,	which	is	a	nonzero	point	in	the	plane.	Then	for	each	time	t,
veλt	 is	a	multiple	of	v,	and	so	 it	 lies	on	 the	 ray	emanating	 from	the	origin	and
passing	through	v.	If	λ	>	0	then	|x(t)|	→	∞	as	t	→	+∞,	and	x(t)	→	0	as	t	→	−∞.	It
is	exactly	opposite	if	λ	<	0.
Further,	when	v	 is	 an	eigenvector	 so	 is	−v.	Therefore	−veλt	 is	 a	 straight	 line

solution	opposite	 to	veλt.	These	 two	opposing	 linear	 orbits,	 shown	 in	Fig.	 2.8,
either	 both	point	 in	 (λ	<	0),	 or	 both	point	 out	 (λ	>	0).	The	 two	opposing	 rays
pointing	 inward	 are	 called	 the	 stable	 manifolds	 of	 (0,	 0),	 and	 two	 pointing
outward	are	called	unstable	manifolds	of	(0,0).

Figure	2.8	Opposing	linear	orbits	corresponding	to	an	eigenpair	λ	<	0,	v.	These
two	linear	orbits	that	approach	the	origin	are	the	stable	manifolds	of	(0,	0).



In	the	case	of	a	stable	node	with	two	negative	unequal	eigenvalues,	there	are
two	 pairs	 of	 stable	 manifolds,	 and	 all	 other	 orbits	 approach	 the	 origin	 in	 the
direction	 of	 the	 pair	 corresponding	 to	 the	 largest	 negative	 eigenvalue.	 For
example,	if	λ	=	−4,	−1,	the	general	solution	is

as	 t	→	 +∞.	 Similarly,	 as	 t	→	 −∞,	 backward	 in	 time,	 the	 orbits	 approach	 the
direction	corresponding	to	the	most	negative	eigenvalue.
For	an	unstable	node,	when	the	eigenvalues	are	both	positive,	and	unequal,	the

phase	plane	diagram	is	just	opposite.
For	saddle	points,	the	eigenvalues	are	real	and	have	opposite	signs.	There	is	a

pair	of	stable	manifolds	corresponding	to	the	negative	eigenvalue	and	a	pair	of
unstable	 manifolds	 corresponding	 to	 the	 positive	 eigenvalue.	 All	 other	 orbits
veer	 away	 from	 the	 origin	 and	 approach	 the	 unstable	manifolds:	 in	 backward
time	they	approach	the	stable	manifolds.

Example	2.9
This	 example	 is	 a	 prototype	 of	 two	 real	 eigenvalues	 of	 opposite	 sign,	 which
gives	a	saddle	structure.	Consider	the	linear	system

The	coefficient	matrix

has	characteristic	equation



and	therefore	the	eigenvalues	are	λ	=	−1,	2.	Therefore	the	origin	is	an	unstable
critical	 point.	 The	 eigenvectors	 are	 found	 by	 solving	 the	 linear	 homogeneous
system

When	λ	=	−1,

and	an	eigenvector	corresponding	to	λ	=	−1	is	[v1,	v2]T	=	[1,	2]T.	When	λ	=	2,

which	gives	[v1,	v2]T	=	[2,	1]T.	The	general	solution	to	the	system	is

The	two	eigenvectors	above	define	the	directions	of	the	linear	orbits,	or	the	pair
of	 stable	 manifolds	 corresponding	 to	 negative	 eigenvalue	 and	 the	 pair	 of
unstable	 manifolds	 corresponding	 to	 the	 positive	 eigenvalue.	 The	 remaining
orbits,	given	as	a	linear	combination	of	the	two	linear	orbits,	veer	away	from	the
origin	and	approach	the	unstable	manifolds	as	 t	→	+∞.	To	get	a	more	accurate
plot	it	is	helpful	to	plot	the	nullclines,	or	loci	of	points	where	x′	=	0	and	where	y′
=	0.	A	phase	diagram,	computed	in	MATLAB,	is	shown	in	Fig.	2.9.

Figure	2.9	Saddle	point	structure.



EXERCISES
1.	 Find	 the	 general	 solution	 and	 sketch	 phase	 diagrams	 for	 the	 following
systems;	characterize	the	equilibria	as	to	type	(node,	etc.)	and	stability.

a)	x′	=	x	−	3y,	y’	=	−3x	+	y.
b)	x′	=	−x	+	y,	y’	=	y.
c)	x′	=	4y,	y’	=	−9x.
d)	x′	=	x	+	y,	y’	=	4x	−	2y.
e)	x′	=	3x	−	4y,	y’	=	x	−	y.
f)	x′	=	−2x	−	3y,	y’	=	3x	−	2y.

2.	Determine	the	behavior	of	solutions	near	the	origin	for	the	system

for	different	values	of	b.
3.	Fill	in	the	details	of	Remark	2.8.
4.	For	the	linear	system	(2.3),	letting	p	=	tr	A	and	q	=	det	A,	shade	regions	in
the	pq	plane	representing	values	where	the	origin	is	a	saddle	point,	a	stable
node,	a	stable	spiral,	an	unstable	node,	an	unstable	spiral,	or	a	center.	What



is	the	structure	of	the	phase	plane	along	the	line	q	=	0.
5.	(Environment)	At	time	t	=	0	a	chemical	herbicide	is	sprayed	on	a	soil	in	a
field	of	crops.	Let	x	be	the	amount	of	herbicide	in	the	crop,	and	let	y	be	the
amount	 of	 herbicide	 in	 the	 soil.	 Suppose	 herbicide	 is	 transferred	 from	 the
soil	to	the	crop	at	rate	βy	and	transferred	from	the	crop	to	the	soil	at	rate	αx;
further,	assume	the	chemical	degrades	in	the	soil	at	rate	γy.	Set	up	a	model
for	 the	 amounts	of	herbicide	 in	 the	 crop	 and	 in	 soil.	Sketch	 a	phase	plane
diagram	indicating	how	the	system	evolves	in	time.
6.	Consider	the	system

What	are	the	possible	behaviors	of	solutions	to	this	system,	depending	upon
the	parameter	a.
7.	The	equation	for	a	damped	spring-mass	oscillator	is

Write	the	equation	as	a	system	by	introducing	y	=	 	and	show	that	(0,0)	is	a
critical	 point.	 Describe	 the	 nature	 and	 stability	 of	 the	 critical	 point	 in	 the
following	cases:	a	=	0;	a2	−	4mk	=	0;	a2	−	4km	<	0;	a2	−	4km	>	0.	Interpret
the	results	physically.



2.3	Nonlinear	Systems
We	now	examine	nonlinear	 systems	by	 first	 revisiting	 the	question	of	whether
the	linearization

(3.1)	
of	a	nonlinear	system

(3.2)	
at	a	critical	point	(x0,	y0)	Predicts	its	type	(node,	saddle,	center,	spiral	point)	and
stability.	The	following	result	of	Poincaré	gives	a	partial	answer	to	this	question.
The	proof	can	be	found	in	the	references.

Theorem	2.10
Let	(x0,	y0)	be	an	isolated	critical	point	for	the	nonlinear	system	(3.2)	and	let	A	=
A(x0,	y0)	be	the	Jacobian	matrix	for	the	linearization	(3.1),	with	det	A	≠	0.	Then
(x0,	y0)	is	a	critical	point	of	the	same	type	and	stability	as	the	origin	(0,	0)	for	the
linearization	in	the	following	cases:

(i)	The	eigenvalues	of	A	are	real,	either	equal	or	distinct,	and	have	the	same
sign	(node).
(ii)	The	eigenvalues	of	A	are	real	and	have	opposite	signs	(saddle).
(iii)	The	eigenvalues	of	A	are	complex	but	not	purely	imaginary	(spiral).
The	exceptional	case	 is	when	the	linearization	has	a	center.	In	this	case	there

are	 several	 interesting	possibilities	 that	 can	occur	 in	 the	nonlinear	 system,	 and
we	will	investigate	some	of	them.	The	orbital	structure	for	the	nonlinear	system
near	critical	points	mirrors	 that	of	 the	 linearization	 in	 the	nonexceptional	cases
indicated	 in	 the	 theorem,	 with	 a	 slight	 distortion	 in	 the	 phase	 plane	 diagram
caused	by	the	nonlinearity.
The	 question	 of	 stability	 is	 cataloged	 in	 the	 following	 theorem,	which	 is	 an

immediate	corollary	of	the	Poincaré	theorem.

Theorem	2.11
If	(0,	0)	 is	asymptotically	stable	for	(3.1),	 then	(x0,	y0)	 is	asymptotically	stable



for	(3.2).

Example	2.12
Consider	the	nonlinear	system

which	has	an	isolated	critical	point	at	(0,0).	The	Jacobian	matrix	A	at	the	origin
is

and	 it	 has	 eigenvalues	 .	 Thus	 the	 linearization	 has	 an
asymptotically	 stable	 spiral	 at	 (0,	 0),	 and	 thus	 the	 nonlinear	 system	 has	 an
asymptotically	stable	spiral	at	(0,0).

Example	2.13
The	nonlinear	system

has	a	stable	spiral	at	the	origin.	The	linearization	has	Jacobian

has	 purely	 imaginary	 eigenvalues	 ±i,	 and	 hence	 (0,0)	 is	 a	 center	 for	 the
linearization.	 This	 is	 the	 exceptional	 case	 in	 the	 theorem	 and	 we	 are	 not
guaranteed	that	(0,	0)	is	a	center	for	the	nonlinear	system.	In	fact,	we	show	later
that	there	are	no	periodic	solutions	to	the	nonlinear	system.

Example	2.14
(Mechanics)	A	particle	of	mass	m	=	1	moves	on	the	x	axis	under	the	influence	of
a	conservative	force	f(x)	=	3x2	−	1.	The	equations	of	motion	in	the	phase	plane
are

where	 the	 position	 x	 and	 the	 velocity	 y	 are	 functions	 of	 time	 t.	 The	 potential
energy	is	V(x)	=	−x3	+	x,	where	the	zero	potential	energy	level	is	located	at	x	=	0.



The	orbits	are	given	by	the	conservation	of	energy	law

or

They	 are	 plotted	 in	 Fig.	 2.10.	 There	 are	 two	 equilibria,	

and	 ,	where	the	velocity	is	zero	and	the	force	is	zero.	The

Figure	2.10	Orbits	for	the	conservative	system.

equilibrium	solution	 	 has	 the	 structure	 of	 a	 center,	 and	 for

small	 initial	 values	 the	 system	 will	 oscillate.	 The	 other	 equilibrium	
,	has	the	structure	of	an	unstable	saddle	point.	Because	x’	=	y,

for	y	>	0	we	have	x′	>	0,	and	the	orbits	are	directed	to	the	right	in	the	upper	half-
plane.	For	y	<	0	we	have	x′	<	0,	and	the	orbits	are	directed	to	the	left	in	the	lower
half	plane.	The	x	nullcline	is	the	y	axis,	where	the	vector	field	is	vertical;	the	y
nullclines	 are	 the	 lines	 ,	where	 the	 vector	 field	 is

horizontal.	For	large	initial	energies	the	system	does	not	oscillate	but	rather	goes
to	x	=	+∞,	y	=	+∞;	that	is,	 the	mass	moves	farther	and	farther	to	the	right	with
faster	speed.	The	Jacobian	matrix	is



Then

The	eigenvalues	of	the	first	matrix	are	purely	imaginary,	so	the	linearization	has
a	 center	 at	 .	 This	 is	 the	 exceptional	 case	 and	 the	 theorem	 gives	 no

information	about	the	nonlinear	system.	However,	for	this	problem	we	were	able
to	 find	 equations	 for	 the	 orbits,	 and	we	 found	 that	 the	 nonlinear	 system	 does
have	a	center	at	 .	The	second	matrix	has	real	eigenvalues	of	opposite

sign,	and	therefore	 	is	a	saddle	point,	confirming	the	analysis.

Example	2.15
(Lotka–Volterra	model)	 Nonlinear	 equations	 play	 a	 central	 role	 in	 modeling
population	dynamics	in	ecology.	Let	x	=	x(t)	be	the	prey	population	and	y	=	y(t)
be	the	predator	population.	We	can	think	of	lynx	and	hares,	food	fish	and	sharks,
or	any	consumer-resource	interaction,	including	herbivores	and	plants.	If	there	is
no	 predator	 we	 assume	 the	 prey	 dynamics	 is	 x′	 =	 rx,	 or	 exponential	 growth,
where	r	is	the	per	capita	growth	rate.	In	the	absence	of	prey,	we	assume	that	the
predator	dies	via	y′	=	−my,	where	m	is	the	per	capita	mortality	rate.	When	there
are	 interactions,	we	must	 include	 terms	 that	 decrease	 the	 prey	 population	 and
increase	the	predator	population.	To	determine	the	form	of	the	predation	term,	let
us	assume	 that	 the	 rate	of	predation,	or	 the	number	of	prey	consumed	per	unit
time,	 per	 predator,	 is	 proportional	 to	 the	 number	 of	 prey.	 That	 is	 the	 rate	 of
predation	is	ax.	Thus,	if	there	are	y	predators	then	the	rate	that	prey	is	decreased
is	 axy.	 This	 is	 mass–action	 kinetics.	 Note	 that	 the	 interaction	 term	 is
proportional	 to	xy,	 the	 product	 of	 the	 number	 of	 predators	 and	 the	 number	 of
prey.	For	example,	 if	 there	were	20	prey	and	10	predators,	 there	would	be	200
possible	 interactions.	Only	a	 fraction	of	 them,	a,	 is	assumed	 to	 result	 in	a	kill.
The	parameter	a	depends	upon	the	fraction	of	encounters	and	the	success	of	the
encounters.	 The	 prey	 consumed	 cause	 a	 rate	 of	 increase	 in	 predators	 of	 εaxy,
where	ε	is	 the	conversion	efficiency	of	the	predator	population.	(There	is	not	a
one-to-one	 trade	 off	 of	 prey	 consumed	 to	 predators	 produced;	 it	 takes	 many



small	 fish	 to	 create	 a	 shark.).	 Therefore,	 we	 obtain	 the	 simplest	 model	 of
predator-prey	interaction,	called	the	Lotka–Volterra	model:

where	b	 =	 εa.	A.	 Lotka	 and	V.	Volterra	 developed	 this	model	 in	 the	 1920s	 to
study	fish	populations	in	the	Mediterranean	Sea	after	the	First	World	War.	It	was
one	of	the	first	models	of	its	kind	developed	in	theoretical	ecology,	and	it	has	a
high	historical	interest	despite	some	of	its	deficiencies.
To	analyze	the	Lotka–Volterra	model	we	factor	the	right	sides	of	the	equations

to	obtain

(3.3)	
Setting	 the	 right	 sides	 equal	 to	 zero	 gives	 two	 equilibria,	 (0,0)	 and	 (m/b,	 r/a).
The	 origin	 represents	 extinction	 of	 both	 species,	 and	 the	 nonzero	 equilibrium
represents	a	possible	coexistent	state.	The	x	nullclines	for	(3.3),	where	x′	=	0,	are
x	 −	 0	 and	 y	 =	 r/a.	 Orbits	 cross	 these	 two	 lines	 vertically.	 Orbits	 cross	 the	 y
nullclines,	where	y′	=	0,	horizontally.	The	equilibria	are	the	intersections	of	the	x
and	y	nullclines.	See	Fig.	2.11.	Along	each	nullcline	we	can	find	the	direction	of
the	vector	field.	For	example,	on	the	ray	to	the	right	of	the	equilibrium	we	have	x
>	m/b,	y	=	r/a.	We	know	the	vector	field	 is	vertical	so	we	need	only	check	 the
sign	of	y′.	We	have	y′	 =	y(−m	 +	bx)	=	 (r/a)(−m	 +	bx)	 >	 0,	 so	 the	 vector	 field
points	upward.	Similarly	we	can	determine	 the	directions	along	 the	other	 three
rays.	These	 are	 shown	 in	 the	 accompanying	 figure.	 Further,	we	 can	 determine
the	 direction	 of	 the	 vector	 field	 in	 regions	 between	 the	 nullclines	 either	 by
selecting	 an	 arbitrary	 point	 in	 that	 region	 and	 calculating	 x′	 and	 y′,	 or	 by	 just
noting	 the	 sign	of	x′	 and	y′	 in	 that	 region	 from	 information	 obtained	 from	 the
system.	 For	 example,	 in	 the	 quadrant	 above	 and	 to	 the	 right	 of	 the	 nonzero
equilibrium,	 it	 is	 easy	 to	 see	 that	 x′	 <	 0	 and	 y′	 >	 0;	 so	 the	 vector	 field	 points
upward	and	to	the	left.	This	task	can	be	performed	for	each	region	to	obtain	the
directions	shown	in	the	figure.	Having	the	direction	of	the	vector	field	along	the
nullclines	and	in	the	regions	bounded	by	the	nullclines	tells	us	the	directions	of
the	orbits.	Near	(0,	0)	the	orbits	appear	to	veer	away	and	the	equilibrium	seems
to	have	a	saddle	structure.	The	Jacobian	matrix	is

Figure	2.11	Nullclines	and	vector	field	for	the	Lotka–Volterra	system.



Clearly,

has	eigenvalues	r	and	−m,	 confirming	 that	 (0,	0)	 is	 indeed	a	saddle.	 It	appears
that	orbits	circle	around	the	nonzero	equilibrium	in	a	counterclockwise	fashion.
The	linearized	matrix	is

which	has	purely	imaginary	eigenvalues.	So	the	linearization	is	inconclusive	and
additional	work	is	required.
To	obtain	the	equation	of	the	orbits	we	divide	the	two	equations	in	(3.3)	to	get

Rearranging	and	integrating	gives

which	 is	 the	 algebraic	 equation	 for	 the	 orbits.	 It	 remains	 obscure	 what	 these
curves	are	because	it	is	not	possible	to	solve	for	either	of	the	variables.	But	we
can	proceed	as	follows.	If	we	exponentiate	we	get

Now	consider	the	y	nullcline	where	x	is	fixed	at	a	value	m/b,	and	fix	a	C	value
(i.e.,	an	orbit).	The	right	side	of	the	last	equation	is	a	positive	number	γ,	and	so	yr

=	γeay.	 If	we	plot	both	sides	of	 this	equation	 (a	power	 function	and	a	growing



exponential)	we	observe	that	there	can	be	at	most	two	crossings;	therefore,	this
equation	can	have	at	most	two	solutions	for	y.	Hence,	along	the	y	nullcline	there
can	 be	 at	 most	 two	 crossings;	 an	 orbit	 cannot	 spiral	 into	 or	 out	 from	 the
equilibrium	point	because	that	would	mean	many	values	of	y	would	be	possible.
We	conclude	that	the	nonzero	equilibrium	is	a	center	with	closed,	periodic	orbits
encircling	it.	A	phase	diagram	is	shown	in	Fig.	2.12.	When	the	prey	population	is
high	the	predators	have	a	high	food	source	and	their	numbers	start	 to	 increase,
thereby	eventually	driving	down	the	prey	population.	Then	the	prey	population
gets	 low,	ultimately	 reducing	 the	number	of	predators	because	of	 lack	of	 food.
Then	 the	 process	 repeats,	 giving	 cycles.	 The	 Lotka–Volterra	 model	 is	 the
simplest	model	in	ecology	showing	how	populations	can	cycle,	and	it	was	one	of
the	first	strategic	models	 to	explain	qualitative	observations	in	natural	systems.
Note	 that	 the	 nonzero	 equilibrium	 is	 stable.	 A	 small	 perturbation	 from
equilibrium	 puts	 the	 populations	 on	 a	 periodic	 orbit	 that	 stays	 near	 the
equilibrium.	But	the	system	does	not	return	to	equilibrium.

Figure	2.12	Counterclockwise	periodic	orbits	of	the	Lotka-Volterra	system.

Remark	2.16
From	a	historical	point	of	view,	there	are	many	issues	with	the	suitability	of	the



Lotka–Volterra	model	 as	 a	 predator-prey	model.	A	 classic	 data	 set	 obtained	 in
Canada	 during	 the	 period	 1881–1940	 on	 lynx–hare	 populations	 does	 not
conform	with	 the	model.	 One	 problem,	 of	 many,	 is	 that	 the	 data	 indicate	 the
cycles	 should	 go	 clockwise,	 not	 counterclockwise!	 And,	 the	 model	 lacks	 a
certain	structural	stability	in	that	if	other	terms	are	included,	even	if	the	effects
are	 small,	 the	 behavior	 of	 the	 solution	 changes	 dramatically.	 Other	 problems
exist	in	the	data	itself,	e.g.,	its	incompleteness,	how	it	was	collected,	its	omission
of	the	role	of	 the	trappers,	and	so	on.	Many	have	written	on	this	 topic.	A	brief
discussion	 with	 other	 references	 is	 in	 Brauer	 and	 Castillo-Chavez	 (2001),	 pp.
180–188.
A	central	problem	in	the	theory	of	nonlinear	systems	is	to	determine	whether

the	 system	admits	 any	 cycles,	 or	 closed	orbits.	These	orbits	 represent	 periodic
solutions	 of	 the	 system,	 or	 oscillations.	 In	 general,	 for	 nonlinear	 systems	 the
existence	 of	 closed	 orbits	 may	 be	 difficult	 to	 decide.	 The	 following	 negative
result,	however,	due	to	Bendixson	and	Dulac	is	easy	to	prove.

Theorem	2.17
For	the	system	(3.2),	if	Px	+	Qy	is	of	one	sign	in	a	region	of	the	phase	plane,	then
system	(3.2)	cannot	have	a	closed	orbit	in	that	region.

Proof
By	way	of	contradiction	assume	the	region	contains	a	closed	orbit	Γ	given	by

and	denote	the	interior	of	Γ	by	R.	By	Green’s	theorem	in	the	plane,

On	the	other	hand,

which	is	a	contradiction.
Another	negative	criterion	is	due	to	Poincaré.

Theorem	2.18
A	 closed	 orbit	 of	 the	 system	 (3.2)	 surrounds	 at	 least	 one	 critical	 point	 of	 the



system.	Thus,	if	no	critical	points	exist	in	a	region,	then	there	can	be	no	periodic
orbits	in	that	region.
Positive	 criteria	 that	 ensure	 the	 existence	 of	 closed	 orbits	 are	 not	 abundant,

particularly	criteria	that	are	practical	and	easy	to	apply.	For	certain	special	types
of	equations	 such	criteria	do	exist.	The	 following	 fundamental	 theorem,	called
the	Poincaré–Bendixson	theorem,	is	a	general	theoretical	result.

Theorem	2.19
Let	R	 be	 a	 closed	bounded	 region	 in	 the	plane	 containing	no	critical	 points	of
(3.2).	If	Γ	is	an	orbit	of	(3.2)	that	lies	in	R	for	some	t0	and	remains	in	R	for	all	t	>
t0,	then	Γ	is	either	a	closed	orbit	or	it	spirals	toward	a	closed	orbit	as	t	→	∞.
The	Poincaré-Bendixson	theorem	guarantees	that,	in	the	plane,	either	an	orbit

leaves	every	bounded	set	as	t	→	±∞,	it	is	a	closed	curve,	it	approaches	a	critical
point	or	a	closed	curve	as	t	→	±∞,	or	it	 is	a	critical	point.	An	orbit	cannot	just
wander	 around	 chaotically	 forever.	 Thus,	 in	 the	 plane,	 the	 only	 attractors	 are
closed	 orbits	 or	 critical	 points.	 Interestingly	 enough,	 the	 Poincaré-Bendixson
theorem	does	not	generalize	directly	to	higher	dimensions.	In	three	dimensions,
for	 example,	 there	 exist	 strange	attractors	 that	 have	 neither	 the	 character	 of	 a
point,	a	curve,	or	a	surface,	which	act	as	attractors	to	all	paths.



2.4	Bifurcations
Next	we	examine	systems	of	equations	of	the	form

(4.1)	
depending	upon	a	real	parameter	μ.	As	μ	varies,	the	nature	of	the	solution	often
changes	 at	 special	 values	 of	 μ,	 giving	 fundamentally	 different	 critical	 point
structures.	For	example,	what	was	once	a	stable	equilibrium	can	bifurcate	into	an
unstable	 one.	 This	 type	 of	 phenomenon	 is	 ubiquitous	 in	 all	 physical	 problems
involving	differential	equations.	All	systems	contain	parameters	(often	several),
and	 it	 is	 essential	 to	 understand	 how	 the	 behavior	 of	 solutions	 changes	 as	 the
parameters	change.	A	simple	example	illustrates	the	idea.

Example	2.20
Consider	the	linear	system

where	μ	is	a	parameter.	The	eigenvalues	λ	are	determined	from

or

Hence

If	μ	>	−1,	 then	 the	eigenvalues	are	 real	and	have	opposite	signs,	and	 therefore
the	origin	is	a	saddle	point.	If	μ	=	−1,	then	the	system	becomes

and	 there	 is	 a	 line	 of	 equilibrium	 solutions	 along	 y	 =	 x.	 If	 μ	 <	 −1,	 then	 the
eigenvalues	are	purely	imaginary	and	the	origin	is	a	center.	Consequently,	as	μ
decreases,	the	nature	of	the	solution	changes	at	μ	=	−1;	the	equilibrium	state	(0,
0)	 evolves	 from	 an	 unstable	 saddle	 to	 a	 stable	 center	 as	 μ	 passes	 through	 the
critical	value.	We	say	a	bifurcation	occurs	at	μ	=	−1.
As	 noted	 above,	 these	 types	 of	 phenomena	 occur	 frequently	 in	 physical

systems.	For	example,	in	a	predator-prey	interaction	in	ecology	we	may	ask	how
coexistent	states,	or	equilibrium	populations,	depend	upon	the	carrying	capacity



K	of	the	prey	species.	The	parameter	K	then	acts	as	a	bifurcation	parameter.	For
a	given	system,	we	may	find	a	coexistent,	asymptotically	stable	state	for	small
carrying	capacities.	But,	as	 the	carrying	capacity	 increases,	 the	coexistent	 state
can	 suddenly	 bifurcate	 to	 an	 unstable	 equilibrium	 and	 the	 dynamics	 could
change	 dramatically.	 This	 type	 of	 behavior,	 if	 present,	 is	 an	 important
characteristic	 of	 differential	 equations	 in	 physics,	 engineering,	 and	 the	 natural
sciences.

Example	2.21
Consider	the	system

(4.2)	
The	origin	is	an	isolated	equilibrium,	and	the	linearization	is

It	is	easy	to	see	that	the	eigenvalues	λ	of	the	Jacobian	matrix	are	given	by

If	μ,	<	0,	then	Re	λ	<	0,	and	(0,	0)	is	a	stable	spiral;	if	μ	=	0,	then	λ	=	±i,	and	(0,
0)	 is	 a	 center;	 if	 μ	 >	 0,	 then	Re	 λ	 >	 0,	 and	 (0,	 0)	 is	 an	 unstable	 spiral.	 From
results	 in	the	preceding	sections	regarding	the	relationship	between	a	nonlinear
system	and	 its	 linearization,	we	know	(0,	0)	 is	a	stable	spiral	 for	 the	nonlinear
system	when	 μ	 <	 0	 and	 an	 unstable	 spiral	 when	 μ	 >	 0.	 Therefore,	 there	 is	 a
bifurcation	at	μ	=	0	where	the	equilibrium	exchanges	stability.
The	system	in	the	last	example	deserves	a	more	careful	look.	It	is	possible	to

solve	the	nonlinear	problem	(4.2)	directly	if	we	transform	to	polar	coordinates	x
=	r	cos	θ,	y	=	r	sin	θ.	First,	it	is	straightforward	to	show

If	 we	multiply	 the	 first	 equation	 by	 x	 and	 the	 second	 by	 y	 and	 then	 add,	 we
obtain

(4.3)	
If	we	multiply	 the	 first	 equation	 by	−y	 and	 the	 second	by	x	 and	 then	 add,	we
obtain
(4.4)	

The	 equivalent	 system	 (4.3)–(4.4)	 in	 polar	 coordinates	 may	 be	 integrated
directly.	Clearly



(4.5)	
where	 t0	 is	 a	 constant.	 Therefore,	 the	 polar	 angle	 θ	 winds	 around
counterclockwise	as	time	increases.
Next	we	examine	the	r-equation	when	μ	>	0.	By	separating	variables	and	using

the	partial	fraction	decomposition

we	obtain

(4.6)	
where	c	is	a	constant	of	integration.	When	c	=	0	we	obtain	the	solution

which	represents	a	periodic	solution	whose	orbit	is	the	circle	r	=	 	in	the	phase
plane.	If	c	<	0,	then	(4.6)	represents	an	orbit	that	spirals	counterclockwise	toward
the	circle	r	=	 	from	the	outside,	and	if	c	>	0	the	solution	represents	an	orbit
that	spirals	counterclockwise	toward	the	circle	from	the	inside.	This	means	that
the	 origin	 is	 an	 unstable	 spiral	 as	 indicated	 by	 the	 linear	 analysis,	 and	 the
periodic	solution	r	=	 	is	approached	by	all	other	solutions.	When	a	periodic
orbit,	or	cycle,	is	approached	by	orbits	from	both	the	inside	and	outside,	we	say
that	the	orbit	is	a	stable	limit	cycle.	See	Fig.	2.13.

Figure	2.13	Limit	cycle	occurring	in	the	case	μ	>	0.



In	the	case	μ,	=	0	the	r-equation	becomes

and	direct	integration	gives	the	solution

This	implies	that	the	origin	is	a	stable	spiral.	Thus,	as	μ	changed	from	positive	to
zero,	the	limit	cycle	disappeared	and	the	origin	changed	stability.
Finally,	in	the	case	μ	<	0,	let	k2	=	−μ	>	0.	Then	the	radial	r-equation	is

(4.7)	
The	partial	fraction	decomposition	is

and	(4.7)	integrates	to

It	is	easy	to	verify	that	this	solution	represents	spirals	that	approach	the	origin	at
t	→	+∞.
Now	let	us	review	the	results.	As	μ	passes	through	the	critical	value	μ	=	0	from



negative	to	positive,	the	origin	changes	from	a	stable	spiral	to	an	unstable	spiral
and	 there	 is	 born	 a	 new	 time	 periodic	 solution,	 a	 limit	 cycle.	 This	 type	 of
bifurcation	is	common	and	it	 is	an	example	of	a	Hopf	bifurcation.	A	graph	 in
the	complex	plane	of	 the	eigenvalues	λ	=	μ	+	 i	and	λ	=	μ	−	 i	of	 the	 linearized
system,	 as	 functions	 of	 μ,	 shows	 that	 the	 complex	 conjugate	 pair	 crosses	 the
imaginary	axis	at	μ	=	0.	Generally	this	can	signal	a	bifurcation	to	a	time	periodic
solution,	or	limit	cycle.	In	the	general	case	(Fig.	2.14),	the	eigenvalues	are	λ(μ)	=
Reλ(μ)	±	 iImλ(μ)	with	 λ(μ*)	 =	 ±iImλ(μ*)	 purely	 imaginary,	 and	Reλ’(μ)	 >	 0.
Two	cases	can	occur.	There	is	an	unstable	limit	cycle	for	μ	<	μ*	with	the	critical
point	asymptotically	 stable,	or	 there	 is	a	 stable	 limit	cycle	 for	μ	>	μ*	with	 the
critical	 point	 unstable.	 This	 is	 essentially	 the	 Hopf	 bifurcation	 theorem.	 (The
theorem	 was	 first	 mentioned	 by	 Poincaré;	 later,	 in	 the	 1920s,	 A.	 Andronov
proved	 the	 planar	 version,	 and	 E.	 Hopf	 generalized	 it	 to	 higher	 dimensional
system	in	the	early	1940s.)

Figure	2.14	Schematic	of	a	Hopf	bifurcation	in	the	complex	λ	plane	showing
how	the	eigenvalues	at	a	critical	point	cross	the	imaginary	axis	from	one	side	of
the	plane	to	the	other,	depending	on	the	value	of	a	parameter	μ.	Purely	imaginary
eigenvalues	occur	at	μ	=	μ*.

There	 are	 several	 other	 theorems	 for	 special	 systems	 that	 guarantee	 the
conditions	 for	 a	 Hopf	 bifurcation.	 One	 of	 these,	 due	 to	 A.	 Kolmogorov,	 is	 a
result	for	systems	of	the	form

where	 f	 and	 g	 satisfy	 specialized	 conditions.	 Such	 systems	 are	 common	 in
predator-prey	models.	We	refer	to	Edelstein-Keshet	(1988),	p.	351,	for	a	precise
statement.
We	 mention	 one	 other	 important	 consequence	 of	 the	 Poincaré–Bendixson



theorem	 that	 predicts	 the	 existence	 of	 limit	 cycles.	 Suppose	 there	 is	 a	 closed
bounded	region	R	 in	the	plane	where	at	each	point	(x,	y)	on	 the	boundary	of	R
the	vector	field	(P(x,	y),	Q(x,	y))	for	the	system	points	inward	into	R.	We	call	R	a
basin	of	attraction.	If	R	contains	no	critical	points,	then	there	must	be	a	periodic
orbit	in	R.	This	result	applies	equally	well	for	an	annular	(donut-type)	region	R
when	the	vector	field	points	inward	on	both	the	interior	and	exterior	boundaries.
For	 example,	 if	 a	 rectangular	 region	 is	 attracting	 and	 contains	 a	 repeller	 in	 its
interior,	then	we	can	form	an	annular	region	by	deleting	a	small	disc	encircling
the	critical	point;	 then	we	can	apply	 the	Poincaré–Bendixson	 theorem	 to	 show
the	annular	region	must	contain	a	limit	cycle.

EXERCISES
1.	Determine	 the	nature	and	stability	properties	of	 the	critical	points	of	 the
systems,	and	sketch	the	phase	diagram:

a)	x′	=	x	+	y	−	2x2,	y′	−	−2x	+	y	+	3y2.
b)	x′	=	−x	−	y	−	3x2y,	y′	=	−2x	−	4y	+	y	sin	x.
c)	x′	=	y2,	y′	=	−2/3	x.
d)	x′	=	x2	−	y2,	y′	=	x	−	y.
e)	x′	=	x2	+	y2	−	4,	y′	=	y	−	2x.

2.	Consider	the	system

a)	Show	there	is	a	closed	orbit	in	the	region	1	≤	r	≤	3,	where	r2	=	x2+y2.
b)	Find	the	general	solution.

3.	Determine	if	the	following	systems	admit	periodic	solutions.
a)	x′	=	y,	y′	=	(x2	+	1)y	−	x5.
b)	x′	=	x	+	x3	−	2y,	y′	=	−3x	+	y5.
c)	x′	=	y,	y′	=	y2	+	x2	+	1.
d)	x′	=	y,	y′	=	3x2	−	y	−	y5.
e)	x′	=	1	+	x2	+	y2,	y′	=	(x	−	1)2	+	4.

4.	Find	the	values	of	μ	where	solutions	bifurcate	and	examine	the	stability	of
the	origin	in	each	case.

a)	x′	=	x	+	μy,	y′	=	μx	+	y.



b)	x′	=	y,	y′	=	−2x	+	μy.
c)	x′	=	x	+	y,	y′	=	μx	+	y.
d)	x′	=	2y,	y′	=	2x	−	μy.
e)	x′	=	y,	y′	=	μx	+	x2.
f)	x′	=	y,	y′	=	x2	−	x	+	μy.
g)	x′	=	μy	+	xy,	y′	=	-μx	+	μy	+	x2	+	y2.
h)	x′	=	y,	y′	=	−y	−	μ	+	x2.
i)	x′	=	μx	−	x2	−	2xy,	y′	=	(μ	−	5/3)y	+	xy	+	y2.

5.	Discuss	the	dependence	on	the	sign	of	μ	of	the	critical	point	at	the	origin
of	the	system

6.	Consider	the	predator-prey	model

where	x	and	y	are	two	species.
a)	Sketch	the	nullclines	and	indicate	the	direction	field.
b)	Find	the	critical	points	and	classify	them.
c)	Sketch	a	phase	plane	diagram	in	the	case	a	>	1.
d)	Explain	what	happens	if	a	=	1/2.
e)	Sketch	the	possible	types	of	phase	diagrams	that	can	occur	for	0	<	a	<
1.

7.	Prove	a	generalization	of	 the	Bendixson-Dulac	 theorem:	For	 the	 system
(3.2),	if	there	is	a	smooth	function	h(x,	y)	for	which	(hP)x	+	(hQ)y	is	of	one
sign	in	a	region	R	of	the	phase	plane,	then	system	(3.2)	cannot	have	a	closed
orbit	in	R.	Use	this	result	to	show	that	the	system

has	no	periodic	orbits.	(Hint:	Take	h(x,	y)	=	1/xy).
8.	If	p(0,	0)	and	h(0)	are	positive,	prove	that	the	origin	is	an	asymptotically
stable	critical	point	for	the	dynamical	equation

9.	Examine	the	stability	of	the	equilibrium	solutions	of	the	system

where	γ	and	v	are	positive	constants.



10.	(Ecology)	Let	P	denote	the	carbon	biomass	of	plants	in	an	ecosystem,	H
be	 the	 carbon	 biomass	 of	 herbivores,	 and	 ϕ	 the	 rate	 of	 primary	 carbon
production	 in	 plants	 due	 to	 photosynthesis.	 A	 model	 of	 plant-herbivore
dynamics	is	given	by

where	a,	b,	c,	and	ε	are	positive	parameters.
a)	Explain	the	various	terms	and	parameters	in	the	model	and	determine
the	dimensions	of	each	parameter.
b)	Non-dimensionalize	the	model	and	find	the	equilibrium	solutions.
c)	Analyze	the	dynamics	in	the	cases	of	high	primary	production	(ϕ	>	ac/
εb)	and	low	primary	production	(ϕ	<	ac/εb).	Explain	what	happens	in	the
system	 if	primary	production	 is	 slowly	 increased	 from	a	 low	value	 to	a
high	value.

11.	A	system

is	called	a	Hamiltonian	system	if	there	is	a	function	H(x,	y)	for	which	f	=
Hy	 and	 g	 =	 −Hx.	 The	 function	H	 is	 called	 the	 Hamiltonian.	 Prove	 the
following	facts	about	Hamiltonian	systems:
a)	If	fx	+	gy	=	0,	then	the	system	is	Hamiltonian.	(Recall	that	fx	+	gy	is	the
divergence	of	the	vector	field	(f,	g).)
b)	 Prove	 that	 along	 any	 orbit,	H(x,	 y)	 =	 constant,	 and	 therefore	 all	 the
orbits	are	given	by	H(x,	y)	=	constant.
c)	Show	that	if	a	Hamiltonian	system	has	an	equilibrium,	then	it	is	not	a
source	or	sink	(node	or	spiral).
d)	 Show	 that	 any	 conservative	 dynamical	 equation	 x″	 =	 f(x)	 leads	 to	 a
Hamiltonian	 system,	 and	 show	 that	 the	Hamiltonian	 coincides	with	 the
total	energy.
e)	Find	 the	Hamiltonian	 for	 the	 system	x′	=	y,	y′	 =	x	 −	x2,	 and	 plot	 the
orbits.

12.	 In	a	Hamiltonian	system	 the	Hamiltonian	given	by	H(x,	y)	=	x2	 +	 4y4.
Write	down	the	system	and	determine	the	equilibria.	Sketch	the	orbits.
13.	A	system



is	called	a	gradient	system	if	there	is	a	function	G(x,	y)	for	which	f	=	Gx
and	g	=	Gy.
a)	If	fy	−	gx	=	0,	prove	that	the	system	is	a	gradient	system.	(Recall	that	fy
−	 gx	 is	 the	 curl	 of	 the	 two-dimensional	 vector	 field	 (f,	 g);	 a	 zero	 curl
ensures	existence	of	a	potential	function	on	nice	domains.)
b)	Prove	that	along	any	orbit,	(d/dt)G(x,	t)	≥	0.	Show	that	periodic	orbits
are	impossible	in	gradient	systems.
c)	 Show	 that	 if	 a	 gradient	 system	 has	 an	 equilibrium,	 then	 it	 is	 not	 a
center	or	spiral.
d)	Show	that	 the	system	x’	=	9x2	−	10xy2,	y’	=	2y	−	10x2y	 is	a	gradient
system.
e)	Show	that	the	system	x’	=	siny,	y′	=	xcosy	has	no	periodic	orbits.

14.	Thoroughly	analyze	the	system	x’	=	−2x(x	−	1)(2x	−	1),	y’	=	−2y.
15.	Analyze	the	system

in	the	cases	a	=	0,	a	<	0,	and	a	>	0,	and	explain	the	bifurcations	that	occur.
16.	(Circuits)	An	RCL	circuit	with	a	nonlinear	resistance,	where	the	voltage
drop	across	the	resistor	is	a	nonlinear	function	of	current,	can	be	modeled	by
the	Van	der	Pol	equation

where	ρ	is	a	positive	constant,	and	x(t)	is	the	current.
a)	In	the	phase	plane,	show	that	the	origin	is	an	unstable	equilibrium.
b)	 Sketch	 the	 nullclines	 and	 the	 vector	 field.	 What	 are	 the	 possible
dynamics?	Is	there	a	limit	cycle?
c)	Use	software	to	sketch	the	phase	diagram	when	ρ	=	1,	and	plot	x	=	x(t)
if	x(0)	=	0.05	and	x′(0)	=	0.	Describe	the	dynamics	in	this	case.

17.	(Mechanics)	Show	that	periodic	orbits	for	the	mechanical	system

are	possible	only	if	k	=	0.
18.	 (Biology)	 Analyze	 the	 following	 nonlinear	 system,	 which	models	 cell



differentiation.

19.	(Ecology)	Consider	the	scaled	predator-prey	model

where	 the	 carrying	 capacity	 of	 the	 predator	 depends	 upon	 the	 prey
population.	Examine	the	dynamics	of	the	model	as	the	predator	growth	rate	r
decreases	from	1/2	to	a	small	value.
20.	 (Predation)	 In	 a	 simple	model	 of	 predation	 a	 fraction	 of	 the	 prey	 take
refuge	and	are	not	 subject	 to	predation.	 If	H	=	H(t)	 is	 the	number	of	prey,
and	P	=	P(t)	is	the	number	of	predators,	the	model	takes	the	form

where	r	 is	 the	 prey	 growth	 rate,	 k	 is	 the	 predator	mortality	 rate,	Hr	 is	 the
number	of	prey	in	refuge,	and	a	and	b	are	predation	rates.	The	model	can	be
reduced	to	the	dimensionless	form

for	 appropriate	 choices	 of	 α	 and	 β.	 Find	 the	 equilibria,	 nullclines,	 and	 the
community	matrix.	Determine	 the	 stability	of	 the	equilibria	 and	 sketch	 the
phase	diagram.
21.	Present	a	thorough	analysis	of	the	model

for	p,	q	 	[0,	1].



2.5	Reaction	Kinetics
This	 section	 and	 the	 next	 contain	 two	 mathematically	 related	 applications
involving	 differential	 equations:	 the	 basics	 of	 chemical	 kinetics	 and	 simple
models	of	viruses.	These	topics	are	related	in	that	they	operate	on	the	same	scale,
namely	 that	 of	molecular	 biology	 and	biochemical	 kinetics.	There	 is	 an	 often-
repeated	 cliche,	 that	 ‘life	 is	 chemistry.’	 (Some	 might	 modify	 this	 and	 say
‘electrochemistry.’)	 It	 is	 hardly	 an	 understatement	 that	 chemistry	 and	 reaction
kinetics	pervade	mathematical	modeling	of	processes	inside	organisms.	To	drop
a	 few	 reminders:	 metabolic	 pathways,	 transport	 of	 chemicals	 in	 organisms,
photosynthesis,	enzyme	kinetics,	nerve	signal	propagation,	dynamics	of	viruses
and	immune	system	responses,	chemical	signalling,	and	so	forth.
This	section	introduces	some	basics	about	chemical	kinetics,	the	law	of	mass

action,	and	enzyme	kinetics.	The	next	section	introduces	viral	dynamics	and	the
immune	 system	 response.	 These	 key	 ideas	 about	 kinetics	 help	 us	 better
understand	 other	 dynamical	 issues	 on	 a	 larger	 scale,	 for	 example,	 population
modeling	and	disease	ecology.



2.5.1	The	Law	of	Mass	Action
The	law	of	mass	action	is	a	rule	that	models	the	rate	of	chemical	reactions	and
what	 concentrations	 of	 the	 constituents	 are	 involved.	 Elementary	 texts	 on
reaction	kinetics	for	chemical	engineering	students	are	good	resources.

Example	2.22
(Unitary	 reaction)	 The	 simplest	 reaction	 is	 a	 single	 unimolecular	 (unitary)
reaction	where	one	molecule	decays	into	a	daughter	particle	and	releases	energy.
For	 example,	 the	 unstable	 radioactive	 isotope	 3H1	 (tritium)	 can	 decay	 into	 a
stable	 isotope	of	helium	3He2	while	producing	an	electron	and	an	antineutrino.
We	can	think	of	these	simple	reactions	as

and	we	often	model	this	reaction	as	radioactive	decay	by	declaring	that	the	rate
of	reaction	is	proportional	to	the	amount	present,	or	r	=	kX.	(There	should	be	no
confusion	in	using	the	same	letter	X	for	both	the	molecule	and	its	concentration;
this	 is	easier	 than	using	 the	common	but	unwieldy	[X]	 for	concentration.)	This
means	X	is	consumed	at	the	rate	kX,	or

The	constant	k	is	called	the	rate	constant	and	it	is	usually	written	over	the	arrow
in	the	chemical	formula	as

We	easily	find	X(t)	=	X0e−kt,	where	X0	is	the	initial	amount	of	X	present.

Figure	2.15	A	binary	reaction.	Molecules	X	and	Y	combine	to	form	the	product
Z.

Example	2.23
(Binary	reaction)	The	next	level	of	complication	is	to	consider	the	bimolecular



(binary)	reaction
(5.1)	

where	 one	 molecule	 of	 X	 and	 one	 molecule	 of	 Y	 (the	 reactants)	 combine	 to
produce	 one	 molecule	 of	 Z	 (the	 product).	 Pictorially,	 Fig.	 2.15	 shows	 the
mechanism.	The	question	 is:	what	 is	 the	 reaction	 rate?	Suppose	 the	 rate	 r	 is	 a
function	of	the	reactant	concentrations	X	and	Y,	or	r	=	r(X,	Y).	Clearly	we	should
have	r(X,	0)	=	r(0,	Y)	=	0.	Because	the	surface	r(X,	Y)	 is	 identically	zero	along
the	X-axis,	any	order	X	partial	derivative	is	zero,	or	rX(X,	0)	=	rXX(X,	0)	=	rXXX(X,
0)	=	···;	similarly,	rY(0,	Y)	=	rYY(0,	Y)	=	rYYY(0,	Y)	=	···.	Therefore,	by	Taylor’s
theorem,

where	the	dots	denote	higher-order	terms.	Letting	k	=	rXY(0,	0),	we	have	shown
that	the	rate	of	the	reaction	(5.1)	is	given	to	leading	order	by
(5.2)	

This	 is	 called	 the	 law	 of	 mass	 action.	 Simply	 put,	 the	 rate	 of	 reaction	 is
proportional	 to	 the	 product	 of	 the	 concentrations	 of	 the	 two	 reactants.	 The
constant	 k	 is	 called	 the	 rate	 constant	 and	 it	 is	 written	 over	 the	 arrow	 in	 the
reaction	as

Remark	2.24
As	 it	 turns	out,	 the	 rate	 constant	 is	 not	 constant,	 so	 rate	constant	 is	 a	 bit	 of	 a
misnomer.	 Chemical	 reactions	 almost	 always	 involve	 heat,	 and	 the	 rate	 of
reaction	depends	strongly	upon	temperature.	The	usual	assumption	is	that

where	R	 is	 the	 gas	 constant,	T	 is	 temperature	 in	 degrees	Kelvin,	 and	E′	 is	 the
activation	energy	which	is	related	to	the	amount	of	energy	required	for	the	two
reactants	to	‘get	over	the	potential	hump’	to	form	the	product.	This	rate	is	called
the	Arrhenius	rate.	In	our	discussion,	however,	we	assume	that	the	temperature
is	close	to	constant	and	the	rate	constant	is	independent	of	temperature.	So,	the
reactions	are	isothermal.



Remark	2.25
We	point	out	at	this	time	the	importance	of	the	mass	action	assumption	in	other
areas	 of	 dynamics.	 For	 example,	 in	 disease	 ecology	 we	 are	 interested	 in
measuring	 the	 rate	 that	 susceptible	 individuals	 become	 infected.	 The	 simple
argument	is	this.	If	there	are	S	susceptible	individuals	and	I	infected	individuals,
then	 the	number	of	possible	contacts	 is	SI.	Only	a	 fraction	c	 of	 those	 contacts
will	occur,	and	of	those	only	a	fraction	β	will	result	in	an	infection.	We	conclude
that	the	rate	of	infection	is	r	=	bSI,	where	b	=	βc.	This	elementary	reasoning	led
to	the	mass	action	principle,	and	in	an	analog	of	the	reaction	kinetics,	we	have

or,	a	susceptible	and	an	infective	combine	to	make	a	product	(in	this	case,	 two
infectives)	at	rate	r	=	bSI.	The	constant	b	is	the	transmission	coefficient.	A	term
of	 this	 form	 occurs	 often	 in	modeling	 disease	 dynamics.	 Disease	 dynamics	 is
discussed	in	a	later	section.

Remark	2.26
In	 a	 different	 context,	 if	 X	 is	 the	 number	 of	 prey	 and	 Y	 is	 the	 number	 of
predators,	then	XY	is	the	total	number	of	possible	contacts.	Only	a	fraction	a	of
these	 will	 result	 in	 a	 kill,	 so	 the	 rate	 of	 predation	 is	 aXY,	 again	 mass	 action
dynamics.	This	model	was	used	earlier	 in	describing	predator-prey	 interactions
in	the	Lotka–Volterra	equations.

Example	2.27
Now	let’s	return	to	the	main	discussion	of	the	binary	chemical	reaction

In	 terms	 of	 the	 reaction	 rate	 we	 can	 write	 differential	 equations	 for	 the
concentrations	X,	Y,	and	Z.	The	rates	that	X	is	consumed,	Y	is	consumed,	and	Z	is
created	are	given	by

By	adding	the	first	two	equations,	it	follows	that

or	X	−	Y	=	constant	=	c.	This	expression	is	called	a	conservation	law.	If	at	time	t



=	0	we	have	initial	conditions

then	c	=	X0	−	Y0.	Without	loss	of	generality	we	can	assume	c	>	0,	or	the	initial
concentration	of	X	 is	larger	than	that	of	Y;	 this	means	Y	will	 limit	 the	reaction.
The	 conservation	 law	 gives	 us	 a	way	 to	 reduce	 the	 differential	 equations	 to	 a
single	equation	in	one	unknown.	Obviously	we	get

We	can	rewrite	this	equation	in	the	familiar	form

which	is	the	logistic	equation	with	intrinsic	growth	rate	kc	and	carrying	capacity
c.	So,	 the	reaction	evolves	 to	 the	stable	equilibrium	X	=	c,	and	Y	goes	 to	zero.
Notice	also	that	X	+	Z	=	constant	=	X0	(another	conservation	law),	and	so	Z	goes
to	X0	−	c	=	Y0.	This	makes	sense—all	of	Y	is	converted	to	Z	during	the	course	of
the	reaction.

Example	2.28
Chemists	tell	us	that	reactions	also	go	the	opposite	way.	That	is,	the	product	can
break	down	into	its	reactant	constituents.	Therefore,	instead	of	a	single	forward
reaction,	we	write

The	 reversible	 reaction	 (the	 second	 one)	 is	 a	 unimolecular	 reaction	 with	 a
different	 rate	and	different	 rate	constant	 than	 the	 first.	Again,	as	 in	 radioactive
decay,	 the	 rate	 is	 proportional	 to	 Z,	 the	 concentration	 of	 the	 reactant.	We	 are
using	subscripts	on	the	reactions	and	the	rates	to	denote	which	reaction.	Usually
we	write	these	two	reactions	in	shorthand	as

The	rate	equations	are	now



We	 are	 using	 the	 property	 that	 for	 a	 system	 of	 reactions,	 the	 rates	 add.	 For
example,	 in	 the	 first	 reaction	X	 is	 consumed	 at	 rate	 r1	 and	 in	 the	 second	X	 is
recreated	at	rate	r−1.	Immediately,	by	combining	these	rate	equations,	we	get	the
conservation	laws

The	constants	c1	and	c2	are	determined	from	the	initial	conditions,	for	example,
X	−	Y	=	c1	=	X(0)	−	Y(0).	These	expressions	allow	us	to	write	a	single	differential
equation	for	X,

This	 is	a	manageable	equation	and	can	be	analyzed	in	the	standard	way	with	a
phase	line	diagram	(see	Chapter	1).	We	make	one	important	observation,	that	X
is	in	equilibrium	when	the	right	side	is	zero,	or

Of	course,	from	the	dynamical	system	Y	and	Z	will	also	be	in	equilibrium.	This
last	expression	can	be	written

where	 the	 ratio	 K	 of	 the	 backward	 to	 forward	 rate	 constants	 is	 called	 the
equilibrium	constant.	 (The	X,	Y,	 and	Z	 values	 on	 the	 left	 are	 the	 equilibrium
concentrations.)
A	law	of	mass	action	applies	to	more	general	reactions	than	stated	above.	As	a

first	step	toward	a	generalization,	consider	a	reaction	of	the	form

where	m	molecules	of	X	react	with	n	molecules	of	Y	to	produce	p	molecules	of
W	and	q	molecules	of	Z.	The	law	of	mass	action	in	this	case	states	that	the	rate	of
the	reaction	is	proportional	to	XmYn,	or



The	differential	equation	for	the	chemical	species	X	is	then

because	m	molecules	are	consumed	during	the	reaction.	Similarly,

As	 we	 observed,	 conservation	 laws	 are	 important	 in	 reducing	 the	 number	 of
variables.	In	this	case,	we	see,	for	example,	that

where	the	constant	of	motion	is	expressed	in	terms	of	the	initial	concentrations.
Consider	the	following	variation	of	the	previous	reaction,

Here,	the	species	X	appears	as	a	reactant	and	as	a	product.	The	rate	depends	only
on	 the	 reactant	 concentrations	 and	 is	 the	 same.	 But	 m	 molecules	 of	 X	 are
consumed,	while	p	are	created.	To	fix	the	idea	assume	p	>	m.	Then	the	net	gain
in	X	is	m	−	n	molecules	(which	is	negative).	The	rate	law	for	X	is	then

Example	2.29
The	reaction	with	accompanying	rate	law,

(5.3)	
has	dynamics

Independent	conservation	laws	are

Remark	2.30
Now	we	make	an	extremely	important	observation.	In	the	last	reaction	(5.3)	we
ask	the	likelihood	of	three	molecules	(2	X’s	and	a	Y)	colliding	simultaneously	to
react.	The	 answer	 is	 that	 it	 is	very	small.	 In	 the	 chemical	world,	 reactions	 are
either	unitary	(unimolecular)	or	binary	(bimolecular)	involving	either	one	or	two



reactants;	 such	 reactions	 are	 called	 elementary	 reactions;	 a	 higher-order,	 or
nonelementary,	reaction	is	unlikely.	This	means	that	a	reaction	like

is	not	the	correct	mechanism	for	the	formation	of	water.	The	actual	mechanism
involves	a	large	number	of	intermediate,	elementary	reactions.	Sometimes	these
intermediate	reactions	are	not	even	known	because	intermediate	species	may	be
very	 short	 lived	 and	 cannot	 be	 observed.	 Determining	 the	 mechanism	 is	 a
significant	 problem	 in	 chemistry.	 For	 nonchemical	 reactions,	 it	 is	 certainly
possible	to	have	tertiary	reactions—e.g.,	in	disease	transmission	two	susceptible
individuals	can	interact	with	a	single	infective	at	the	same	time.

Example	2.31
As	a	warm-up	for	a	general	statement	of	the	law	of	mass	action	we	consider	two
unitary	reactions	with	their	accompanying	rates:

Then	the	equations	for	the	species	(rate	equations)	are

This	can	be	written	in	matrix	form	as

In	abbreviated	vector	notation

where



The	matrix	S	is	called	the	stoichiometric	matrix,	and	it	holds	the	coefficients	of
the	reaction	rates;	r	is	the	rate	vector.
Now	we	generalize	and	state	the	general	law	of	mass	action.

Definition	2.32
Consider	m	different	chemical	species	Xi,	 i	=	1,	2,…,	m	and	n	 reactions	of	 the
form

where	the	stoichiometric	coefficients	aij	and	bij	are	nonnegative	integers.	Notice
that	the	aij	is	the	stoichiometric	coefficient	of	the	reactant	Xi	in	the	jth	reaction,
and	bij	is	the	stoichiometric	coefficient	of	the	product	Xi	in	the	the	jth	equation.
The	reaction	rates	are	given	by

Then	the	equation	for	the	jth	species	is

Letting	S	=	(sij)	=	(bij	−	aij)	denote	the	stoichiometric	matrix,	the	rate	equations
are	expressed	by

As	we	noted,	conservation	laws	enable	us	to	reduce	the	number	of	differential
equations	 expressed	 by	 the	 rate	 laws.	 For	 a	 small	 number	 of	 equations	 and
unknown	 species	 concentrations	 we	 can	 find	 conservation	 laws	 easily	 by
inspection.	 For	 large	 systems	 it	 is	 harder.	 Therefore,	 let	 us	 derive	 a	 vector
equation	that	gives	the	the	conservation	laws.	A	conservation	law	has	the	form

where	the	ci	is	a	set	of	constants	to	be	determined.	Then,	in	terms	of	the	initial



concentrations,

Letting	c	=	(c1,…,	cm)T,	this	equation	can	be	written	in	vector	form	as

Multiplying	the	rate	equation	by	cT	we	can	write

But

Therefore,

Because	this	holds	for	all	rates,	we	have,	by	independence,
(5.4)	

Consequently,	 the	 coefficients	 c	 in	 the	 conservation	 law	 are	 all	 the	 linearly
independent	solutions	of	the	homogeneous	system	(5.4).	In	an	exercise	you	are
asked	 to	show	that	 this	expression	does	 indeed	 lead	 to	a	conservation	 law.	For
those	who	have	studied	linear	algebra,	c	 	ker	ST,	where	ker	denotes	the	kernel,
or	nullspace,	of	ST.

Example	2.33
Returning	 to	 the	 last	 example,	 the	 coefficients	 ci	 in	 a	 conservation	 law	 must
satisfy

The	coefficient	can	be	reduced	to	row	echelon	form

Therefore,	−c1	+	c2	=	0	and	c3	=	0.	Therefore,	the	solution	is	given	by



There	 is	 only	 one	 independent	 solution,	 or	 the	 kernel	 is	 one	 dimensional.	The
only	conservation	law	is

EXERCISES
1.	Make	a	generic	plot	of	the	Arrhenius	rate	k	vs.	temperature	T,

where	E′	is	a	large	constant.	Assume	R	and	k0	are	positive	constants.
2.	 For	 each	 of	 the	 following,	 find	 the	 rates	 of	 the	 reactions	 and	 the
dynamical	equations	for	the	chemical	constituents.	Find	all	the	independent
conservation	 laws	 and	 reduce	 the	 dynamics	 to	 the	 fewest	 number	 of
equations	 possible.	 Find	 the	 equilibria	 and	 sketch	 a	 phase	 line	 or	 phase
plane,	whichever	is	relevant.	Sketch	sample	time	series	plots.

a)	X	 	2Y.

b)	

c)	A	+	X	 	2X.	Assume	a	surplus	of	A	and	its	concentration	is	constant.

(This	is	an	autocatalytic	reaction	where	X	stimulates	its	own	production.)
3.	Consider	the	reaction

where	 X	 is	 used	 up	 in	 the	 production	 of	 C.	 Assume	 A	 and	 B	 are	 held
constant.	 Find	 the	 reaction	 kinetics	 and	 determine	 conditions	 when	 the
equilibrium	X*	=	0.
4.	Consider	the	hypothetical	kinetics	model

where	a	and	b	are	positive	constants.	Show	that	a	saddle-to-node	bifurcation
occurs	when	b	=	−a	±	 .



5.	Consider	the	reactions

Write	 down	 the	 kinetic	 equations	 and	 reduce	 them	 to	 two	 equations	 for	X
and	Y.	Analyze	the	equations	in	the	phase	plane	and	state	your	conclusions.
6.	 Show	 that	 solutions	 of	 equation	 (5.4),	 STc	 =	 0,	 do	 indeed	 give	 a
conservation	law	d/dt(cTX)	=	0.
7.	 (Chemical	oscillator)	For	many	years	chemists	 thought	 that	all	 reactions
tended	to	an	equilibrium	state	monotonically	and	could	not	oscillate.	Then,
in	 the	1950s,	B.	Belousov	showed	 that	certain	 reactions	could	oscillate	 for
long	 time	 periods.	 This	 was	 signalled	 in	 a	 mixture	 by	 continual	 periodic
changes	in	its	color	from	yellow	to	clear.	His	initial	work	was	not	accepted
readily	by	colleagues,	but	later	it	was	noticed	and	he	was	awarded	a	Nobel
Prize	 for	 his	 work.	 Now,	 many	 reactions	 have	 been	 found	 that	 exhibit
oscillations.	In	this	exercise	we	explore	a	system	that	closely	approximates
the	concentrations	of	two	chemical	constituents	in	the	real	system:

a)	Show	that	the	equilibrium	is	x*	=	a/5,	y*	=	1	+	(a/5)2.
b)	Sketch	the	nullclines	and	the	the	direction	field.
c)	Show	that	the	equilibrium	is	a	repeller	if

d)	 Show	 that	 there	 is	 a	 closed	 orbit	 (limit	 cycle)	 bounded	 by	 the
rectangular	box	bounded	by	x	=	0,	y	=	0,	x	=	 ,	y	 =	 ,	where	 	 is	 the
point	 where	 the	 x-nullcline	 crosses	 the	 and	 	 =	 1	 +	 2.	 (Use	 the
Poincaré–Bendixson	theorem.)
e)	 Perform	 numerical	 calculations	 and	 sketch	 the	 phase	 diagram	 in	 the
cases	a	=	10,	b	=	4	and	a	=	10,	b	=	2.



2.5.2	Enzyme	Kinetics
Many	reactions	in	metabolic	pathways	are	catalyzed	by	enzymes.	Enzymes	are
proteins	 that	 can	 react	 with	 molecular	 substrates	 to	 break	 them	 down;	 they
significantly	 speed	 the	 reaction	 and	 lower	 the	 activation	 energy.	 A	 model
enzyme	reaction	that	serves	as	a	prototype	to	many	other	biological	processes	is
the	one	shown	in	Fig.	2.16	and	whose	chemical	equations	are

Figure	2.16	Schematic	of	an	enzyme	reaction.

Here,	 one	molecule	 of	 a	 substrate	S	 reacts	with	 an	 enzyme	E	 to	 produce	 an
intermediate	complex	C,	and	then	the	final	product	P	is	produced,	along	with	the
recovery	of	the	enzyme.	The	formation	of	the	complex	C	is	a	rapid	reaction,	and
usually	 the	 initial	 concentration	 of	 the	 enzyme	 is	 small	 compared	 to	 the
substrate.	Initially,	we	assume	S(0)	=	S0,	E(0)	=	E0,	P(0)	=	0,	and	C(0)	=	0.	By
the	law	of	mass	action,	the	rate	equations	are	(we	are	using	τ	for	real	time)

Notice	that	once	C	 is	determined,	then	P	 is	determined	by	direct	integration;	P
does	not	enter	the	first	three	equations.	Thus,	there	are	only	three	equations	for
S,	E,	and	C.	We	can	instantly	find	the	conservation	laws	by	observation;	they	are



These	 equations	 allow	 us	 to	 eliminate	 E	 and	 reduce	 the	 rate	 equations	 to	 a
system	of	two	nonlinear	equations	for	S	and	C.	These	equations	are

Quasi-Steady	 State.	 These	 equations	 have	 exceedingly	 interesting	 behavior
that	we	 examine	 in	Chapter	 3.	However,	 at	 present	we	 can	 take	 the	 chemist’s
approach	and	gain	a	few	insights	to	the	behavior.	The	key	idea	is	to	use	the	fact
that	 some	 reactions	 are	 very	 fast	 compared	 to	 others	 and	 therefore	 can
equilibrate	quickly,	essentially	being	in	steady	state.
As	we	 stated	 above,	 it	 is	 observed	 that	 the	 reaction	S	 +	E	 	C,	 where	 the

complex	is	formed,	is	very	fast.	For	a	typical	enzyme	reaction,	the	order	of	the
rate	constants	may	be

(5.5)	
where	 we	 are	 measuring	 concentrations	 in	 molarity	 M	 (1	 M	 =	 6.02(10)23
molecules	per	liter),	and	time	in	seconds.	These	quantities	confirm	the	dominant
speed	 of	 complex	 formation.	 The	 quasi-steady	 state	 assumption	 is	 the
assumption	 that	 the	 second	 reaction	 equilibrates	 so	 quickly	 that	 we	 can	 take,
approximately,	dC/dτ	=	0.	Thus,	 in	 the	quasi-steady	 state,	 the	 second	 equation
reduces	to	an	algebraic	equation

where

is	called	the	Michaelis-Menten	constant.	We	can	now	substitute	this	expression
back	into	the	S	equation	to	obtain	the	simple	equation

This	equation	for	S	can	actually	be	solved	implicitly	(separate	variables).	More
useful,	however,	the	speed	of	the	reaction,	which	can	be	measured,	is	defined	to
be	the	rate	that	the	product	is	formed,	or



This	 basic	 equation	 is	 the	Michaelis-Menten	 law.	 Note	 that	 it	 is	 a	 type	 2
functional	response.	See	Fig.	2.17.	Looking	at	the	graph	of	V	vs.	S	shows	that	V
‘saturates’	 at	 the	 value	Vm	 (or,	 lim	V	 =	Vm);	 this	 is	 the	 limiting	 or	 maximum
speed	of	the	reaction.	The	value	S	=	Vm	gives	V	=	1/2Vm,	half	of	the	saturation
value;	 Km	 is	 called	 the	 half-saturation.	 Although	 many	 biochemists	 may	 be
satisfied	with	this	analysis,	it	lacks	details.	In	Chapter	3	we	give	a	more	careful
analysis	of	this	important	model	using	singular	perturbation	theory.

Figure	2.17	Velocity	V	of	an	enzyme	reaction,	which	is	the	rate	the	product	P	is
formed.

Example	2.34
(MATLAB	code)	With	initial	concentrations	S0	=	10−3,	E0	=	10−5,	we	invite	the
reader	to	run	the	following	MATLAB	code	to	obtain	plots	of	the	evolution	of	the
Michaelis–Menten	system.	(Note	kb	 	k−1.)

function	MichaelisMenten

global	k1	kb	k2	S0	E0	C0

k1=10^9;	kb=10^5;	k2=10^3;	S0=10^(−3);	

E0=10^(−5);	C0=0;

tspan=[0	200*10^(−7)];

[T,Y]	=	ode15s(@kinetics,tspan,[S0	C0]);

plot(T,Y(:,1)/S0,’-’,T,Y(:,2)/E0,’-.’)

xlabel(’time	(sec)’,’Fontsize’,14),	



ylabel(’concentration’,’Fontsize’,14),

ylim([0	1.1])

function	dy	=	kinetics(t,y)

global	k1	kb	k2	S0	E0	C0

dy	=	zeros(2,1);

dy(1)	=	-k1*E0*y(1)+(kb+k1*y(1)·*y(2);

dy(2)	=	k1*E0*y(1)-(k2+kb+k1*y(1)).*y(2);

EXERCISE
1.	Sketch	a	generic	phase	plane	diagram	of	the	Michaelis-Menten	system

What	 are	 the	 equilibria?	What	 happens	 to	 the	 concentrations	 after	 a	 long
time?



2.6	Pathogens
It	 takes	 only	 a	 small	 amount	 of	 reading	 to	 realize	 that	 viruses	 and	 other
pathogens	 have	been	one	of	 the	 great	 sources	 in	 human	history	 of	misery	 and
death;	disease	from	pathogens	that	enter	the	body	more	than	rivals	the	effects	of
war.	 In	 this	 section	 we	 introduce	 models	 of	 viral	 infections,	 epidemics	 of
common	infections	in	populations,	and	macroparasite	infections.



2.6.1	Virus	Infections
A	virus	 is	 a	particle	 (virion)	 consisting	 of	 a	 center	 containing	 genetic	material
(e.g.,	RNA	or	DNA)	surrounded	by	a	protein	coat.	On	the	coating	are	chemical
sites	called	antigens,	which	are	macromolecules	used	for	identification.	Viruses
have	genetic	material,	but	they	cannot	replicate	by	themselves.	Thus,	they	hijack
target	 cells	 in	 an	 organism	 and	 use	 the	 machinery	 of	 the	 cell	 to	 reproduce
themselves.
As	a	beginning	model	we	look	at	the	primary	phase	of	a	viral	infection;	then

we	 consider	 the	 effects	 on	 the	 immune	 system.	 Let	 V	 be	 the	 population	 of
virions,	X	be	 the	population	of	 target,	or	healthy	cells,	and	Y	 the	population	of
infected	 cells.	We	 can	model	 the	 interactions	 using	 reaction	kinetics	 and	mass
action	as	in	previous	sections.	The	model	is

(6.1)	

(6.2)	

(6.3)	
The	parameters	dx,	dy,	dv	are	mortality	rates;	their	inverses	are	average	lifetimes.
The	parameter	a	 is	the	rate	that	virus	cells	multiply,	and	β	is	the	infection	rate;
finally,	c	is	the	rate	that	uninfected	target	cells	are	produced	by	the	body.

The	 table	 shows	 the	dimensions	 and	 ranges	of	 the	parameters.	There	 are	 six
parameters	 and	 scaling	 is	 important.	 It	 is	 clear	 there	 are	 four	 possible	 time
scales.	We	can	scale	X	and	Y	by	the	virus-free	steady-state	value	for	X,	namely,

We	choose	a	dimensionless	time	as



In	dimensionless	variables	the	equations	become

where

Using	values	in	the	table	we	have

Note	that	ε	is	small	compared	to	the	other	parameters.
In	 most	 infection	 models,	 we	 can	 identify	 a	 basic	 reproduction	 number,

usually	 denoted	 by	 R0,	 that	 is	 key	 in	 determining	 if	 an	 infection	 will	 be
established	 or	 will	 die	 out.	 For	 simple	 epidemics,	 the	 value	 of	 R0	 is	 easily
understood:	it	is	the	number	of	secondary	infections	caused	by	a	single	infection
in	the	population.	Hence,	it	is	the	rate	of	infection	multiplied	by	the	average	time
an	 infective	has	 the	disease.	Here,	 for	a	virus	 infection,	 it	 is	more	complicated
and	we	can	regard	R0	as	the	expected	number	of	virions	that	one	virion	gives	rise
to	in	a	virus-free	population.	One	virion	infects	 target	cells	at	 the	rate	βX	 for	a
time	 of	 1/dv,	 and	 each	 infected	 cell	 gives	 rise	 to	 virions	 at	 the	 rate	 a	 for	 an
average	time	of	1/dy.	Because	X	=	c/dx	is,	on	average,	the	number	of	target	cells,
we	have

which	 is	 the	 basic	 reproduction	 number	 R0.	 Notice	 that	 it	 turned	 up	 in	 the
dimensionless	formulation.
We	can	analyze	this	model	in	the	usual	way.	There	are	two	equilibria	and	they

are	easily	found	to	be	(0,	1,	0)	and	(1	−	R−10,	R−10,	α−1	(1	−	R−10)).	The	former	is
the	virus-free	state,	and	the	latter,	a	positive	endemic	state,	exists	only	for	R0	>	1.
A	straightforward	calculation	shows	that	 (0,	1,	0)	 is	unstable,	and	(1	−	R−10,	R
−1
0,	α−1	 (1	 −	R−10))	 is	 stable	 for	R0	 >	 1.	We	 leave	 this	 as	 an	 exercise	 for	 the

reader.



Observe	 that	 the	 parameter	 ε	 is	 small,	 and	 therefore	 we	 prefer	 to	make	 the
quasi-steady-state	assumption	and	set	dv/dt	=	0	 to	get	v	=	αy.	This	 reflects	 the
fact	 that	 free	 virus	 populations	 turn	 over	 at	 a	 much	 faster	 rate	 than	 the
populations	of	uninfected	and	 infected	cells.	Under	 this	assumption,	 the	model
becomes

This	two-dimensional	system	is	easily	analyzed.	The	equilibria	are

and	the	nullclines	are

(6.4)	

(6.5)	
There	are	two	cases:	R0	<	1	and	R0	>	1.	The	two	phase	plane	plots	in	Fig.	2.18
show	 the	 nullclines	 in	 each	 case,	 equilibria,	 and	 sample	 orbits.	When	R0	 <	 1
there	is	only	one	equilibrium,	located	on	the	x	axis,	and	it	is	an	attractor.	As	R0
increases	 the	 x	 nullcline	 crosses	 the	 vertical	 y	 nullcline	 at	 R0	 =	 1,	 and	 the
equilibrium	bifurcates	 into	 two	equilibria	 for	R0	>	1.	The	equilibrium	on	 the	x
axis	becomes	unstable	(a	saddle)	and	the	new	positive	equilibrium	is	an	attractor.

Figure	2.18	Phase	plane	diagrams	for	(6.5)–(6.5).



Now	we	confirm	the	stability	of	the	equilibria.	The	Jacobian	matrix	is

At	(1,0),

We	have	tr	J	=	−1	+	α(R0	−	1)	and	det	=	-α(R0	−	1).	Therefore	(1,0)	is	stable	for
R0	<	1	and	unstable	when	R0	>	1.	At	the	other	equilibrium,

Clearly,	 tr	J	 <	 0	 and	 det	J	 =	α(R0	 −	 1)	 >	 0	when	R0	 >	 1,	 and	 so	 the	 positive
equilibrium	is	stable.
In	summary,	for	R0	>	1	the	target	cell	population	is	reduced	by	the	disease	until

each	virion	gives	rise	to	exactly	one	new	virion,	or	x*R0	=	1.



2.6.2	Immune	System	Response
The	body’s	defense	against	a	pathogen	invasion	is	the	immune	system.	You	may
have	 seen	 a	 speeded-up	 video	 of	 a	 dead	 animal	 going	 through	 decay;	 it	 is	 an
impressive	sight,	and	it	shows	what	happens	when	there	is	no	immune	response
—the	dead	animal	is	completely	consumed.	Our	immune	system	prevents	this	by
mounting	a	battle	to	fight	invading	organisms.
The	immune	system	has	three	main	tasks:
–	To	recognize	the	invading	organism
–	To	mobilize	weapons	that	intercept	and	kill	the	invader
–	To	remember	the	invader	so	that	future	infections	of	similar	kind	may	be
destroyed
The	immune	system	response	is	by	killer	cells	Z	produced	at	a	constant	rate	η

with	natural	mortality	dz.	Thus,

We	assume	they	kill	infected	cells	at	rate	ρYZ,	so	the	Y	equation	(6.3)	becomes

These	two	equations	for	Y	and	Z	couple	with	(6.2)	and	(6.3)	to	give	the	immune
system	model.	We	scale	these	equations	as	before,	along	with

Then	we	get,	in	summary,

(6.6)	

(6.7)	
where

With	 the	addition	of	killer	cells	 from	the	 immune	system	response,	 the	basic
reproduction	 number	R0	 should	 decrease.	 Motivated	 by	 its	 appearance	 in	 the



steady	 state,	 we	 calculate	 the	 nonzero	 equilibrium	 for	 the	 scaled	 model
(6.7)–(6.7).	Setting	the	derivatives	equal	to	zero,	at	equilibrium	we	have

Letting

the	positive	equilibrium	is

This	 shows	 that	a	positive	endemic	 state	occurs	when	R′0	 >	 1.	Alternately,	we
could	 have	 shown	 that	 the	 other	 equilibrium,	 v*	=	 0,	 x*	 −	 0,	 y*	 =	 0,	 z*	 =	 1,
becomes	unstable	at	R′0	>	1.	Further,	we	observe	that	the	killer	cells	can	clear	the
virus	when	the	immune	system	response	rate	satisfies

Example	2.35
(MATLAB	 code)	 We	 invite	 the	 reader	 to	 sketch	 solution	 profiles	 using	 the
MATLAB	 code	 below	 along	 the	 same	 values	 of	 the	 parameters	 in	 the
nonimmune	system	response,	and

function	killercells

global	dx	dy	dv	dz	k	gam	beta	rho	eta

dx=0.1;	dy=0.5;	dv=5;	dz=5;	k=100;	gam=10^5;	

beta=2*10^(−7);	rho=0.1;	eta=75;	tend=75;

			tspan=[0	tend];

x0=gam/dx;	y0=0;	v0=1;	z0=eta/dz;	%actual	

initial	values	initial	values

[T,Y]	=	ode15s(@killer,	tspan,	[x0	y0	v0	

z0]);

subplot(1,2,1),	

plot(T,Y(:,2)/10^6,’-’,T,Y(:,3)/10^6,’r’)

xlabel(’days’,’Fontsize’,14),	



ylabel(’concentrations	×	10	^	

6’,’Fontsize’,14),

title(’infected	(dashed),	virus	(red)’,	

‘Fontsize’,	12)

subplot(1,2,2),	

plot(T,Y(:,1)/x0,’-’,T,Y(:,4)/z0,’g’)

ylim([0	1.1])

xlabel(’days’,’Fontsize’,14),	ylabel(’scaled	

cell	concentrations’,’Fontsize’,14),

title(’killer	(green),	target	(solid)’,	

‘Fontsize’,	12)

function	der	=	killer(t,y)

global	dx	dy	dv	dz	k	gam	beta	rho	eta

der	=	zeros(4,1);

der(1)	=	gam-dx*y(1)-beta*y(1)*y(3);

der(2)	=	beta*y(1)*y(3)-dy*y(2)-

rho*y(2)*y(4);

der(3)	=	k*y(2)-dv*y(3);

der(4)	=	eta-dz*y(4);

EXERCISES
1.	The	simplest	model	of	a	virus	 is	by	a	density-dependent	 logistic	growth
law,

where	 v	 is	 the	 virus	 population.	 The	 rate	 of	 growth	 is	 r,	 and	 the	 virus
population	clearly	rate	is	a.	The	parameter	T	represents	target	cell	limitation.
Show	that	if	r	<	a	the	virus	fails	to	establish	an	infection.	What	happens	if	r
>	a?
2.	 The	 simplest	 model	 of	 antigenic	 dynamics	 describes	 a	 virus	 that	 is
opposed	by	a	specific	 immune	response.	Let	v	be	the	population	of	virions
and	x	the	magnitude	of	the	immune	response.	Then	the	model	is

Describe	the	dynamics	of	the	model.



3.	Verify	the	equilibria	and	their	stability	for	the	basic	model	(6.2),	(6.3),	and
(6.3)	as	discussed	in	the	text.
4.	Use	a	numerical	differential	equation	solver	(e.g.,	MATLAB)	to	obtain	a
numerical	solution	to	(6.2)–(6.3)	with	the	values	of	the	parameters	given	in
the	table.	For	initial	conditions	take	X(0)	=	106,	Y(0)	=	0,	and	V(0)	=	1.
5.	In	an	HIV	infection,	reverse	transcriptase	inhibitors	are	drugs	that	prevent
the	infection	of	new	cells,	or	β	=	0.

What	are	the	long	time	dynamics	of	the	virus?
6.	 Protease	 inhibitors	 for	 HIV	 are	 drugs	 that	 prevent	 infected	 cells	 from
producing	additional	infected	virions.	Interpret	and	analyze	the	model

where	W	is	the	population	of	uninfected	virions	produced.
The	last	two	exercises	are	adapted	from	Britton	(2003).



2.6.3	Epidemics	in	Populations
In	the	last	section	we	presented	a	simple	model	of	a	virus	infection	and	how	the
immune	system	attempts	to	clear	it.	A	virus	is	one	example	of	a	microparasitic
disease.	Examples	of	viruses	are	common	diseases	like	measles,	chicken	pox,	the
flu,	whooping	 cough,	 and	 so	 forth.	Other	microparasitic	 diseases	 are	 bacterial
based	 (TB)	 and	 protozoon	 infections	 such	 as	 malaria.	 These	 diseases	 are
characterized	by	either	having	the	disease,	or	not	having	it.	Other	infections	are
macroparasitic.	 That	 is,	 they	 are	 caused	 by	 multi-celled	 organisms,	 such	 as
nematodes	(schistosomiasis),	tapeworms,	or	mites	(ticks),	and	they	have	a	more
complex,	 longer	 life	 cycle	 in	 and	 out	 of	 their	 hosts.	 These	 diseases	 generally
depend	on	the	parasite	load,	or	the	degree	of	the	infection.
Diseases	 like	 these	 can	 be	 studied	 on	 a	 population	 level	 in	 terms	 of

susceptible,	 infected,	 and	 recovered	 individuals,	 and	 that	 is	 the	 topic	 of	 this
section.	Efforts	to	connect	the	microbiology	of	diseases	and	the	population	level
effects	is	an	active	area	of	study	in	epidemiology.
We	consider	a	simple	epidemic	model	where,	in	a	fixed	population	of	size	N,

the	function	I	=	I(t)	represents	the	number	of	individuals	that	are	infected	with	a
contagious	 illness	 and	 S	 =	 S(t)	 represents	 the	 number	 of	 individuals	 that	 are
susceptible	 to	 the	 illness	but	not	yet	 infected.	We	also	 introduce	a	removed,	or
recovered,	class	where	R	=	R(t)	is	the	number	who	cannot	get	the	illness	because
they	 have	 recovered	 permanently,	 are	 naturally	 immune,	 or	 have	 died.	 We
assume	N	 =	S(t)	+	 I(t)	+	R(t),	 and	 each	 individual	 belongs	 to	 only	 one	 of	 the
three	 classes.	 Observe	 that	N	 includes	 the	 number	 who	 may	 have	 died.	 The
evolution	of	the	illness	in	the	population	can	be	described	as	follows.	Infectives
communicate	 the	 disease	 to	 susceptibles	 with	 a	 known	 infection	 rate;	 the
susceptibles	 become	 infectives	who	 have	 the	 disease	 a	 short	 time,	 recover	 (or
die),	and	enter	 the	 removed	class.	Our	goal	 is	 to	 set	up	a	model	 that	describes
how	the	disease	progresses	with	time.	These	models	are	called	SIR	models.
In	 this	model	we	make	 several	 assumptions.	First,	we	work	 in	 a	 time	 frame

where	we	 can	 ignore	 demographic	 effects	 such	 as	 births	 and	 immigration.	We
assume	 that	 the	 population	 mixes	 homogeneously,	 where	 all	 members	 of	 the
population	interact	with	one	another	to	the	same	degree	and	each	has	the	same
risk	of	exposure	to	the	disease.	Think	of	measles,	 the	flu,	or	chicken	pox	at	an
elementary	school.	We	assume	that	 individuals	get	over	 the	disease	quickly,	so
we	 are	 not	 modeling	 tuberculosis,	 AIDS,	 or	 other	 long-lasting	 or	 permanent



diseases.	More	complicated	models	can	be	developed	to	account	for	these	factors
and	all	sorts	of	others,	such	as	vaccination,	sex,	disease	carriers	(or	vectors),	the
possibility	of	reinfection,	and	so	on.
The	disease	spreads	when	a	susceptible	comes	in	contact	with	an	infective.	A

reasonable	 measure	 of	 the	 number	 of	 contacts	 between	 susceptibles	 and
infectives	 is	 S(t)I(t).	 For	 example,	 if	 there	 are	 five	 infectives	 and	 twenty
susceptibles,	then	one	hundred	contacts	are	possible.	However,	not	every	contact
results	 in	 an	 infection.	 We	 use	 the	 letter	 a	 to	 denote	 the	 transmission
coefficient,	or	the	fraction	of	those	contacts	that	usually	result	in	infection.	For
example,	 a	 could	 be	 0.02.	 The	 parameter	 a	 is	 the	 product	 of	 two	 effects,	 the
fraction	of	the	total	possible	number	of	encounters	that	occur,	and	the	fraction	of
those	 that	 results	 in	 infection.	 The	 constant	 a	 has	 dimensions	 time−1	 per
individual.	 The	 quantity	 aS(t)I(t)	 is	 the	 infection	 rate,	 or	 the	 rate	 at	 which
members	of	the	susceptible	class	become	infected.	Observe	that	this	model	is	the
same	as	the	law	of	mass	action	in	chemistry	where	the	rate	of	chemical	reaction
between	 two	 reactants	 is	 proportional	 to	 the	 product	 of	 their	 concentrations.
Therefore,	if	no	other	processes	are	included,	we	would	have

Remark	2.36
Mass	action	kinetics	is	only	one	possibility	for	selecting	the	effective	encounter
rate.	More	generally,	we	could	model	the	infection	process	by

where	f(I)	is	the	force	of	infection.	For	example,	f	could	be	a	saturating	function
of	I,	leveling	off	to	a	constant	value	as	I	gets	large.	For	mass	action	kinetics,	f(I)
=	aI.
However,	as	individuals	get	over	the	disease,	they	become	part	of	the	removed

class	R.	 The	 recovery	 rate	 r	 is	 the	 rate	 that	 infected	 individuals	 get	 over	 the
disease;	 thus,	 the	 rate	 of	 removal	 is	 rI(t).	 Importantly,	 the	 parameter	 r	 is
measured	in	time−1	and	1/r	can	be	 interpreted	as	 the	average	time	to	recover.
Therefore,	 using	 the	 prime	 notation	 for	 derivative,	 we	 modify	 the	 last	 set	 of
equations	to	obtain

(6.8)	



(6.9)	
(6.10)	

This	is	the	SIR	model.	We	do	not	need	equation	(6.10)	for	R	because	R	can	be
determined	directly	 from	R	=	N	−	S	−	 I.	At	 time	 t	=	0	we	assume	 there	 are	 I0
infectives	and	S0	susceptibles,	but	no	one	yet	removed.	Thus,	 initial	conditions
are

(6.11)	
and	 S0+I0	 =	 N.	 SIR	 models	 are	 compartmental	 models	 and	 are	 commonly
diagrammed	 as	 boxes	 labeled	 S,	 I,	 and	 R	 with	 arrows	 indicating	 the	 rates	 at
which	 individuals	 progress	 from	 one	 compartment	 to	 the	 other.	 An	 arrow
entering	 a	 compartment	 represents	 a	 positive	 rate	 and	 an	 arrow	 leaving	 a
compartment	represents	a	negative	rate.

Remark	2.37
Notice	that	this	model	can	be	deduced	from	simple	chemical	reaction	kinetics

Other	disease	models	can	also	be	regarded	as	reaction	kinetics	as	well.
As	was	 the	case	with	a	virus,	we	can	 identify	a	priori	 a	basic	reproduction

number	 that	 tells	us	 if	 the	disease	will	 take	hold	or	die	out.	 If	we	 introduce	a
single	infective	in	a	population	N,	then	the	rate	that	this	individual	infects	others
is	approximately	aN;	the	average	time	that	this	infected	person	has	the	disease	is
1/r.	Thus,	the	expected	number	of	individuals	this	person	infects	is

Hence,	R0	is	the	expected	number	of	secondary	infections	produced	by	a	single
infective.
A	qualitative	analysis	helps	us	understand	how	an	SIR	epidemic	evolves.	To

carry	out	this	analysis,	we	work	in	dimensionless	variables.	Instead	of	using	the
number	 of	 individual	 in	 each	 class,	we	 use	 the	 fraction	 of	 individuals	 in	 each
class.	And	we	scale	time	by	r−1,	the	average	time	infected.	Therefore,	let

The	equations	easily	become

(6.12)	



Further,	x	+	y	+	z	=	1	and	x(0)	+	y(0)	=	1.	The	dynamics	take	place	in	a	simplex
in	the	xyz	plane:	x,	y,	z	≥	0,	x	+	y	+	z	≤	1.	In	the	xy	plane,	where	we	work,	this	is
the	triangle	x	+	y	≤	1	in	the	first	quadrant.	The	initial	condition	x(0)	=	x0,	y(0)	=
y0	lies	on	the	line	x	+	y	=	1.	We	track	an	orbit	x	=	x(t),	y	=	y(t)	starting	on	the	line
x	+	y	=	1.	Note	that	x′	 is	always	negative	so	an	orbit	always	moves	to	the	left,
decreasing	x.	Because	x′	=	y(R0x	−	1),	we	see	that	infectives	increase	if	x	>	1/R0,
and	infectives	decrease	if	x	<	1/R0.	The	vertical	line	x	=	1/R0	 is	the	y-nullcline.
This	information	gives	us	the	direction	field.	There	are	two	cases,	when	R0	>	1
and	R0	<	1,	or	when	the	y	nullcline	is	to	the	left	of	x	=	1	or	to	the	right	of	x	=	1.
We	 show	 the	 case	R0	 >	 1	 in	 Fig.	 2.19.	 (The	 other	 case	 is	 an	 exercise	 for	 the
reader.)	If	the	initial	condition	is	at	point	P,	the	orbit	goes	directly	down	and	to
the	left	until	 it	hits	y	=	0,	and	 the	disease	dies	out.	 If	 the	 initial	condition	 is	at
point	Q,	 then	 the	 orbit	 increases	 to	 the	 left,	 reaching	 a	maximum	at	x	 =	 1/R0.
Then	it	decreases	to	the	left	and	ends	at	a	point	x*	on	y	=	0.

Figure	2.19	The	xy	phase	plane	showing	two	orbits	in	the	case	R0	>	1.	One	starts
at	P	and	and	one	starts	at	Q,	on	the	line	x	+	y	=	1.	The	second	shows	an	epidemic
where	the	number	of	infectives	increases	to	a	maximum	value	and	then
decreases	to	zero;	x*	represents	the	number	of	individuals	that	do	not	get	the
disease.

We	can	obtain	an	equation	for	 the	orbits	of	 (6.12)	 in	a	simple	manner.	 If	we
divide	the	x	and	y	equations	in	(6.12)	we	obtain



Integrating	both	sides	with	respect	to	S	yields

where	C	is	an	arbitrary	constant.	Using	the	initial	conditions	to	determine	C,	we
obtain	the	orbit	equation

This	 orbit	 can	 be	 graphed	with	 a	 calculator	 or	 computer	 algebra	 system,	 once
parameter	values	are	specified.	Making	such	plots	shows	what	 the	orbits	 looks
like,	as	plotted	in	Fig.	2.19.	Observe	that	an	orbit	cannot	intersect	the	y	axis,	so	it
must	intersect	the	x	axis	for	x	>	0,	or	at	the	root	x*	of	the	nonlinear	equation

This	root	represents	the	fraction	of	individuals	that	do	not	get	the	disease.	Once
parameter	values	are	specified,	a	numerical	approximation	of	x*	can	be	obtained.
In	all	cases,	the	disease	dies	out	because	of	lack	of	infectives.
Finally,	we	can	obtain	an	implicit	differential	equation	for	z	=	z(τ)	by	dividing

the	x	and	z	equations	in	(6.12).	We	get

Therefore,

and,	again	using	(6.12),

(6.13)	
This	 equation	 cannot	 be	 integrated	 in	 closed	 form,	 but	 we	 can	 obtain
approximations	in	special	cases.

EXERCISES
1.	 (SIS	 epidemic)	 In	 an	 SIS	 epidemic	 susceptibles	 get	 infected,	 and	 then
infectives	 recover	 to	 become	 susceptible	 again.	 Using	 r	 and	 a	 as	 the
recovery	and	infection	rates,	as	in	the	SIR	model,	formulate	equations	for	an



SIS	epidemic	and	find	the	basic	reproduction	number	R0.	Assume	a	constant
population	N.	 Show	 that	 the	 disease	 dies	 out	 if	R0	 <	 1	 and	 the	 disease	 is
endemic,	 or	 continually	 present,	 if	R0	 >	 1.	 Discuss	 the	 dynamics	 in	 each
case.
2.	 In	 a	 population	 of	 200	 individuals,	 20	 were	 initially	 infected	 with	 an
influenza	virus.	After	the	flu	ran	its	course,	it	was	found	that	100	individuals
did	 not	 contract	 the	 flu.	 If	 it	 took	 about	 3	 days	 to	 recover,	 what	 was	 the
transmission	 coefficient	a?	What	 was	 the	 average	 time	 that	 it	 might	 have
taken	for	someone	to	get	the	flu?
3.	 In	 a	 population	 of	 500	 people,	 25	 have	 the	 contagious	 illness.	 On	 the
average	 it	 takes	about	2	days	 to	contract	 the	 illness	and	4	days	 to	 recover.
How	many	in	the	population	will	not	get	the	illness?	What	is	the	maximum
number	of	infectives	at	a	single	time?
4.	 Beginning	with	 the	 SIR	model,	 assume	 that	 susceptible	 individuals	 are
vaccinated	at	a	constant	rate	v.	Formulate	the	model	equations	and	describe
the	progress	of	the	disease	if,	initially,	there	are	a	small	number	of	infectives
in	a	large	population.
5.	 (SIRS	 disease)	 Beginning	 with	 the	 SIR	 model,	 assume	 that	 recovered
individuals	 can	 lose	 their	 immunity	 and	become	 susceptible	 again	 after	 an
average	 recovery	 period	 of	 time	 μ.	 That	 is,	 the	 rate	 recovered	 individuals
become	susceptible	 is	μR.	Draw	a	compartmental	diagram	and	formulate	a
two-dimensional	 system	 of	 model	 equations	 for	 S	 and	 I.	 Find	 the	 two
equilibria.	 By	 sketching	 the	 nullclines	 and	 vector	 field,	 show	 that	 the
disease-free	 equilibrium	 is	 unstable.	 Can	 you	 identify	 the	 type	 of
equilibrium.	 Can	 you	 determine	 whether	 the	 nonzero	 equilibrium	 (the
endemic	state)	is	stable	or	unstable?	What	does	it	appear	to	be?
6.	 In	 an	 SIR	 epidemic	with	R0	 >	 1,	 where	R0Z	 is	 small	 for	 all	 time,	 use
(6.13)	to	show,	approximately,

Note	that	this	is	the	logistic	equation.	Sketch	a	graph	of	the	rate	of	removal
dz/dτ	 vs.	 τ.	 For	 example,	 in	 the	 plague,	 the	 removal	 rate	 closely
approximates	the	death	rate.
7.	(SIR	with	Demographics)	We	can	include	demographics	in	the	SIR	model
by	 assuming	 individuals	 are	born	 into	 the	 susceptible	 class	 at	 the	 constant



rate	b	and	all	classes	die	at	the	per	capita	rate	μ.	The	model	is

Assume	the	population	is	a	constant	N,	and	μ	is	much	smaller	that	r.
a)	What	constraint	does	the	assumption	of	a	constant	population	have	on
the	parameters	in	the	system?
b)	Nondimensionalize	the	model	by	taking	s	=	S/N,	y	=	I/N,	z	=	R/N,	and
using	the	time	scale	r−1.
c)	Working	in	the	xy	plane,	find	the	nullclines	and	the	equilibria	and	their
stability.	 Consider	 all	 cases	 and	 write	 a	 few	 sentences	 discussing	 the
results.



2.6.4	Macroparasitic	Infections
Some	 diseases	 are	 not	 contagious	 or	 spread	 by	 contact,	 such	 as	 in	 the	 flu,
measles,	or	sexually	transmitted	diseases.	For	example,	in	the	case	of	malaria	a
mosquito	 is	 a	 carrier,	 or	vector,	 in	 the	 transmission	 of	 the	 disease	 to	 different
individuals.	Malaria	affects	more	 individuals	 than	any	other	disease,	especially
in	 tropical	 areas.	Other	 vector	 diseases	 transmitted	by	mosquitos	 include	West
Nile	virus,	dengue	and	yellow	fever,	and	filariasis.
The	malaria	carrier	is	the	female	Anopheles	mosquito.	The	infectious	agent	is	a

protozoan	parasite	that	is	injected	into	the	blood	stream	by	a	mosquito	when	she
is	taking	a	blood	meal,	which	is	necessary	for	the	development	of	her	eggs.	The
parasite	develops	 inside	 the	host	 and	produces	gametocytes	which	 then	can	be
taken	up	by	another	biting	mosquito.
We	present	a	simplified,	classic	model	of	R.	Ross,	who	developed	it	in	1911,

and	which	was	modified	 by	G.	Macdonald	 in	 1957.	 Sir	Ronald	Ross	 is	 given
credit	 for	 first	 understanding	 and	 modeling	 the	 complex	 malarial	 cycle,	 for
which	 he	was	 awarded	 the	Nobel	 Prize.	 (See	R.	M.	Anderson	&	R.	M.	May,
(1991),	the	standard	reference	for	diseases,	both	micro-	and	macroparasitic.)
We	assume	that	human	victims	have	no	immune	system	response	and	that	they

eventually	recover	from	the	disease	without	dying.	We	assume	the	mosquito	and
the	human	populations	are	approximately	constant.	Thus,	 the	disease	dynamics
are	fast	compared	to	the	dynamics	of	either	hosts	or	mosquitos.	Let	HT	and	MT
be	 the	 total	 number	 of	 hosts	 (humans)	 and	 total	 number	 of	 mosquitos,
respectively,	in	a	fixed	region;	both	are	assumed	to	be	constant.	Further,	let

First	we	consider	the	hosts.	The	rate	that	a	human	gets	infected	depends	on	the
number	 of	mosquitos,	 the	 biting	 rate	a	 (bites	 per	 time),	 and	b,	 the	 fraction	 of
bites	 that	 lead	 to	an	 infection	of	 a	human,	 and	 the	probability	of	 the	mosquito
encountering	a	susceptible	human.	The	fraction	of	susceptible	humans	is	(HT	−
H)/HT.	Finally,	we	assume	that	the	per	capita	recovery	rate	of	infected	humans	is
r,	where	1/r	is	the	average	time	to	recovery.	Therefore,	the	rate	equation	for	H	is



which	is	the	infection	rate	minus	the	recovery	rate.	Notice	that	the	infection	rate
is	proportional	to	the	product	of	susceptible	hosts	and	infected	mosquitos,	which
should	remind	the	reader	of	the	simple	SIR	model	studied	earlier.	The	rate	that
mosquitos	become	infected	from	biting	an	infected	host	depends	on	a	and	c	(the
fraction	 of	 bites	 by	 an	 uninfected	mosquito	 of	 an	 infected	 human	 that	 causes
infection	in	the	mosquito).	If	μ	is	the	per	capita	death	rate	of	infected	mosquitos,
then

and	H/HT	 is	 the	 probability	 of	 encountering	 an	 infected	 human.	Note	 that	 the
infection	 rate	 is	 jointly	 proportional	 to	 MT	 −	 M,	 the	 number	 of	 susceptible
mosquitos,	 and	 the	 number	 of	 infected	 hosts,	 again	 a	 reminder	 of	mass	 action
kinetics.	We	can	simplify	these	equations	by	introducing

which	are	the	fractions	of	the	populations	that	are	infected.	Then	the	governing
equations	become

(6.14)	

(6.15)	
For	convenience,	we	define	the	parameters

Then

(6.16)	

(6.17)	
We	can	analyze	this	geometrically	in	the	phase	plane	in	the	usual	way.	Setting

the	right	sides	equal	to	zero	gives	the	nullclines

(6.18)	



(6.19)	
Note	that	h	=	m	=	0	is	always	an	equilibrium.	Also,	the	h	nullcline	is	concave	up
with	 a	 vertical	 asymptote	 at	 h	 =	 1;	 the	m	 nullcline	 is	 concave	 down	 with	 a
horizontal	asymptote	at	m	=	1.	The	two	possibilities	are	shown	in	Fig.	2.20

Figure	2.20	Two	cases	in	the	malaria	model:	the	nullclines	cross	only	at	the
origin,	and	the	nullclines	cross	at	the	origin	and	at	a	nonzero	state.	The	second
case	occurs	only	when	the	slope	of	the	mosquito	nullcline	exceeds	the	slope	of
the	host	nullcline	at	the	origin,	or	β/μ	>	r/α.

There	will	be	a	nonzero	equilibrium	when	these	nullclines	cross.	In	that	case,
the	slope	of	the	m	nullcline	must	be	steeper	than	the	slope	of	the	h	nullcline	at	h
=	0.	Calculating	these	slopes	from	(6.18)–(6.19),	respectively,	we	get

Therefore,	for	a	nonzero	equilibrium,	we	must	have

(6.20)	
We	show	that	this	nonzero	equilibrium	is	asymptotically	stable,	which	means

the	 infectious	 populations	 approach	 a	 nonzero	 endemic	 state.	 First,	 however,
let’s	 interpret	 this	result	(6.20)	in	terms	of	the	actual	parameter	values.	We	can
rewrite	(6.20)	as



The	 first	 factor	 is	 the	 rate	 of	 infection	 of	 mosquitos	 (ac)	 times	 their	 average
lifetime	 (1/μ).	 The	 second	 factor	 is	 the	 rate	 of	 infection	 of	 human	 hosts
(abMT/HT)	times	the	average	length	of	infection	(1/r).

Figure	2.21	Orbits	in	the	two	cases.	In	case	1	the	origin	is	a	stable	node	and	the
infection	dies	out.	In	case	2,	the	origin	is	unstable	and	the	disease	becomes
endemic.

We	can	easily	check	the	stability	of	the	nonzero	equilibrium	by	sketching	the
direction	field.	Or,	we	can	approach	this	analytically	by	finding	the	equilibrium
and	checking	the	Jacobian	matrix.	Setting	(6.18)	equal	to	(6.19)	and	solving	for
h	gives

Then,

Notice	that	this	is	a	viable	equilibrium	only	if	the	numerator	is	positive,	which	is
the	same	as	the	condition	(6.20).	Otherwise	it	is	not	viable	and	the	origin,	(0,	0),
is	the	only	equilibrium.	The	Jacobian	matrix	at	an	arbitrary	(h,	m)	is	easily

Clearly

The	 trace	 is	negative	 in	both	cases.	The	determinant	μr	−	αβ	 is	 positive	when
condition	(6.20)	holds	and	negative	when	it	does	not	hold.	Therefore,	the	origin



(extinction	 of	 the	 disease)	 is	 asymptotically	 stable	 when	 it	 is	 the	 only
equilibrium,	and	it	is	unstable	when	a	nonzero	equilibrium	exists.
For	the	nonzero	equilibrium

The	trace	is	negative	and

by	 condition	 (6.20),	 and	 after	 considerable	 simplification.	 Thus,	 (h*,	 m*)	 is
asymptotically	stable.

EXERCISES
1.	Using	 data	 in	 the	 table	 below,	 calculate	 solution	 curves	 for	 the	malaria
model.	Demonstrate	both	cases	(extinction	and	coexistence).
Table	2.1	Sample	malaria	parameter	values
Parameter Name Sample	Value

MT/HT population	ratio 2

a biting	rate 0.2–0.5	per	day
b effective	bites	infecting	humans 0.5
c effective	bites	infecting	mosquitos 0.5
r recovery	rate 0.01–0.05	per	day
μ mortality	rate 0.05–0.5	per	day

2.	(Malaria)	In	this	exercise	develop	and	analyze	a	simplified	version	of	the
malaria	model	under	the	condition	that	r	is	much	less	than	μ.

a)	 Beginning	with	 (6.14)–(6.15),	 nondimensionalize	 these	 equations	 by
rescaling	time	by	taking	τ	=	μt.	Obtain

where

b)	Assuming	ε	is	very	small,	neglect	the	εh	term	in	the	host	equation	and



draw	the	phase	portrait.	Include	the	equilibria,	nullclines,	direction	field,
and	a	local	stability	analysis	for	the	equilibria.
c)	 For	 the	 simplified	 dimensionless	 model	 in	 part	 (b),	 with	 the	 values
given	 in	 Table	 1,	 specifically,	 a	 =	 0.5,	 r	 =	 0.01,	 and	 μ	 =	 0.5,	 use	 a
numerical	method	to	draw	time	series	plots	of	h	and	m	for	various	initial
initial	conditions.

3.	 (Schistosomiasis)	Schistosomiasis	 is	a	macroparasitic	disease	of	humans
caused	 by	 trematode	worms,	 or	 blood	 flukes.	 Trematodes	 form	 a	 class	 of
flatworms	 in	 the	phylum	Platyhelminthes,	 or	 helminths.	Schistosomiasis	 is
highly	 prevalent	 in	 tropical	 areas,	 and	 it	 is	 estimated	 that	 hundreds	 of
millions	of	people	suffer	from	it.	The	life	cycle	of	the	parasite	is	complicated
and	 involves	 a	 definitive	 host	 (humans),	 where	maturity	 and	 reproduction
occur,	 and	 a	 secondary	 host	 (e.g.,	 snails),	 in	which	 the	 intermediate	 larval
stage	 develop	 into	 infectious	 larva	 (cercaria)	 that	 are	 shed	 and	 then
penetrate,	 or	 are	 ingested,	 by	 the	 definitive	 host,	 completing	 the	 cycle.
Figure	 2.22	 is	 a	 diagrammatic	 flow	 chart	 summarizing	 the	 principle
processes.	In	this	exercise	we	formulate	a	simplified	model	for	the	number
of	 infected	 snails	 I	 and	 the	 average	worm	 burden	m	 in	 the	 host	 (the	 total
number	of	mature	worms	divided	by	the	constant	number	of	hosts).

Figure	2.22	Diagrammatic	life	cycle	of	schistosome	parasites	in	humans.

The	dynamics	for	parasites	in	a	host	is



(6.21)	
where	a	is	the	rate	that	infected	snails	produce	the	free-living	stage	larva	that
infects	 the	host	 through	 ingestion	or	skin	penetration.	The	factor	 I/N	 is	 the
fraction	 of	 snails	 infected,	 and	 μ	 is	 the	 per	 capita	 mortality	 rate.	 The
dynamics	for	the	number	of	infected	snails	is

(6.22)	
where	δ	represents	the	per	capita	mortality	rate	of	the	infected	snails,	N–I,	is
the	 number	 of	 susceptible	 snails,	 and	C(m)	 is	 proportional	 to	 the	 rate	 of
production	of	eggs	by	 (paired)	 female	 adult	worms;	 the	 latter	 includes	 the
rate	of	hatching	of	the	eggs	that	eventually	produce	the	infecting,	free-living
larva.	 Thus,	 C	 contains	 several	 rates	 in	 the	 life	 cycle	 and	 perhaps
complicated	 dependence	 on	 the	 fraction	 of	 paired	 females.	 The	 function
C(m)	is	a	type	3	functional	response	(a	sigmoid	or	S-shaped	curve).

a)	 Find	 the	 nullclines	 and	 sketch	 them	 in	 the	mI	 plane.	 In	 terms	 of	 the
bifurcation	parameter	a,	 show	 three	 cases:	a	 <	a*,	a	 =	 a*,	a	 >	a*,	 for
some	critical	value	a*	to	be	determined.
b)	 For	 each	 case	 in	 (a),	 indicate	 graphically	 the	 equilibria	 and	 the
direction	field.	Can	you	conclude	anything	about	stability?
c)	Find	an	equation,	or	equations,	that	determine	a*.
d)	Sketch	a	bifurcation	diagram	of	the	equilibria	m*	vs.	the	parameter	a.
Indicate	the	stability	of	each	branch.
e)	Interpret	the	results	in	a	biological	sense.

4.	 Gregarines	 (Ph.	 Apicomplexa)	 are	 parasites	 that	 infect	 various	 insects,
such	as	flour	beetles,	damselflies,	and	dragonflies.	They	are	among	the	most
evolutionary	 long-lived,	 widespread	 parasite	 species.	 In	 a	 freshwater
environment,	 for	 example,	 the	 adult	 stage	 of	 the	 parasite	 (the	 trophont)
infects	the	intestine	of	the	larval	stage	of	the	host	insect	species;	adults	pair
and	produce	a	gametocyst,	which	 is	shed	back	into	 the	water	environment.
The	 gametocyst	 undergoes	 gametogenesis	 and	 eventually	 releases	 a	 large
number	 of	 infective	 oocysts	 that	 are	 ingested	 by	 the	 insects,	 and	 the	 life
cycle	 proceeds	 again.	Assuming	 a	 constant	 number	 of	 hosts	 and	 letting	P
and	 C	 be	 the	 average	 number	 (per	 host	 values)	 of	 adults	 and	 oocysts,
respectively,	the	governing	dynamics	for	the	parasite	life	cycle	is



where	d	and	μ	are	mortalities,	b	is	the	production	rate	of	adults,	and	α	and	γ
are	parameters	in	a	type	3	contact	rate.	(Details	can	be	found	in	J.	D.	Logan,
J.	Janovy,	&	B.	E.	Bunker,	2012.	Ecological	Modelling	233,	31–40.)

a)	In	terms	of	the	fitness	parameter	R	defined	by

show	that	the	equilibria	are	given	by	P	=	C	=	0	(extinction)	and

b)	Sketch	phase	plane	diagrams	for	R	<	1,	R	=	1,	and	R	>	1.
c)	 Describe	 the	 bifurcation	 and	 sketch	 a	 bifurcation	 diagrams	 of	 the
equilibrium	C	vs.	the	parameter	R.
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2	This	fact	follows	from	an	application	of	the	chain	rule,	 .



Chapter	3

Perturbation	Methods	and	Asymptotic
Expansions

Equations	arising	 from	mathematical	models	usually	cannot	be	solved	 in	exact
form.	 Therefore,	 we	 often	 resort	 to	 approximation	 and	 numerical	 methods.
Foremost	 among	 approximation	 techniques	 are	 perturbation	 methods.
Perturbation	methods	 lead	 to	 an	 approximate	 solution	 to	 a	 problem	when	 the
model	 equations	 have	 terms	 that	 are	 small.	 These	 terms	 arise	 because	 the
underlying	 physical	 process	 has	 small	 effects.	 For	 example,	 in	 a	 fluid	 flow
problem	the	viscosity	may	be	small	compared	to	advection,	or	in	the	motion	of	a
projectile	 the	force	caused	by	air	 resistance	may	be	small	compared	 to	gravity.
These	 low-order	 effects	 are	 represented	 by	 terms	 in	 the	model	 equations	 that,
when	 compared	 to	 the	 other	 terms,	 are	 negligible.	When	 scaled	 properly,	 the
order	 of	 magnitude	 of	 these	 terms	 is	 represented	 by	 a	 small	 coefficient
parameter,	 say	 ε.	By	a	perturbation	 solution	we	mean	an	approximate	 solution
that	is	the	first	few	terms	of	a	Taylor-like	expansion	in	the	small	parameter	ε.
Perturbation	 methods	 apply	 to	 differential	 equations	 (ordinary	 and	 partial),

algebraic	equations,	integral	equations,	and	all	of	the	other	types	of	equations	we
encounter	in	applied	mathematics.	Their	importance	cannot	be	overstated.



3.1	Regular	Perturbation
To	fix	the	Idea,	consider	a	differential	equation

(1.1)	
where	t	is	the	independent	variable,	I	is	the	time	interval,	and	y	is	the	dependent
variable.	The	appearance	of	a	small	parameter	ε	is	shown	explicitly.	In	general,
initial	or	boundary	conditions	may	accompany	the	equation,	but	for	the	present
we	ignore	auxiliary	conditions.	To	denote	that	ε	is	a	small	parameter	we	write

This	means	that	ε	is	small	compared	to	unity,	a	glib	phrase	in	which	no	specific
cutoff	is	explicitly	defined;	certainly	0.001	 	1,	but	0.75	is	not	small	compared
to	unity.	The	previous	remarks	also	apply	to	equations	with	a	large	parameter	λ,
since	in	that	case	we	may	introduce	ε	=	1/λ,	which	is	small.
By	a	perturbation	series	we	understand	a	power	series	in	ε	of	the	form

(1.2)	
The	 basis	 of	 the	 regular	 perturbation	method	 is	 to	 assume	 a	 solution	 of	 the
differential	equation	of	this	form,	where	the	functions	y0,	y1,	y2,…	are	found	by
substitution	 into	 the	 differential	 equation.	 The	 first	 few	 terms	 of	 such	 a	 series
form	 an	 approximate	 solution,	 called	 a	 perturbation	 solution	 or
approximation;	usually	no	more	 than	 two	or	 three	 terms	are	 taken.	Generally,
the	 method	 will	 be	 successful	 if	 the	 approximation	 is	 uniform;	 that	 is,	 the
difference	between	the	approximate	solution	and	the	exact	solution	converges	to
zero	at	some	well-defined	rate	as	ε	approaches	zero,	uniformly	on	I.	These	ideas
are	made	precise	later.	We	emphasize	in	this	context	that	there	is	no	advantage	in
taking	a	priori	 a	 specific	 value	 for	 ε.	Rather,	we	 consider	 ε	 to	 be	 an	 arbitrary
small	number,	so	that	the	analysis	will	be	valid	for	any	choice	of	ε.	Of	particular
interest	in	many	problems	is	the	behavior	of	the	solutions	as	ε	→	0.	Generally,
the	perturbation	series	is	a	valid	representation	for	ε	<	ε0	for	some	undetermined
ε0.
The	term	y0	in	perturbation	series	is	called	the	leading	order	 term.	The	terms

εy1,	ε2y2,…	are	regarded	as	higher-order	correction	terms	that	are	expected	to	be
small.	 If	 the	method	 is	 successful,	y0	will	 be	 the	 solution	 of	 the	unperturbed
problem



in	which	ε	is	set	to	zero.	In	this	context	(1.1)	is	called	the	perturbed	problem.
Therefore,	 when	 a	 model	 equation	 is	 obtained	 in	 which	 a	 small	 parameter
appears,	it	is	often	regarded	as	a	perturbed	equation	where	the	term(s)	containing
the	 small	 parameter	 represent	 small	 perturbations	 or	 changes	 from	 some	 basic
unperturbed	problem.	It	is	implicit	that	the	unperturbed	equation	should	always
be	solvable	so	that	the	leading-order	behavior	of	the	solution	can	be	found.	One
frequently	encounters	problems	of	this	sort	whose	solutions	are	facilitated	by	the
fact	 that	 the	 governing	 equation,	 the	 boundary	 condition,	 or	 the	 shape	 of	 the
region	 in	 higher-dimensional	 problems	 is	 not	 too	 different	 from	 those	 of	 a
simpler	problem.
For	a	variety	of	reasons,	sometimes	the	naive	perturbation	approach	described

above	fails.	This	failure	often	occurs	when	the	leading	order	problem	is	not	well
posed,	 or	 its	 solution	 is	 invalid	 on	 all	 parts	 of	 the	domain,	 for	 example,	when
there	 are	multiple	 time	 or	 spatial	 scales.	 Then	we	must	modify	 the	 approach.
These	 modifications,	 which	 are	 myriad,	 belong	 to	 the	 class	 of	 singular
perturbation	methods.
In	preparation	for	the	discussion	in	this	chapter	and	the	exercises,	we	list	 the

Taylor	series	expansions	of	several	common	functions,	along	with	the	interval	of
convergence,	where	restricted.



The	basic	idea	of	the	perturbation	method	is	easily	illustrated	by	investigating
a	simple	algebraic	equation	for	which	we	know	the	solution.

Example	3.1
Consider	the	quadratic	equation

where	 ε	 is	 a	 small	 positive	 parameter.	 We	 are	 not	 assigning	 a	 value	 to	 the
parameter;	all	we	know	is	that	it	is	small	in	some	sense.	Of	course	we	can	solve
this	 equation	 exactly.	 But	 here	 we	 illustrate	 a	 different	 method.	 Assume	 a
solution	in	the	form	of	a	perturbation	series	x	=	x0	+	x1ε	+	x2ε2	+	···,	where	the
dots	 represent	higher-order	 terms	and	 the	xk	 are	 to	be	determined.	Substituting
into	the	equation	gives

Expanding	out	and	collecting	terms	in	powers	of	ε	gives

Equating	the	coefficients	to	zero	yields

Solving,

Therefore,	we	obtain	two	approximate	solutions

Each	is	a	three	term	perturbation	approximation.	We	can	calculate	as	many	terms
as	 we	 wish,	 and	 often	 computer	 algebra	 systems	 can	 be	 quite	 useful	 in
performing	all	the	tedious	algebra.	The	approximate	solution	can	be	compared	to
the	exact	solution	obtained	by	the	quadratic	formula.	We	have

The	radical	can	be	expanded	by	the	binomial	formula	to	get



Therefore,	the	quadratic	formula	leads	to

which	is	the	same	as	the	three-term	perturbation	approximation.	The	point	is	that
we	can	carry	out	this	procedure	to	obtain	approximate	solutions	even	when	we
cannot	solve	a	problem	exactly.



3.1.1	Motion	in	a	Resistive	Medium
Next	consider	a	differential	equation.	Suppose	a	body	of	mass	m,	initially	with
velocity	V0,	moves	in	a	straight	line	in	a	medium	that	offers	a	resistive	force	of
magnitude	av	−	bv2,	where	v	=	v(τ)	is	the	velocity	of	the	object	as	a	function	of
time	 τ,	 and	 a	 and	 b	 are	 positive	 constants	 with	 b	 	 a	 (meaning	 b	 is	 much
smaller	than	a).	Therefore,	the	nonlinear	part	of	the	force	is	assumed	to	be	small
compared	 to	 the	 linear	 part.	 The	 constants	 a	 and	 b	 have	 units	 of	 force	 per
velocity	and	force	per	velocity-squared,	 respectively.	By	Newton’s	second	 law,
the	equation	of	motion	is

We	first	non-dimensionalize	the	problem.	Later	we	see	why	we	must	do	this.	A
velocity	scale	is	the	maximum	velocity,	which	is	clearly	V0,	because	the	object
must	 slow	down	 in	 the	 resistive	medium.	 If	 the	 small	nonlinear	 term	bv2	were
not	 present,	 then	 the	 velocity	 would	 decay	 like	 e−aτ/m;	 therefore,	 the
characteristic	time	is	m/a.	Introducing	dimensionless	variables

the	problem	becomes

(1.3)	

(1.4)	
where

Here	ε	 	1	means	that	the	dimensionless	parameter	ε	is	small	compared	to	unity.
We	 do	 not	 specify	 exactly	 what	 that	 means;	 certainly	 ε	 =	 0.01	 satisfies	 the
condition,	but	ε	=	0.8	probably	does	not.	But	 the	relationship	defines	precisely
what	we	mean	when	we	say	glibly	 that	b	 	a	 (a	and	b	 do	 not	 have	 the	 same
dimensions	and	really	cannot	be	compared);	we	mean	bV0	is	much	smaller	than
a.
Equation	(1.3)	is	a	Bernoulli	equation	and	can	be	solved	exactly	by	making	the

substitution	w	=	y−1,	and	then	integrating	the	resulting	linear	equation	to	obtain



Equation	(1.3)	is	a	slightly	altered	or	perturbed	form	of	the	linear	equation

(1.5)	
which	 is	easily	 solved	by	y	=	e−t.	Because	 the	nonlinear	 term	εy2	 is	 small,	 the
function	e−t	appears	to	be	a	good	approximate	solution	to	the	problem,	provided
the	 scaling	was	 performed	 correctly.	 The	 exact	 solution	 can	 be	 expanded	 in	 a
Taylor	series	in	powers	of	ε	as

(1.6)	
If	ε	is	small,	the	leading	order	term	y0	=	e−t	is	a	reasonable	approximation,	but	it
does	not	include	any	effects	of	the	nonlinear	term	in	the	original	equation.
To	 obtain	 an	 approximate	 solution	 by	 a	 perturbation	 method	 we	 employ	 a

perturbation	series.	That	is,	we	assume	that	the	solution	of	(1.3)	is	representable
as

(1.7)	
which	 is	a	series	 in	powers	of	ε.	The	functions	y0,	y1,	y2,…	are	determined	by
substituting	(1.7)	 into	both	 the	differential	 equation	 (1.3)	 and	 initial	 condition,
and	then	equating	coefficients	of	like	powers	of	ε.	Thus,

which,	 when	 coefficients	 are	 collected,	 gives	 a	 sequence	 of	 linear	 differential
equations

The	initial	condition	leads	to

or	the	sequence	of	initial	conditions

Therefore	we	have	obtained	a	recursive	set	of	linear	initial	value	problems	for	y0,
y1,	y2,….	These	are	easily	solved	in	sequence	to	obtain



Notice	 that	 y1	 and	 y2	 are	 the	 first-	 and	 second-order	 correction	 terms	 to	 the
leading-order	 approximation	 y0	 =	 e−t,	 which	 is	 in	 agreement	 with	 (1.6).
Therefore	we	have	obtained	a	three-term	perturbation	solution

(1.8)	
which	is	an	approximation	of	yex	and	includes	nonlinear	effects	due	to	the	term
εy2	 in	 the	 original	 differential	 equation.	 The	 approximate	 solution	 is	 the	 first
three	 terms	 of	 the	 Taylor	 expansion	 of	 the	 exact	 solution.	 In	 this	 problem	 the
exact	solution	is	known	(this	is	rare),	and	we	can	compare	it	to	the	approximate
solution.	The	error	in	the	approximation	(1.8)	is	given	by	the	difference

for	bounded	functions	m1,	m2,….	For	a	fixed	positive	t	the	error	approaches	zero
as	 ε	→	 0	 as	 the	 same	 rate	 as	 ε3	 goes	 to	 zero.	 In	 fact,	 one	 can	 show	 that	 the
convergence	is	uniform	as	ε	→	0	in	the	interval	0	≤	t	<	∞.	Convergence	notions
are	explored	further	after	an	additional	example.



3.1.2	Nonlinear	Oscillations
In	 the	 last	example	 the	regular	perturbation	method	 led	 to	a	satisfactory	result,
consistent	with	intuition	and	that	compared	favorably	with	the	exact	solution.	In
the	 next	 example	 the	 procedure	 is	 the	 same,	 but	 the	 result	 does	 not	 turn	 out
favorably;	 it	 is	 the	 first	 signal	 of	 the	 need	 to	modify	 the	 regular	 perturbation
method	 and	 develop	 a	 singular	 perturbation	 method.	 In	 this	 example,	 the
perturbation	approximation	will	be	valid	only	if	certain	restrictions	are	placed	on
the	interval	of	time	that	the	solution	evolves.
Consider	 a	 spring-mass	 oscillator	 where	 a	mass	m	 is	 connected	 to	 a	 spring

whose	restoring	force	has	magnitude	ky+ay3,	where	y	is	the	displacement	of	the
mass,	measured	positively	from	equilibrium,	and	k	and	a	are	positive	constants
characterizing	 the	 stiffness	 properties	 of	 the	 spring.	Assume	 that	 the	nonlinear
portion	of	the	restoring	force	is	small	in	magnitude	compared	to	the	linear	part,
or	a	 	k.	If,	initially,	the	mass	is	released	from	a	positive	displacement	A,	then
the	motion	 is	given	by	a	 function	y	=	y(τ)	 of	 time	 τ,	which	 satisfies	Newton’s
second	law

(1.9)	
and	the	initial	conditions

(1.10)	
Because	of	the	presence	of	the	nonlinear	term	ay3,	this	problem	cannot	be	solved
exactly.	Because	a	 	k,	however,	a	perturbation	method	is	suggested.
From	 the	 projectile	 problem	 in	 Chapter	 1	 the	 reader	 should	 have	 gained

enough	skepticism	not	to	just	neglect	the	term	ay3	and	proceed	without	scaling.
Therefore,	to	properly	analyze	the	problem	we	seek	appropriate	time	and	length
scales	 that	 reduce	 the	 problem	 to	 dimensionless	 form.	 The	 constants	 in	 the
problem	are	k,	a,	m,	and	A	have	dimensions

An	obvious	choice	is	to	scale	y	by	the	amplitude	A	of	the	initial	displacement.	To
scale	 time	 τ	we	 argue	 as	 follows.	 If	 the	 small	 term	ay3	 is	 neglected,	 then	 the
differential	equation	is	my″	=	−ky,	which	has	periodic	solutions	of	the	form	cos	



	with	a	period	proportional	to	 	Hence,	we	choose	 	to	be
the	characteristic	time	and	introduce	dimensionless	variables	t	and	u	via

Under	 this	 change	 of	 variables	 the	 differential	 equation	 (1.9)	 and	 initial
conditions	become	(overdots	denote	derivatives	with	respect	to	t)

(1.11)	
where

is	 a	 dimensionless	 small	 parameter.	 It	 now	 becomes	 clear	 exactly	 what	 the
assumption	of	a	small	nonlinear	restoring	force	means;	the	precise	assumption	is
aA2	 	k.	Equation	(1.11)	is	the	Duffing	equation.
We	attempt	a	solution	of	the	form

where	u0,	u1,…	are	to	be	determined.	Substituting	into	the	differential	equation
and	 initial	 conditions,	 and	 equating	 coefficients	 of	 like	 powers	 of	 ε,	 gives	 a
sequence	of	linear	initial	value	problems

(1.12a)	

(1.12b)	
The	leading-order	solution	to	(1.12a)	is	easily	found	to	be

Then	the	problem	(1.12b)	for	the	first	correction	term	becomes

We	 employ	 the	 trigonometric	 identity	 cos	 3t	 =	 4	 cos3	 t	 −	 3	 cos	 t	 to	write	 the
differential	equation	as

(1.13)	
which	 can	 be	 solved	 by	 standard	 methods.	 The	 general	 solution	 of	 the
homogeneous	equation	ü1	+	u1	=	0	is	c1	cos	t	+	c2	sin	t.	A	particular	solution	can
be	found	by	the	method	of	undetermined	coefficients	and	is	of	the	form



Substituting	 up	 into	 the	 differential	 equation	 and	 equating	 like	 terms	 gives	
,	and	E	=	− .	Thus	the	general	solution	of	(1.13)	is

Applying	the	initial	conditions	on	u1	gives

Therefore,	in	scaled	variables,	a	two-term	approximate	solution	takes	the	form

(1.14)	
The	 leading-order	 behavior	 of	 the	 approximate	 solution	 is	 cos	 t,	 which	 is	 an
oscillation.	The	second	term,	or	the	correction	term,	however,	is	not	necessarily
small.	For	a	fixed	value	of	time	t	the	term	goes	to	zero	as	ε	→	0,	but	if	t	itself	is
of	the	order	of	ε−1	or	larger	as	ε	→	0,	then	the	term	− t	sin	t	will	be	large.	Such	a
term	 is	 called	 a	 secular	term.	 Therefore,	we	 expect	 that	 the	 amplitude	 of	 the
approximate	 solution	 will	 grow	 with	 time,	 which	 is	 not	 consistent	 with	 the
physical	situation	or	with	the	exact	solution.	Indeed,	it	 is	easy	to	show	that	the
exact	solution	is	bounded	for	all	t	>	0.	In	this	approximation,	the	correction	term
cannot	be	made	arbitrarily	small	for	t	in	(0,	∞)	by	choosing	ε	small	enough.	And,
it	 is	 not	 possible	 to	 improve	 on	 (1.14)	 by	 calculating	 additional	 higher-order
terms;	they	too	will	contain	secular	terms	that	will	not	cancel	the	effects	of	the
lower-order	 terms.	One	may	legitimately	ask,	 therefore,	 if	 there	 is	any	value	at
all	in	the	approximate	solution	(1.14).	In	a	limited	sense	the	answer	is	yes.	If	we
restrict	 the	 independent	variable	 t	 to	a	 finite	 interval	 [0,	T],	 then	 the	correction
term	ε	[1/2(cos	3t	−	cos	t)	−	3/8t	sin	t]	can	be	made	arbitrarily	small	by	choosing
ε	sufficiently	small,	for	any	t	 	[0,	T].	So,	as	long	as	the	coefficient	3εt/8	is	kept
small	 by	 limiting	 t	 and	 taking	 ε	 small,	 the	 leading-order	 term	 cos	 t	 is	 a
reasonable	approximate	solution.



3.1.3	The	Poincaré-Lindstedt	Method
A	 straightforward	 application	 of	 the	 regular	 perturbation	method	 on	 the	 initial
value	problem	(1.11)	 for	 the	Duffing	equation	 led	 to	a	secular	 term	in	 the	first
correction	 that	 ruined	 the	approximation	unless	 t	was	 restricted.	 In	 this	 section
we	present	a	method	to	remedy	this	 type	of	singular	behavior,	which	occurs	 in
all	cases	of	periodic	motion.	The	key	to	the	analysis	is	to	recognize	that	not	only
does	the	correction	term	grow	in	amplitude,	but	 it	also	does	not	correct	for	 the
difference	between	the	exact	period	of	oscillation	and	the	approximate	period	2π
of	the	leading	order	term	cos	t.	Over	several	oscillations	the	error	in	the	period
increases	until	 the	approximation	and	 the	actual	 solution	are	completely	out	of
phase.	To	confirm	this,	 the	reader	should	use	a	software	system	to	solve	(1.11)
numerically,	and	then	plot	the	numerical	solution	vs.	cos	t.
The	 idea	 of	 the	 Poincaré–Lindstedt	 method	 is	 to	 introduce	 a	 distorted	 time

scale	in	the	perturbation	series.	In	particular,	we	let

(1.15)	
where
(1.16)	

with

(1.17)	
Here	 ω0	 has	 been	 chosen	 to	 be	 unity,	 the	 frequency	 of	 the	 solution	 of	 the
unperturbed	 problem.	 Under	 the	 scale	 transformation	 (1.16)	 the	 initial	 value
problem	(1.11)	becomes

(1.18)	

(1.19)	
where	u	=	u(τ)	and	prime	denotes	differentiation	with	respect	 to	τ.	Substituting
(1.15)	and	(1.17)	into	(1.18)	and	(1.19)	gives

and

Collecting	coefficients	of	powers	of	ε	gives

(1.20)	



(1.21)	
The	solution	of	(1.20)	is

Then	the	differential	equation	in	(1.21)	becomes

(1.22)	
Because	cos	τ	is	a	solution	to	the	homogeneous	equation,	the	cos	τ	term	on	the
right	side	of	the	equation	leads	to	a	particular	solution	with	a	term	τ	cos	τ,	which
is	a	secular	term.	The	key	observation	is	that	we	can	avoid	a	secular	term	if	we
choose

Then	(1.22)	becomes

which	has	the	general	solution

The	initial	conditions	on	u1	lead	to

Therefore,	a	first-order,	uniformly	valid	perturbation	solution	of	(1.11)	is

where

The	Poincaré–Lindstedt	method	is	successful	on	a	number	of	similar	problems,
and	 it	 is	 one	 of	 a	 general	 class	 of	multiple	 scale	methods.	Generally,	 it	works
successfully	on	some	(not	all)	equations	of	the	form

These	 are	problems	whose	 leading	order	 is	 oscillatory	with	 frequency	ω0.	The
basic	technique	is	to	change	variables	to	one	with	a	different	frequency,	τ	=	(ω0
+	ω1ε	+	…)t,	and	then	assume	u	=	u(τ)	is	a	perturbation	series	in	ε.	The	constants



ω0,	ω1,…	are	chosen	at	each	step	 to	avoid	 the	presence	of	secular	 terms	in	 the
expansion.



3.1.4	Asymptotic	Analysis
With	 insight	 from	 the	 previous	 examples	 we	 define	 some	 notions	 regarding
convergence	 and	 uniformity.	 We	 observed	 that	 substitution	 of	 a	 perturbation
series	 into	 a	 differential	 equation	 does	 not	 always	 lead	 to	 a	 valid	 approximate
solution.	 Ideally	 we	 would	 like	 to	 say	 that	 a	 few	 terms	 in	 a	 truncated
perturbation	series	provides,	for	a	given	ε,	an	approximate	solution	for	the	entire
range	of	 the	independent	variable	 t.	Unfortunately,	as	we	have	seen,	 this	 is	not
always	 the	 case.	 Failure	 of	 this	 regular	 perturbation	method	 is	 the	 rule	 rather
than	the	exception.
To	aid	the	analysis	of	approximate	solutions	we	introduce	some	basic	notation

and	terminology	that	permits	the	comparison	of	two	functions	as	their	common
argument	 approaches	 some	 fixed	 value.	 These	 comparisons	 are	 called	 order
relations.
Let	 f(ε)	 and	 g(ε)	 be	 defined	 in	 some	 neighborhood	 (or	 punctured

neighborhood)	of	ε	=	0.	We	write

(1.23)	
if

and	we	write
(1.24)	

if	there	exists	a	positive	constant	M	such	that

for	 all	 ε	 in	 some	 neighborhood	 (punctured	 neighborhood)	 of	 zero.	 The
comparison	function	g	is	called	a	gauge	function.
In	 this	definition,	ε	→	0	may	be	replaced	by	a	one-sided	limit	or	by	ε	→	ε0,

where	 ε0	 is	 any	 finite	 or	 infinite	 number,	with	 the	 domain	 of	 f	 and	g	 defined
appropriately.	If	(1.23)	holds,	we	say	 f	 is	 little	oh	of	g	as	ε	→	0,	and	 if	 (1.24)
holds	we	say	f	is	big	oh	of	g	as	ε	→	0.	Common	gauge	functions	are	g(ε)	=	εn	for
some	exponent	n,	and	g(ε)	=	εn(ln	ε)m	for	exponents	m	and	n.	The	statement	f(ε)
=	O(1)	means	f	is	bounded	in	a	neighborhood	of	ε	=	0,	and	f(ε)	=	o(1)	means	f(ε)
→	0	as	ε	→	0.	If	f	=	o(g),	then	f	goes	to	zero	faster	than	g	goes	to	zero	as	ε	→	0,
and	we	write	 f(ε)	 	g(ε).	The	 following	 examples	 illustrate	 a	 few	methods	 to



prove	order	relations.

Example	3.2
Verify	ε2	ln	ε	=	o(ε)	as	ε	→	0+.	By	L’H pital’s	rule,

Example	3.3
Verify	sin	ε	=	O(ε)	as	ε	→	0+.	By	the	mean	value	theorem	there	is	a	number	c
between	0	and	ε	such	that

Hence	|sin	ε|	=	|ε	cos	c|	≤	|ε|,	because	|cos	c|	≤	1.	An	alternate	argument	is	to	note
that	(sin	ε)/ε	→	1	as	ε	→	0+.	Because	the	limit	exists,	the	function	(sin	ε)/ε	must
be	 bounded	 for	 0	 <	 ε	 <	 ε0,	 for	 some	 ε0.	 Therefore	 |(sin	 ε)/ε|	 ≤	M,	 for	 some
constant	M	and	sin	ε	=	O(ε).
The	order	definitions	may	be	extended	to	functions	of	ε	and	another	variable	t

lying	in	an	interval	I.	First	we	review	the	notion	of	uniform	convergence.	Let	h(t,
ε)	be	a	function	defined	for	ε	in	a	neighborhood	of	ε	=	0,	possibly	not	including
the	value	ε	=	0	itself,	and	for	t	in	some	interval	I,	either	finite	or	infinite.	We	say

if	 the	convergence	 to	zero	 is	 at	 the	 same	 rate	 for	each	 t	 	 I;	 that	 is,	 if	 for	 any
positive	number	η	 there	can	be	chosen	a	positive	number	ε0,	 independent	of	 t,
such	that	|h(t,	ε)|	<	η	for	all	t	 	I,	whenever	|ε|	<	ε0.	In	other	words,	if	h(t,	ε)	can
be	made	arbitrarily	small	over	the	entire	interval	I	by	choosing	ε	small	enough,
then	the	convergence	is	uniform.	If	merely	limε→0	h(t0,	ε)	=	0	for	each	fixed	t0	
I,	then	we	say	that	the	convergence	is	pointwise	on	I.
To	prove	 limε→0	h(t,	 ε)	=	0	uniformly	on	 I	 it	 is	 sufficient	 to	 find	 a	 function

H(ε)	such	that	|h(t,	ε)	≤	H(ε)	holds	for	all	t	 	I,	with	H(ε)	→	0	as	ε	→	0.	To	prove
that	convergence	is	not	uniform	on	I,	it	is	sufficient	to	produce	a	 	 	I	such	that
|h( ,	ε)|	≥	η	for	some	positive	η,	regardless	of	how	small	ε	is	chosen.
Let	 f(t,	 ε)	 and	 g(t,	 ε)	 be	 defined	 for	 all	 t	 	 I	 and	 all	 ε	 in	 a	 (punctured)

neighborhood	of	ε	=	0.	We	write



if

(1.25)	
pointwise	on	I.	If	the	limit	is	uniform	on	I,	we	write	f(t,	ε)	=	o(g(t,	ε))	as	ε	→	0,
uniformly	on	I.	If	there	exists	a	positive	function	M(t)	on	I	such	that

for	all	t	 	I	and	ε	in	some	neighborhood	of	zero,	then	we	write

If	M(t)	is	a	bounded	function	on	I,	we	write

The	big	 oh	 and	 little	 oh	 notations	 permit	 us	 to	make	quantitative	 statements
about	the	error	in	a	given	approximation.	We	can	make	the	following	definition.
A	function	ya(t,	 ε)	 is	 a	uniformly	valid	asymptotic	approximation	 to	 a	 function
y(t,	ε)	on	an	interval	I	as	ε	→	0	if	the	error	E(t,	ε)	 	y(t,	ε)	−	ya(t,	ε)	converges	to
zero	as	ε	→	0	uniformly	for	t	 	I.	We	often	express	the	fact	that	E(t,	ε)	is	little	oh
or	big	oh	of	εn	(for	some	n)	as	ε	→	0	to	make	an	explicit	statement	regarding	the
rate	 at	 which	 the	 error	 goes	 to	 zero,	 and	 whether	 or	 not	 the	 convergence	 is
uniform.

Example	3.4
Let

The	 first	 three	 terms	 of	 the	 Taylor	 expansion	 in	 powers	 of	 ε	 provide	 an
approximation

The	error	is

For	a	fixed	t	the	error	can	be	made	as	small	as	desired	by	choosing	ε	sufficiently
small.	Thus	E(t,	ε)	=	O(ε2)	as	ε	→	0.	 If	ε	 is	 fixed,	however,	 regardless	of	how
small,	t	may	be	chosen	large	enough	so	that	the	approximation	is	totally	invalid.
Thus,	the	approximation	is	not	uniform	on	I	=	[0,	∞).	Clearly,	by	choosing	t	=	1/
ε	we	have	E(1/ε,	 ε)	=	e−1	−	 ,	which	 is	not	 small.	We	may	not	write	E(t,	 ε)	=



O(ε2)	as	ε	→	0	uniformly	on	[0,	∞).

Example	3.5
(Transcendentally	 small)	 Some	 functions	 cannot	 be	 gauged	 against
polynomials.	 Consider	 f(ε)	 =	 e−1/ε	 for	 small,	 positive	 ε.	 From	 calculus,	 this
function	does	not	have	a	Taylor	expansion	about	ε;	further,

because	exponentials	decay	faster	than	polynomials	grow.	This	means

for	any	n	=	0,	1,	2,….	Thus,	e−1/ε	goes	to	zero	faster	than	any	positive	power	of
ε.	In	this	case	we	say	the	function	f(ε)	is	transcendentally	small.
The	difficulty	of	 these	definitions	with	regard	to	differential	equations	is	 that

the	exact	solution	to	the	equation	is	seldom	known,	and	therefore	a	direct	error
estimate	cannot	be	made.	Consequently,	we	require	some	notion	of	how	well	an
approximate	 solution	 satisfies	 the	 differential	 equation	 and	 the	 auxiliary
conditions.	 For	 definiteness	 consider	 the	 differential	 equation	 in	 (1.1).	We	 say
that	 an	 approximate	 solution	 ya(t,	 ε)	 satisfies	 the	 differential	 equation	 (1.1)
uniformly	for	t	 	I	as	ε	→	0	if

uniformly	 on	 I	 as	 ε	 →	 0.	 The	 quantity	 r(t,	 ε)	 is	 the	 residual	 error,	 which
measures	how	well	the	approximate	solution	ya(t,	ε)	satisfies	the	equation.

Example	3.6
Consider	the	initial	value	problem

Substituting	 the	 perturbation	 series	 y	 =	 y0	 +	 εy1	 +	 ···	 gives	 the	 initial	 value
problem

for	the	leading-order	term	y0.	It	is	easily	found	that	y0(t)	=	ln(t	+	1),	and	hence



Thus	r(t,	ε)	=	O(ε)	as	ε	→	0,	but	not	uniformly	on	[0,	∞).	On	any	finite	interval
[0,	T],	however,	we	have	|ε	ln(t	+	1)|	≤	ε	ln(T	+	1),	and	so	r(t,	ε)	=	O(ε)	as	ε	→	0
uniformly	on	[0,	T].
Specifically,	 the	 regular	 perturbation	 method	 produces	 an	 asymptotic

expansion

for	which	an	approximate	solution	can	be	obtained	by	taking	the	first	few	terms.
Such	an	 expansion	 in	 the	 integral	powers	of	 ε,	 that	 is,	 1,	 ε,	 ε2,…,	 is	 called	an
asymptotic	power	series.	In	some	problems	the	expansion	may	take	the	form

in	 terms	 of	 the	 sequence	 1,	 ε1/2,	 ε	 ε3/2,….	 In	 yet	 other	 problems	 the	 required
expansion	must	have	the	form

The	type	of	expansion	depends	on	the	problem.	In	general,	we	say	a	sequence	of
gauge	functions	{gn(t,	ε)}	is	an	asymptotic	sequence	as	ε	→	0,	t	 	I,	if

for	n	=	0,	1,	2,….	That	is,	each	term	in	the	sequence	tends	to	zero	faster	than	its
predecessor,	as	ε	→	0.	Given	a	function	y(t,	ε)	and	an	asymptotic	sequence	{gn(t,
ε)}	as	ε	→	0,	the	formal	series

(1.26)	
is	said	to	be	an	asymptotic	expansion	of	y(t,	ε)	as	ε	→	0,	if

for	every	N.	In	other	words,	for	any	partial	sum	the	remainder	is	little	oh	of	the
last	term.	If	the	limits	just	cited	are	uniform	for	t	 	I,	then	we	speak	of	a	uniform
asymptotic	 sequence	 and	 uniform	 asymptotic	 expansion.	 In	 most	 cases	 the
sequence	{gn(t,	 ε)}	 is	 of	 the	 form	 of	 a	 product,	gn(t,	 ε)	 =	 yn(t)ϕn(ε),	 as	 in	 the
previous	examples.	The	notation



often	denotes	an	asymptotic	expansion.
The	formal	series	(1.26)	need	not	converge	to	be	valuable.	The	value	of	such

expansions,	 although	 perhaps	 divergent,	 is	 that	 often	 only	 a	 few	 terms	 are
required	to	obtain	an	accurate	approximation,	whereas	a	convergent	Taylor	series
may	yield	an	accurate	approximation	only	if	many	terms	are	calculated.
A	 rather	 obvious	 question	 arises.	 If	 a	 given	 approximate	 solution	 ya(t,	 ε)

satisfies	the	differential	equation	uniformly	on	t	 	I,	is	it	in	fact	a	uniformly	valid
approximation	 to	 the	 exact	 solution	 y(t,	 ε)?	 A	 complete	 discussion	 of	 this
question	is	beyond	our	scope,	but	a	few	remarks	are	appropriate	 to	caution	the
reader	 regarding	 the	 nature	 of	 this	 problem.	 Probably	 more	 familiar	 is	 the
situation	in	linear	algebra	where	we	consider	a	linear	system	of	equations	Ax	=
b.	 Let	 xa	 be	 an	 approximate	 solution.	 A	measure	 of	 how	well	 it	 satisfies	 the
system	is	the	magnitude	|r|	of	the	residual	vector	r	defined	by	r	=	Axa	−	b.	If	r	=
0,	then	xa	must	be	the	exact	solution	 .	But	if	|r|	is	small,	it	does	not	necessarily
follow	 that	 the	 magnitude	 |e|	 is	 small,	 where	 e	 =	 	 −	 xa	 is	 the	 error.	 In	 ill-
conditioned	systems,	where	det	A	is	close	to	zero,	a	small	residual	may	not	imply
a	small	error.	A	similar	state	of	affairs	exists	for	differential	equations.	Therefore
one	 must	 proceed	 cautiously	 in	 interpreting	 the	 validity	 of	 a	 perturbation
solution.	 Numerical	 calculations	 or	 the	 computation	 of	 additional	 correction
terms	 may	 aid	 in	 the	 interpretation.	 Often	 a	 favorable	 comparison	 with
experiment	leads	one	to	conclude	that	an	approximation	is	valid.

EXERCISES
1.	In	a	spring–mass	problem	assume	that	the	restoring	force	is	−ky	and	that
there	 is	 a	 resistive	 force	 numerically	 equal	 to	 2,	 where	 k	 and	 a	 are
constants	 with	 appropriate	 units.	 With	 initial	 conditions	

,	 determine	 the	 correct	 time	 and	 displacement	 scales
for	 small	 damping	 and	 show	 that	 the	 problem	 can	 be	 written	 in
dimensionless	form	as

where	 ε	 	 aA/m	 is	 a	 dimensionless	 parameter	 and	 prime	 denotes	 the
derivative	with	respect	to	the	scaled	time	 .
2.	Consider	the	initial	value	problem



Find	a	 two-term	perturbation	approximation	 for	0	<	ε	 	1	and	compare	 it
graphically	 to	 a	 six-term	 Taylor	 series	 approximation	 (centered	 at	 t	 =	 0)
where	 ε	 =	 0.04.	 Use	 a	 numerical	 differential	 equation	 solver	 to	 find	 an
accurate	numerical	solution	and	compare.
3.	Write	down	an	order	relation	(big	oh	or	 little	oh)	 that	expresses	 the	fact
that	e−t	decays	to	zero	faster	that	1/t2	as	t	→	∞,	and	prove	your	assertion.
4.	Let

Expand	f	in	powers	of	ε	up	to	O(ε2).
5.	Verify	the	following	order	relations:

a)	
b)	
c)	
d)	
e)	
f)	
g)	
h)	
i)	
j)	

6.	 Consider	 the	 algebraic	 equation	 ϕ(x,	 ε)	 =	 0,	 0	 <	 ε	 	 1,	 where	 ϕ	 is	 a
function	having	derivatives	of	all	order.	Assuming	ϕ(x,	0)	=	0	is	solvable	to
obtain	x0,	show	how	to	find	a	three-term	perturbation	approximation	of	the
form	x	=	x0	+	x1ε	+	x2ε2.	What	condition	on	ϕ	is	required	to	determine	x1	and
x2?	Find	a	three-term	approximation	to	the	roots	of	exp(εx)	=	x2	−	1.

7.	Find	a	three-term	approximation	to	the	real	solution	of	(x	+	1)3	=	εx.
8.	 Use	 the	 Poincaré-Lindstedt	 method	 to	 obtain	 a	 two-term	 perturbation
approximation	to	the	following	problems:



9.	To	find	approximations	to	the	roots	of	the	cubic	equation

why	is	it	easier	to	examine	the	equation

Find	a	two-term	approximation	to	this	equation.
10.	Consider	the	algebraic	system

In	the	first	equation	ignore	the	apparently	small	first	term	0.01x	and	obtain
an	 approximate	 solution	 for	 the	 system.	 Is	 the	 approximation	 a	 good	one?
Analyze	what	went	wrong	by	examining	the	solution	of	the	system

11.	 In	 elementary	 physics	 courses	 it	 is	 often	 stated	 that	 for	 the	 pendulum
equation

if	the	oscillations	θ	=	θ(t)	are	small,	then	sin	θ	≈	θ	and	the	equation	can	be
approximated	by

In	what	sense	is	this	true?	In	what	sense	is	this	false?
12.	In	Section	1.3	we	obtained	the	initial	value	problem

governing	 the	 motion	 of	 a	 projectile.	 Use	 regular	 perturbation	 theory	 to
obtain	 a	 three-term	 perturbation	 approximation.	 Up	 to	 the	 accuracy	 of	 ε2
terms,	 determine	 the	 value	 tm	 when	h	 is	maximum.	 Find	 hmax	 	h(tm)	 up
through	order	ε2	terms.
13.	A	mass	m	is	attached	to	an	aging	spring	that	exerts	a	force	Fs	=	−kye−rt,
where	k	and	r	are	positive	constants,	and	y	=	y(t)	 is	 the	displacement	 from
equilibrium.	 The	 system	 is	 also	 immersed	 in	 a	medium	 that	 exerts	 a	 drag



force	 Fd	 =	 −ay’,	 where	 a	 is	 a	 positive	 constant.	 Initially,	 the	 mass	 is
displaced	to	position	y0	and	released.

a)	Formulate	an	initial	value	problem	that	governs	the	motion	of	the	mass
on	the	spring.
b)	 Make	 a	 table	 of	 the	 parameters	 in	 the	 problem	 and	 state	 their
dimensions.
c)	Non-dimensionalize	 the	problem	 in	 the	 simplest	way	 in	 the	case	 that
the	constant	k	 is	 very	 small.	Use	y0	 as	 the	 characteristic	 length.	Denote
the	small	dimensionless	parameter	by	ε.
d)	Use	a	perturbation	method	to	obtain	a	two-term	approximation	(up	to
O(ε))	to	the	scaled	problem.
e)	 In	mks	units,	 take	m	=	0.01,	a	=	0.01,	 r	=	0.07,	k	 =	 0.0001.	 Plot	 an
accurate	numerical	approximation	and	the	two-term	approximation	on	the
same	set	of	axes,	and	comment	on	the	accuracy	of	the	approximation.

14.	Consider	the	boundary	value	problem

Obtain	an	approximation	by	considering	the	equation

for	small	ε	and	then	setting	ε	=	3.	How	accurate	is	the	approximation?
15.	Find	the	exact	solution	to	the	initial	value	problem

Next,	use	perturbation	 to	 find	an	approximate	solution.	What	went	wrong?
Explain	why	regular	perturbation	doesn’t	work.
16.	Consider	the	problem

Find	 the	 leading	order	approximation	and	derive	 initial	value	problems	for
the	O(ε)	and	O(ε2)	terms.	(Do	not	solve.)	Write	down	the	exact	solution	of
the	problem.
17.	Consider	the	scaled	pendulum	problem



a)	Apply	 the	 regular	perturbation	method	 to	 find	a	 two-term	expansion.
Show	that	the	correction	term	is	secular	and	comment	on	the	validity	of
the	approximation.
b)	Show	that	the	exact	period	of	oscillation	is

c)	Show	that	 	Find	an	expansion	for	the	frequency
ω.

18.	Consider	the	initial	value	problem	y″	=	εty,	0	<	ε	 	1,	y(0)	=	0,	y’(0)	=	1.
Using	 regular	perturbation	 theory	obtain	a	 three-term	approximate	solution
on	t	≥	0.	Does	the	approximation	satisfy	the	differential	equation	uniformly
on	t	≥	0	as	ε	→	0+?
19.	Consider	the	boundary	value	problem

a)	Use	regular	perturbation	to	find	the	leading-order	behavior	y0(t).
b)	Compute	an	upper	bound	for	|Ly0|	on	1	≤	t	≤	e	when	ε	=	0.01.	Can	you
conclude	that	y0	is	a	good	approximation	to	the	exact	solution?

20.	Find	a	two-term	perturbation	solution	of

21.	A	wildebeest	starts	at	t	=	0	from	a	point	(a,	b)	in	the	xy-plane	and	moves
along	the	line	x	=	a.	A	lion,	starting	from	the	origin	at	t	=	0	begins	the	chase,
always	 running	 in	 a	 direction	 pointing	 at	 the	 wildebeest.	 The	 differential
equation	for	the	lion’s	path	y(x)	is

where	ε	is	a	small	parameter	giving	the	ratio	of	the	speed	of	the	wildebeest
to	the	speed	of	the	lion.



a)	 Find	 a	 leading	 order	 perturbation	 approximation.	 Based	 upon	 your
answer,	do	you	expect	the	lion	to	catch	the	wildebeest?
b)	 Find	 the	 equation	 for	 a	 correction	 term	 in	 the	 perturbation
approximation,	but	do	not	solve.



3.2	Singular	Perturbation

3.2.1	Algebraic	Equations
As	 we	 observed	 in	 Section	 2.1	 for	 the	 Duffing	 equation,	 a	 straightforward
application	 of	 the	 regular	 perturbation	 method	 failed	 because	 secular	 terms
appeared	 in	 the	 expansion,	 making	 the	 approximation	 nonuniform	 for	 large
times.	We	remedied	this	by	adjusting	the	frequency	of	oscillations	using	a	scale
transformation.	Now	we	indicate	a	different	type	of	singular	behavior,	first	for	a
simple	algebra	problem.

Example	3.7
Solve	the	quadratic	equation

This	equation	can	be	 solved	exactly,	of	course,	but	our	goal	 is	 to	 illustrate	 the
failure	of	the	regular	perturbation	method.	Observe	that	 the	equation	is	a	slight
alteration	of	the	unperturbed	equation

which	has	solution	x	=	− ,	and	the	unperturbed	problem	(linear)	is	fundamentally
different	 from	 the	 original	 problem	 (quadratic).	 If	 we	 attempt	 regular
perturbation	by	substituting	the	perturbation	series

then	we	obtain,	after	setting	the	coefficients	of	like	powers	of	ε	equal	to	zero,	the
sequence	of	equations

Hence,	 ,	 and	 we	 obtain	 a	 single
perturbation	solution

What	 happened	 to	 the	 other	 solution?	Regular	 perturbation	 assumed	 a	 leading
term	of	 order	 unity,	 and	 it	 is	 not	 surprising	 that	 it	 recovered	only	one	 root,	 of



order	unity.	The	other	root	could	be	different	order,	either	large	or	small.	To	find
the	second	root	we	examine	the	three	terms,	εx2,	2x,	and	1,	of	the	equation	more
closely.	Discarding	 the	 εx2	 gave	 the	 root	 close	 to	x	 =	− ,	 and	 in	 that	 case,	 the
term	εx2	 is	 small	 compared	 to	 2x	 and	 1.	 So	 it	 is	 reasonable	 to	 ignore	 εx2;	 the
apparent	small	term	is	indeed	small.	For	the	second	root,	εx2	may	not	be	small
(because	x	may	be	large).	Two	cases	are	possible	if	one	term	is	to	be	neglected
from	the	equation	to	make	a	simplification.	(i)	εx2	and	1	are	the	same	order	and
2x	 	1,	or	(ii)	εx2	and	2x	are	the	same	order	and	both	are	large	compared	to	1.
In	case	(i)	we	have	x	=	O(1/ );	but	then	2x	 	1	could	not	hold	because	2x

would	be	large.	This	in	inconsistent.	In	case	(ii)	we	have	x	=	O(1/ε);	hence	εx2
and	2x	both	are	of	order	1/ε	and	both	are	large	compared	to	1.	Therefore	case	(ii)
is	consistent	and	the	second	root	is	of	order	1/ε,	which	is	large.	This	provides	a
clue	to	a	scaling.	Let	us	choose	a	new	variable	y	of	order	1	defined	by

With	this	change	of	variables	the	original	equation	becomes

Now	the	principle	of	proper	scaling	holds—each	term	has	a	magnitude	defined
by	its	coefficient.	Assuming	a	regular	perturbation	series

and	substituting	into	the	last	equation,	we	obtain

Hence	y0	=	−2,	y1	=	1/2,…,	giving

or

as	the	second	root.	In	summary,	the	roots	are	different	order,	and	one	expansion
does	not	reveal	both.
The	 reasoning	 we	 used	 in	 this	 example	 is	 called	 dominant	 balancing.	 We

examine	 each	 term	 carefully	 and	 determine	 which	 ones	 combine	 to	 give	 a
dominant	 balance.	 In	 the	 next	 section	 we	 show	 type	 of	 balancing	 argument



applies	equally	well	to	differential	equations.
First,	 however,	 before	 continuing	 with	 additional	 examples,	 we	 review	 the

procedure	 for	 finding	 roots	 of	 complex	 numbers.	 This	 is	 useful	 in	 solving	 the
exercises.

Example	3.8
(Roots	of	complex	numbers)	Let	z0	be	a	fixed,	given,	complex	number.	We	are
interested	in	finding	its	nth	roots,	or	solving	the	equation
(2.1)	

for	z.	Here,	n	≥	2	is	a	positive	integer.	From	the	fundamental	theorem	of	algebra
we	know	that	(2.1)	has	n	roots.	First,	write	z	and	z0	in	polar	form,

where	r	and	r0	are	the	moduli	(distances	from	the	origin	in	the	complex	plane),
and	θ	and	θ0	are	the	arguments	(the	angles	measured	counterclockwise	from	the
positive	real	axis	between	0	and	2π.)	Then,

Thus,	 	 and	 .	 The	 latter
follows	from	the	2πi	periodicity	of	eiθ.	Thus,	the	n	roots	of	z0	are

(2.2)	
where	k	=	0,	1,	2,…,	n	−	1.	(Only	n	of	the	roots	in	(2.2)	are	different.)
If	z0	=	1,	then	the	nth	roots	of	1	are	called	the	roots	of	unity.	These	are	spaced

uniformly	around	the	unit	circle	in	the	complex	plane.

Example	3.9
The	three	roots	of	the	equation	z3	=	1	are	given	by	(2.2)	as

Thus,	the	roots	are

Example	3.10
Find	a	leading	order	approximation	of	the	four	roots	to	the	equation



where	0	<	ε	 	1.	When	ε	=	0	we	get	only	a	single	root	x	=	−	1,	which	is	order	1.
To	determine	the	leading	order	of	the	other	roots	we	use	dominant	balancing.	If
the	 first	 and	 third	 terms	 balance	 then	 x	 =	 O(ε−1/4),	 which	 is	 large;	 this	 is
inconsistent.	 If	 the	 first	 and	 second	 terms	balance,	 then	x	=	O(ε−1,/3),	which	 is
large	compared	to	1;	this	case	is	consistent.	Therefore,	we	re-scale	according	to	y
=	ε1/3x,	which	gives

To	 leading	 order	 y4	 −	 y	 =	 0,	 giving	 y	 =	 1,	 e2πi/3,	 e−2π/i3.	We	 discarded	 y	 =	 0
because	that	corresponds	to	x	=	0,	which	is	clearly	not	a	valid	approximation	to
the	equation.	Consequently,	the	leading	order	behavior	of	the	four	roots	is

Three	of	them	are	large.	We	can	obtain	higher-order	correction	terms	using	the
perturbation	series



3.2.2	Differential	Equations
Now	we	encounter	a	different	type	of	singular	behavior	from	that	caused	by	the
appearance	of	secular	terms	in	the	perturbation	series.	Often,	with	a	perturbation
series,	 some	 problems	 do	 not	 even	 permit	 the	 calculation	 of	 the	 leading-order
term	 because	 the	 perturbed	 problem	 is	 of	 totally	 different	 character	 from	 the
unperturbed	problem.
Consider	the	boundary	problem

(2.3)	
and	assume	a	naive	perturbation	series	of	the	form

Substitution	into	the	differential	equation	gives

Equating	 the	 coefficients	 of	 like	 powers	 of	 ε	 to	 zero	 gives	 a	 sequence	 of
problems

The	boundary	conditions	force

Therefore,	we	have	obtained	a	sequence	of	boundary	value	problems	for	y0,	y1,
….	The	leading-order	problem	is

(2.4)	
Already	we	see	a	difficulty.	The	differential	equation	is	first-order,	yet	there	are
two	conditions	to	be	satisfied.	The	general	solution	of	the	equation	is
(2.5)	

Application	of	 the	boundary	condition	y0(0)	=	0	gives	c	=	0,	and	so	y0(x)	=	0.
This	 function	 cannot	 satisfy	 the	 boundary	 condition	 at	 x	 =	 1.	 Conversely,
application	of	the	boundary	condition	y0(1)	=	1	in	(2.5)	gives	c	=	e,	and	so



(2.6)	
This	 function	 cannot	 satisfy	 the	 condition	 at	 x	 =	 0.	 Therefore	 we	 are	 at	 an
impasse;	regular	perturbation	fails	at	the	first	step.



3.2.3	Boundary	Layers
Careful	 examination	 of	 the	 preceding	 problem	 shows	 what	 went	 wrong	 and
points	 the	way	 toward	 a	 correct,	 systematic	method	 to	 obtain	 an	 approximate
solution.	First	of	all,	we	 should	have	been	 suspicious	 from	 the	beginning.	The
unperturbed	problem,	found	by	setting	ε	=	0,	is

(2.7)	
This	problem	is	of	a	different	character	than	the	perturbed	problem	(2.3)	in	that	it
is	 first	 order	 rather	 than	 second.	 Because	 the	 small	 parameter	 multiplied	 the
highest	derivative	 in	 (2.3),	 the	second	derivative	 term	disappeared	when	ε	was
set	to	zero.	This	type	of	phenomenon	signals	in	almost	all	cases	the	failure	of	the
regular	perturbation	method.
Equation	 (2.3),	 a	 linear	 equation	 with	 constant	 coefficients,	 can	 be	 solved

exactly	to	get

(2.8)	
A	look	at	the	graph	of	the	solution	of	(2.3)	reveals	the	reason	for	the	difficulty.
See	Fig.	3.1.	We	observe	that	y(x)	is	changing	very	rapidly	in	a	narrow	interval,
called	 the	 boundary	 layer,	 near	 the	 origin,	 and	 more	 slowly	 in	 the	 larger
interval,	called	the	outer	layer	away	from	the	origin.	One	spatial	scale	does	not
describe	 the	 variations	 in	 both	 layers.	Rather,	 two	 spatial	 scales	 are	 indicated,
one	for	each	zone.	It	is	instructive	and	revealing	to	compute	the	derivatives	of	y
and	estimate	the	size	of	the	terms	in	the	equation.	An	easy	calculation	shows

Figure	3.1	The	exact	solution	(2.8)	showing	a	narrow	layer	near	x	=	0	where
rapid	changes	are	occurring.



First	 we	 examine	 the	 second	 derivative.	 Suppose	 ε	 is	 small	 and	 x	 is	 in	 the
narrow	boundary	layer	near	x	=	0.	For	definiteness	assume	x	=	ε.	Then

Thus	y″	is	very	large	inside	this	narrow	band,	and	therefore	the	term	εy″	is	not
small,	as	would	be	anticipated	in	a	regular	perturbation	calculation;	in	fact	εy″	=
O(ε−1).	We	see	again	 that	 terms	that	appear	small	 in	a	differential	equation	are
not	always	necessarily	small.	The	problem	is	that	the	differential	equation	(2.3),
as	it	stands,	is	not	scaled	properly	for	small	x,	and	a	rescaling	must	occur	in	the
boundary	layer	if	correct	conclusions	are	to	be	drawn.	For	values	of	x	away	from
the	boundary	layer,	the	term	εy″	is	indeed	small.	For	example,	if	x	=	1/2,	then

Consequently,	 in	the	outer	 layer	εy″	 is	small	and	may	be	safely	neglected.	The



reader	may	deduce	similar	conclusions	regarding	the	first	derivative	term.
This	 calculation	 suggests	 that	 in	 the	 outer	 region,	 the	 region	 away	 from	 the

boundary	layer,	the	leading-order	problem	(2.7)	obtained	by	setting	ε	=	0	in	the
original	problem	is	a	valid	approximation	provided	we	take	only	the	right	(x	=	1)
boundary	condition.	Thus,

(2.9)	
This	is	consistent	with	the	exact	solution	(2.8).	For,	if	ε	is	small,	then	e−1	−	e−1/ε

≈	e−1	and	y	may	be	approximated	by

(2.10)	
For	x	of	order	1	we	have	e1−x/ε	≈	0,	and	so

The	approximate	solution	(2.9),	which	is	valid	in	the	outer	region,	is	called	the
outer	approximation	and	is	plotted	in	Fig.	3.2.

Figure	3.2	The	exact	solution	(2.9)	and	inner	and	outer	approximations.

What	about	an	approximate	solution	in	the	narrow	boundary	layer	near	x	=	0?
From	(2.10),	if	x	is	small,	then



(2.11)	
This	approximate	solution,	which	is	valid	only	in	the	boundary	layer	where	rapid
changes	are	taking	place,	is	called	the	 inner	approximation	and	 is	denoted	by
yi(x);	it	is	also	plotted	in	Fig.	3.2.
In	this	problem	we	have	the	advantage	of	knowing	the	exact	solution,	and	as

yet	we	have	little	clue	how	to	determine	the	inner	solution	if	the	exact	solution	is
unknown.	The	key	 to	 the	 analysis	 in	 the	boundary	 layer	 is	 rescaling,	 as	 in	 the
polynomial	 equations	 examined	 earlier.	 In	 the	 layer,	 the	 term	 εy″	 in	 the
differential	 equation	 is	not	 small,	 as	 it	 appears.	Consequently,	we	must	 rescale
the	 independent	 variable	 x	 in	 the	 boundary	 layer	 by	 selecting	 a	 small	 spatial
scale	 that	will	 reflect	 rapid	and	abrupt	changes	and	will	 force	each	 term	in	 the
equation	into	its	proper	form	in	the	rescaled	variables,	namely	as	the	product	of	a
coefficient	representing	the	magnitude	of	the	term	and	a	term	of	order	unity.	In
the	 next	 section	 we	 develop	 a	 general	 procedure	 for	 dealing	 with	 boundary
layers.
Before	 embarking	 on	 an	 analysis	 of	 the	 boundary	 layer	 phenomena,	 we

summarize	 our	 observations	 and	make	 some	 general	 remarks.	We	 have	 noted
that	 a	 naive	 regular	 perturbation	 expansion	 does	 not	 always	 produce	 an
approximate	 solution.	 In	 fact,	 there	are	 several	 indicators	 that	often	suggest	 its
failure.

1.	 When	 the	 small	 parameter	 multiplies	 the	 highest	 derivative	 in	 the
problem.
2.	When	setting	the	small	parameter	equal	to	zero	changes	the	character	of
the	problem,	as	 in	 the	case	of	 a	partial	differential	 equation	changing	 type
(elliptic	 to	 parabolic,	 for	 example),	 or	 an	 algebraic	 equation	 changing
degree.	 In	other	words,	 the	solution	 for	ε	=	0	 is	 fundamentally	different	 in
character	from	the	solutions	for	ε	close	to	zero.
3.	When	problems	occur	 on	 infinite	 domains,	 giving,	 for	 example,	 secular
terms.
4.	When	singular	points	are	present	in	the	interval	of	interest.
5.	When	the	equations	that	model	physical	processes	have	multiple	time	or
spatial	scales.
Such	 perturbation	 problems	 fall	 in	 the	 general	 category	 of	 singular

perturbation	 problems.	 For	 ordinary	 differential	 equations,	 problems	 involving
boundary	layers	are	common.	The	procedure	is	 to	determine	whether	there	is	a
boundary	 layer	 and	where	 it	 is	 located.	 If	 there	 is	 a	 boundary	 layer,	 then	 the



leading-order	 perturbation	 term	 found	 by	 setting	 ε	 =	 0	 in	 the	 equation	 often
provides	a	valid	approximation	in	a	large	outer	region.	The	inner	approximation
in	the	boundary	layer	is	found	by	rescaling,	which	we	discuss	below.	We	show
that	 the	 inner	 and	 outer	 approximations	 can	 be	matched	 to	 obtain	 a	 uniformly
valid	approximation	over	the	entire	interval	of	interest.	The	singular	perturbation
method	applied	in	this	context	is	also	called	the	method	of	matched	asymptotic
expansions	or	boundary	layer	theory.	The	 latter	arises	 from	its	 inception	 in	 the
study	of	boundary	layer	phenomena	in	air	flow	over	a	wing.

EXERCISES
1.	Use	a	dominant	balancing	method	to	determine	the	leading-order	behavior
of	the	roots	of	the	following	algebraic	equations.	In	all	cases	0	<	ε	 	1.

a)	
b)	
c)	
d)	
e)	

2.	In	(1b)	find	a	first-order	correction	for	the	leading	behavior	(Hint:	for	the
scaled	equation	assume	
3.	Find	a	two-term	approximation	to	the	three	roots	x3	+	εx	+	2ε2	=	0,	0	<	ε	
	1.

4.	Show	that	regular	perturbation	fails	on	the	boundary	value	problem

Find	the	exact	solution	and	sketch	it	for	ε	=	0.05	and	ε	=	0.005.	If	x	=	O(ε),
show	that	εy″(x)	is	large;	if	x	=	O(1),	show	that	εy″(x)	=	O(1).	Find	the	inner
and	outer	approximations	from	the	exact	solution.



3.3	Boundary	Layer	Analysis

3.3.1	Inner	and	Outer	Approximations
We	return	to	the	boundary	value	problem

(3.1)	
where	0	<	ε	 	1.	By	examining	the	exact	solution	near	x	=	0	we	found	that	rapid
changes	were	occurring	in	y,	y’,	and	y″,	suggesting	a	small	characteristic	length;
the	 term	εy″	was	not	 small	 as	 it	 appears	 to	be	 in	 the	 equation.	Away	 from	 the
boundary	layer,	 in	 the	region	where	x	=	O(1),	 it	was	noted	that	εy″	and	εy’	are
small,	and	so	the	solution	could	be	approximated	accurately	by	setting	ε	=	0	in
the	equation	to	obtain

and	 selecting	 the	 boundary	 condition	 y(1)	 =	 1.	 This	 gives	 the	 outer
approximation

(3.2)	
To	 analyze	 the	 behavior	 in	 the	 boundary	 layer,	 we	 notice	 that	 significant

changes	in	y	take	place	on	a	very	short	spatial	interval,	which	suggests	a	length
scale	on	the	order	of	a	function	of	ε,	say	δ(ε).	If	we	change	variables	via

(3.3)	
and	use	the	chain	rule,	the	differential	equation	(3.1)	becomes

(3.4)	
where	prime	denotes	derivatives	with	respect	to	ξ.	Another	way	of	looking	at	the
rescaling	is	to	regard	(3.3)	as	a	scale	transformation	that	permits	examination	of
the	boundary	layer	close	up,	as	under	a	microscope.
The	coefficients	of	the	four	terms	in	the	differential	equation	are

(3.5)	



If	 the	scaling	is	correct,	each	will	reflect	 the	order	of	magnitude	of	 the	term	in
which	 it	 appears.	 To	 determine	 the	 scale	 factor	 δ(ε)	 we	 estimate	 these
magnitudes	 by	 considering	 all	 possible	 dominant	 balances	 between	 pairs	 of
terms	in	(3.5).	In	the	pairs	we	include	the	first	term	because	it	was	ignored	in	the
outer	layer,	and	it	is	known	that	it	plays	a	significant	role	in	the	boundary	layer.
Because	the	goal	is	to	make	a	simplification	in	the	problem,	we	do	not	consider
dominant	 balancing	 of	 three	 terms.	 If	 all	 four	 terms	 are	 equally	 important,	 no
simplification	can	be	made	at	all.	Therefore	there	are	three	cases	to	consider.	For
notation	we	will	sometimes	use	the	symbol	~	to	denote	“of	the	same	order.”

(i)	The	 terms	ε/δ(ε)2	 and	1/δ(ε)	are	of	 the	 same	order	and	ε/δ(ε)	and	1	are
small	in	comparison.
(ii)	The	terms	ε/δ(ε)2	and	1	are	of	 the	same	order	and	1/δ(ε)	and	ε/δ(ε)	are
small	in	comparison.
(iii)	The	terms	ε/δ(ε)2	and	ε/δ(ε)	are	of	the	same	order	and	1/δ(ε)	and	1	are
small	in	comparison.
Only	case	(i)	is	possible.	For,	in	case	(ii),	ε/δ(ε)2~1	implies	δ(ε)	=	O(√ε);	but

then	1/δ(ε)	is	not	small	compared	to	1.	This	case	is	inconsistent.	In	case	(iii),	ε/
δ(ε)2	 ~	 ε/δ(ε)	 implies	 δ(ε)	 =	O(1),	which	 leads	 to	 the	 outer	 approximation.	 In
case	(i),	ε/δ(ε)2~1/δ(ε)	forces	δ(ε)	=	O(ε);	then	ε/δ(ε)2	and	1/δ(ε)	are	both	order
1/ε,	which	 is	 large	compared	 to	ε/δ(ε)	and	1.	Therefore,	a	consistent	 scaling	 is
possible	if	we	select	δ(ε)	=	O(ε);	hence,	we	take

(3.6)	
Therefore,	the	scaled	differential	equation	(3.4)	becomes
(3.7)	

Now,	(3.7)	is	amenable	to	regular	perturbation.	Because	we	are	interested	only	in
the	leading-order	approximation,	which	we	denote	by	Yi,	we	set	ε	=	0	in	(3.7)	to
obtain

(3.8)	
The	general	solution	is

Because	 the	 boundary	 layer	 is	 located	 near	 x	 =	 0,	 we	 apply	 the	 boundary
condition	y(0)	=	0,	or	Yi(0)	=	0.	This	yields	C2	=	−C1,	and	so

(3.9)	



In	terms	of	y	and	x,

(3.10)	
This	is	the	inner	approximation	for	x	=	O(ε).
In	summary,	we	have	the	approximate	solution

(3.11)	
each	valid	for	an	appropriate	range	of	x.	There	remains	to	determine	the	constant
C1,	which	is	accomplished	by	the	process	of	matching.



3.3.2	Matching
By	matching	we	do	not	mean	selecting	a	specific	value	of	ε,	say	ε0,	and	requiring
that	y0(ε0)	=	yi(ε0)	to	obtain	the	constant	C1.	This	process	 is	nothing	more	than
patching	the	two	approximations	together	so	as	to	be	continuous	at	some	fixed	x
=	ε0.	Rather,	 the	goal	 is	 to	 construct	 a	 single	 composite	 expansion	 in	 ε	 that	 is
uniformly	valid	on	the	entire	interval	[0,	1]	as	ε	→	0.	Thus,	there	is	little	gain	in
pinpointing	the	edge	of	the	boundary	layer,	since	it	becomes	narrower	as	ε	→	0.
We	stated	 figuratively	 that	 the	boundary	 layer	 for	 this	problem	has	width	ε.	 In
general,	it	is	the	scaling	factor	δ(ε)	that	defines	the	width	of	the	boundary	layer.
One	 can	 proceed	 as	 follows,	 however.	 It	 seems	 reasonable	 that	 the	 inner	 and
outer	expansions	should	agree	to	some	order	in	an	overlap	domain,	intermediate
between	the	boundary	layer	and	outer	region	(see	Fig.	3.3).	If	x	=	O(ε),	then	x	is
in	the	boundary	layer,	and	if	x	=	O(1),	then	x	is	in	the	outer	region;	therefore,	this
overlap	domain	could	be	characterized	as	values	of	x	for	which	x	=	O( ),	 for
example,	because	 	is	between	ε	and	1	( 	goes	to	zero	slower	than	ε	does,	or
ε	 	 ).	This	intermediate	scale	suggests	a	new	scaled	independent	variable	η
in	the	overlap	domain	defined	by

Figure	3.3	The	overlap	domain	where	inner	and	outer	approximations	are
matched.



(3.12)	
The	condition	for	matching	is	 that	 the	 inner	approximation,	written	in	 terms	of
the	intermediate	variable	η,	should	agree	with	the	outer	approximation,	written
in	 terms	of	 the	 intermediate	variable	η,	 in	 the	 limit	as	ε	→	0+.	 In	symbols,	 for
matching	we	require	that	for	fixed	η

(3.13)	
For	the	present	problem,

and

Therefore,	matching	requires	C1	=	e	and	the	inner	approximation	becomes

(3.14)	
Because	 we	 are	 seeking	 only	 a	 leading	 order	 approximation,	 we	 can	 avoid



introducing	 an	 intermediate	 variable	 and	 just	 write	 the	 matching	 condition
(3.13)	simply	as

(3.15)	
This	 states	 that	 the	 outer	 approximation,	 as	 the	 outer	 variable	moves	 into	 the
inner	 region,	must	 equal	 the	 inner	 approximation,	 as	 the	 inner	 variable	moves
into	 the	 outer	 region.	 Finally,	 we	 point	 out	 that	 we	 have	 only	 introduced
approximations	of	 leading	order.	Higher-order	 approximations	 can	be	obtained
by	 more	 elaborate	 matching	 schemes,	 and	 we	 refer	 to	 the	 references	 for
discussions	 of	 these	methods.	 For	 example,	 see	Bender	 and	Orszag	 (1978).	 In
the	sequel	we	usually	use	(3.15)	instead	of	introducing	an	intermediate	variable.



3.3.3	Uniform	Approximations
To	obtain	 a	 composite	 expansion	 that	 is	 uniformly	valid	 throughout	 [0,	 1],	we
note	the	sum	of	the	outer	and	inner	approximations	is

By	subtracting	the	common	limit	(3.13),	which	is	e,	we	have

(3.16)	
When	x	is	in	the	outer	region	the	second	term	is	small	and	yu(x)	is	approximately
e1−x,	which	is	the	outer	approximation.	When	x	is	in	the	boundary	layer	the	first
term	 is	 nearly	 e	 and	 yu(x)	 is	 approximately	 e(1	 −	 e−x/ε),	 which	 is	 the	 inner
approximation.	 In	 the	 intermediate	 or	 overlap	 region,	 both	 the	 inner	 and	outer
approximations	are	approximately	equal	 to	e.	Therefore,	 in	 the	overlap	domain
the	 sum	of	y0(x)	 and	yi(x)	 gives	 2e,	 or	 twice	 the	 contribution.	This	 is	why	we
must	 subtract	 the	 common	 limit	 from	 the	 sum.	 In	 summary,	 yu(x)	 provides	 a
uniform	approximate	solution	throughout	the	interval	[0,	1].
Briefly	summarizing,	the	matching	condition	is:

Substituting	yu(x)	into	the	differential	equation	shows	that

so	 yu(x)	 satisfies	 the	 differential	 equation	 exactly	 on	 (0,	 1).	 Checking	 the
boundary	conditions,

The	left	boundary	condition	is	satisfied	exactly	and	the	right	boundary	condition
holds	up	to	O(εn),	for	any	n	>	0,	because

for	any	n	>	0.	Consequently,	yu	is	a	uniformly	valid	approximation	on	[0,	1].

Example	3.11



We	work	through	another	simple	example	without	the	detailed	exposition	of	the
preceding	 paragraphs.	We	 determine	 an	 approximate	 solution	 of	 the	 boundary
value	problem

using	singular	perturbation	methods.	Clearly,	regular	perturbation	will	fail	since
the	unperturbed	problem	is

which	has	the	general	solution

Such	 a	 function	 cannot	 satisfy	 both	 boundary	 conditions.	 Consequently	 we
assume	a	boundary	 layer	at	x	=	0	and	 impose	 the	boundary	condition	y(1)	=	1
(since	x	=	1	is	in	the	outer	layer)	to	get	the	outer	approximation

To	determine	the	width	δ(ε)	of	the	boundary	layer	we	rescale	near	x	=	0	via

In	scaled	variables	the	differential	equation	becomes

If	ε/δ(ε)2	~	2δ(ε)	is	the	dominant	balance,	then	δ(ε)	=	O(ε1/3)	and	the	second	term
1/δ(ε)	would	be	O(ε−1/3),	which	is	not	small	compared	to	the	assumed	dominant
terms.	Therefore	 assume	 ε/δ(ε)2	 ~	 1/δ(ε)	 is	 the	 dominant	 balance.	 In	 that	 case
δ(ε)	=	O(ε)	and	the	term	2δ(ε)	has	order	O(ε),	which	is	small	compared	to	ε/δ(ε)2

and	 1/δ(ε),	 both	 of	which	 are	O(ε−1).	 Therefore	 δ(ε)	 =	 ε	 is	 consistent	 and	 the
scaled	differential	equation	is

The	inner	approximation	to	first	order	satisfies

whose	general	solution	is

In	terms	of	y	and	x



Applying	the	boundary	condition	y(0)	=	1	in	the	boundary	layer	gives	C1	=	1	−
C2,	and	therefore	the	inner	approximation	is

To	 find	C2	 we	 introduce	 an	 overlap	 domain	 of	 order	 	 and	 an	 appropriate
intermediate	scaled	variable

Then	x	=	 η	and	the	matching	condition	becomes	(with	η	fixed)

or

This	gives	C2	=	1,	and	thus	the	inner	approximation	is

A	uniform	composite	approximation	yu(x)	is	found	by	adding	the	inner	and	outer
approximations	and	subtracting	the	common	limit	in	the	overlap	domain,	which
is	zero	in	this	case.	Consequently,

As	an	exercise,	the	reader	should	plot	this	approximation	for	different	values	of
ε.	Again,	as	a	shortcut,	the	matching	condition	may	be	written

which	gives	the	same	result.



3.3.4	General	Procedures
In	 the	preceding	 examples	 the	boundary	 layer	occurred	 at	x	 =	 0,	 or	 at	 the	 left
endpoint.	 In	 the	 general	 case	 boundary	 layers	 can	 occur	 at	 any	 point	 in	 the
interval,	 at	 the	 right	 endpoint	 or	 an	 interior	 point;	 in	 fact,	 multiple	 boundary
layers	 can	 occur	 in	 the	 same	 problem.	 Boundary	 layers	 also	 appear	 in	 initial
value	problems,	which	we	discuss	 in	 the	next	 section.	The	Exercises	point	out
different	 boundary	 layer	 phenomena.	 When	 solving	 a	 problem	 one	 should
assume	a	boundary	layer	at	x	=	0	(or	the	left	endpoint)	and	then	proceed.	If	this
assumption	is	in	error,	then	the	procedure	will	break	down	when	trying	to	match
the	 inner	 and	 outer	 approximations.	 At	 that	 time	 make	 an	 assumption	 of	 a
boundary	 layer	 at	 the	 right	 endpoint.	The	analysis	 is	 exactly	 the	 same,	but	 the
scale	transformation	to	define	the	inner	variable	in	the	boundary	layer	becomes

where	 x	 =	 x0	 is	 the	 right	 endpoint,	 and	 Y(ξ)	 =	 y(x0	 −	 δ(ε)ξ).	 To	 compute
transformed	derivatives	in	this	case,	the	chain	rule	shows

Observe	 the	 negative	 sign	 on	 the	 first	 derivative.	The	matching	 condition	 at	 a
right	boundary	layer	is

In	words,	 the	 limit	of	 the	 inner	solution	as	 the	 inner	variable	moves	out	of	 the
layer	equals	 the	limit	of	 the	outer	solution	as	the	outer	variable	moves	into	the
layer.
To	reemphasize,	boundary	layers	can	occur	at	the	left	endpoint,	right	endpoint,

at	 both	 endpoints,	 or	 neither.	 There	 can	 also	 be	 internal	 layers,	 called	 shock
layers.	The	latter	often	leads	to	difficult	computations.
Further,	 even	 though	 preceding	 examples	 exhibit	 a	 boundary	 layer	width	 of

δ(ε)	 =	 ε,	 this	 is	 not	 the	 rule.	 Also,	 we	 have	 only	 matched	 the	 leading-order
behavior	 of	 the	 inner	 and	 outer	 approximations.	 Refined	matching	 procedures
can	 include	matching	 the	higher	order	 terms	 in	expansions.	 (For	 reference,	 the
reader	 should	 search	 on	Van	Dyke’s	matching	 principle.)	 Finally	we	 point	 out
that	this	method	is	not	a	universal	technique.	For	certain	classes	of	problems	it



works	 well,	 but	 for	 other	 problems	 significant	 modifications	 must	 be	 made.
Singular	perturbation	theory	is	an	active	area	of	research	in	applied	mathematics
and	a	well-developed	 rigorous	 theory	 is	only	available	 for	 restricted	classes	of
differential	equations.
We	 conclude	with	 a	 theorem	 for	 linear	 equations	 with	 variable	 coefficients.

For	this	class	of	problems,	the	boundary	layer	can	be	completely	characterized,
provided	suitable	restrictions	are	placed	on	the	coefficients.

Theorem	3.12
Consider	the	boundary	value	problem

(3.17)	
where	p	and	q	are	continuous	functions	on	0	≤	x	≤	1,	and	p(x)	>	0	for	0	≤	x	<	1.
Then	there	exists	a	boundary	layer	at	x	=	0	with	inner	and	outer	approximations
given	by

(3.18)	

(3.19)	
where

(3.20)	

Proof
To	demonstrate	the	theorem,	we	show	that	the	assumption	of	a	boundary	layer	at
x	=	0	is	consistent	and	leads	to	the	approximations	given	above.	If	the	boundary
layer	is	at	x	=	0,	then	the	outer	solution	y0(x)	will	satisfy

and	the	condition	y0(1)	=	b.	Separating	variables	and	applying	the	condition	at	x
=	1	gives	(3.19).	In	the	boundary	layer	we	introduce	a	scaled	variable	ξ	defined
by	 ξ	 =	 x/δ(ε),	 where	 δ(ε)	 is	 to	 be	 determined.	 If	 Y(ξ)	 =	 y(δ(ε)ξ),	 then	 the
differential	equation	becomes



(3.21)	
As	ε	→	0+	the	coefficients	behave	like

It	is	easy	to	see	that	the	dominant	balance	is	ε/δ(ε)2	~	p(0)/δ(ε),	and	therefore	the
boundary	layer	has	thickness	δ(ε)	=	O(ε).	For	definiteness	take	δ(ε)	=	ε.	Equation
(3.21)	then	becomes

which	to	leading	order	is

The	general	solution	is

Applying	the	boundary	condition	Yi(0)	=	a	yields	C2	=	a	−	C1,	and	thus	the	inner
approximation	is

(3.22)	
To	match	we	 introduce	 the	 intermediate	variable	η	=	x/ 	and	require	 that	 for
fixed	η,

In	this	case	the	matching	condition	becomes

which	forces

Consequently,	 the	 inner	 approximation	 is	 given	 as	 stated	 in	 (3.18)	 and	 (3.20),
and	the	proof	is	complete.	A	uniform	composite	approximation	yu(x)	is	given	by

It	can	be	shown	that	yu(x)	−	y(x)	=	O(ε)	as	ε	→	O+,	uniformly	on	[0,	1],	where
y(x)	is	the	exact	solution	to	(3.17).



Remark	3.13
If	p(x)	<	0	on	0	≤	x	 ≤	 1,	 then	no	match	 is	 possible	 because	yi(x)	would	grow
exponentially,	unless	C1	=	a.	On	the	other	hand,	a	match	is	possible	if	p(x)	<	0	if
the	boundary	layer	is	at	x	=	1.	In	summary,	one	can	show	that	the	boundary	layer
is	at	x	=	0	if	p(x)	>	0	and	at	x	=	1	if	p(x)	<	0.	As	a	final	observation,	there	can	be
no	boundary	layer	at	an	interior	point	0	<	x	<	1	in	either	case.	If	p	changes	sign
in	 the	 interval,	 then	 interior	 layers	 are	 possible;	 these	 problems	 are	 called
turning	point	problems.

EXERCISES
1.	 Use	 singular	 perturbation	 methods	 to	 obtain	 a	 uniform	 approximate
solution	to	the	following	problems.	In	each	case	assume	0	<	ε	 	1	and	0	<	x
<	1.

2.	 Examine	 the	 exact	 solution	 to	 show	why	 singular	 perturbation	methods
fail	on	the	boundary	value	problem

3.	Determine	values	of	a	for	which	the	problem



has	a	solution	with	a	boundary	layer	structure.
4.	Obtain	a	uniform	approximation	to	the	problem

5.	Is	the	problem

a	singular	perturbation	problem?	Discuss.
6.	Attempt	singular	perturbation	methods	on	the	boundary	value	problem

Give	a	complete	discussion	of	your	results.
7.	Find	a	leading	order	approximation	to

8.	Let	 f	 be	 a	 smooth	 function,	monotonic	 on	 [0,	 1],	 and	 let	 f’(0)	=	b	 ≠	 0.
Either	find	a	uniformly	valid	approximation	to	the	problem

or	show	that	such	an	approximation	does	not	exist.	Does	the	answer	depend
upon	the	value	b?
9.	Find	a	uniformly	valid	approximation	to

where	0	<	ε	 	1	and	b	>	0.	For	what	values	of	b	is	the	approximation	valid?
10.	Find	a	uniformly	valid	approximation	to

where	0	<	ε	 	1	and	a	>	0,	and	a	and	f	have	infinitely	many	derivatives	on	
.

11.	Find	a	uniform	approximation	to	the	boundary	value	problem



Draw	a	graph	of	the	approximation.
12.	Consider	the	boundary	value	problem	on	0	<	x	<	1:

Find	a	uniform	approximation.	(Hint:	try	a	multiple	layer.)
13.	Find	a	uniform	approximation:

14.	Find	a	uniform	approximation:

15.	Find	a	uniform	approximation	to	the	boundary	value	problem

(Hint:	try	an	interior,	or	shock,	layer.)
16.	Investigate	the	problem

17.	 Find	 uniform	 asymptotic	 approximations	 to	 the	 solutions	 of	 the
following	problems	on	0	≤	x	≤	1	with	0	<	ε	 	1.



3.4	Initial	Layers

3.4.1	Damped	Spring-Mass	System
Initial	value	problems	containing	a	small	parameter	can	have	a	layer	near	t	=	0.
For	evolution	problems	these	layers	are	called	initial	layers.	They	are	a	zones	in
which	there	are	rapid	temporal	changes.	We	will	illustrate	the	idea	on	a	simple,
solvable	 initial	 value	 problem.	Consider	 a	 damped	 spring-mass	 system	with	 y
denoting	the	positive	displacement	of	the	mass	m	from	equilibrium,	and	with	the
forces	given	by

where	k	 and	a	 are	 the	 spring	 constant	 and	 damping	 constant,	 respectively.	By
Newton’s	second	law	the	governing	differential	equation	is
(4.1)	

Initially,	we	assume	the	displacement	is	zero	and	that	the	mass	is	put	into	motion
by	imparting	to	it	(say,	with	a	hammer	blow)	a	positive	impulse	I.	Therefore,	the
initial	conditions	are	given	by

(4.2)	
We	want	to	determine	the	leading-order	behavior	of	the	system	in	the	case	that
the	mass	has	very	small	magnitude.
The	first	step	is	to	recast	the	problem	in	dimensionless	form.	The	independent

and	dependent	variables	are	 t	and	y	having	dimensions	of	 time	T	and	 length	L,
respectively.	The	constants	m,	a,	k,	and	I	have	dimensions

where	M	is	a	mass	dimension.	We	can	identify	three	possible	time	scales,

(4.3)	
These	 correspond	 to	 balancing	 inertia	 and	 damping	 terms,	 the	 inertia	 and	 the
spring	terms,	and	the	damping	and	the	spring	terms,	respectively.	Possible	length
scales	are

(4.4)	



By	assumption	m	 	1,	and	so	 ,	and
aI/km	 	1.	Such	 relations	are	often	 important	 in	determining	appropriate	 time
and	 length	 scales,	 because	 scales	 should	 be	 chosen	 so	 that	 the	 dimensionless
dependent	and	independent	variables	are	of	order	1.
Before	 proceeding	 further,	 we	 use	 our	 intuition	 regarding	 the	motion	 of	 the

mass.	The	positive	impulse	given	to	the	mass	will	cause	a	rapid	displacement	to
some	maximum	value,	at	which	time	the	force	due	to	the	spring	will	attempt	to
restore	it	to	its	equilibrium	position.	Because	the	mass	is	small	there	will	be	very
little	 inertia,	 and	 therefore	 it	will	 probably	 not	 oscillate	 about	 equilibrium;	 the
system	is	strongly	over-damped.	Consequently	we	expect	the	graph	of	y	=	y(t)	to
exhibit	 the	 features	 shown	 in	Fig.	3.4—a	quick	 rise	 and	 then	 a	 gradual	 decay.
Such	a	function	is	 indicative	of	a	multiple	 time-scale	description.	In	 the	region
near	t	=	0,	where	there	is	an	abrupt	change,	a	short	time	scale	seems	appropriate;
we	call	 this	the	 initial	 layer.	Away	from	the	 initial	 layer	an	order	1	 time	scale
seems	 appropriate.	 In	 all,	 the	 problem	 has	 the	 characteristics	 of	 a	 singular
perturbation	 problem,	 namely	 multiple	 time	 scales	 and	 an	 apparent	 small
quantity	m	multiplying	the	highest	derivative	term.	Of	the	length	scales	given	in
(4.4),	 it	 appears	 that	 only	 I/a	 is	 suitable.	 The	 remaining	 two	 are	 large,	 which
violates	our	intuition	regarding	the	maximum	displacement.	Of	the	time	scales,
only	a/k	 is	 first	 order.	 The	 remaining	 two	 are	 small,	 and	 one	 of	 them	may	 be
suitable	in	the	assumed	initial	layer	near	t	=	0.	As	a	guess,	since	m/a	depends	on
the	mass	and	the	damping,	and	 	depends	on	the	mass	and	the	spring,	we
predict	 the	 former.	 The	 reason	 lies	 in	 intuition	 concerning	 the	 dominant
processes	 during	 the	 early	 stages	 of	 motion.	 The	 high	 initial	 velocity	 should
influence	the	damping	force	more	than	the	force	due	to	the	spring.	Therefore,	the
terms	mÿ	and	 	should	dominate	during	the	initial	phase,	whereas	mÿ	should	be
low-order	in	the	later	phase.

Figure	3.4	Displacement	vs.	time.



With	these	remarks	as	motivation,	we	introduce	scaled	variables

(4.5)	
which	seem	appropriate	for	the	outer	layer,	away	from	the	initial	layer	at	t	=	0.
Note	that	both	 	and	 	are	of	order	1.	In	terms	of	these	variables	the	initial	value
problem	becomes

(4.6)	
where	 prime	 denotes	 the	 derivative	 with	 respect	 to	 ,	 and	 the	 dimensionless
constant	ε	is	given	by

(4.7)	
Notice,	by	proper	scaling,	the	small	term	occurs	where	we	expect	it,	namely	in
the	 inertia	 term.	 Using	 singular	 perturbation	 techniques	 we	 can	 obtain	 an
approximate	solution	to	(4.5).	The	leading	order	approximation	in	the	outer	layer
is

where	we	have	set	ε	=	0.	Then,



(4.8)	
is	 the	 outer	 approximation.	 Neither	 initial	 condition	 is	 appropriate	 to	 apply
because	both	are	at	 	=	0,	which	is	in	the	assumed	initial	layer.	To	obtain	an	inner
approximation	we	rescale	according	to

(4.9)	
Then	(4.6)	becomes

(4.10)	
The	 dominant	 balance	 is	 ε/δ(ε)2	 ~	 1/δ(ε),	 which	 gives	 the	width	 of	 the	 initial
layer,	δ(ε)	=	ε.	(The	balance	ε/δ(ε)2	~	1	implies	δ(ε)	=	O( ),	but	then	1/δ(ε)	is
not	 small,	giving	 inconsistency.)	Consequently,	 the	 initial	 layer	has	width	ε,	or
O(m).	The	scale	transformation	(4.9)	is	then

and	the	differential	equation	(4.10)	becomes

Setting	ε	=	0	and	solving	the	resulting	equation	gives	the	inner	approximation

or

The	 initial	 condition	 (0)	 =	 0	 forces	 B	 =	 −A,	 and	 the	 condition	
forces	A	=	1.	Therefore,	the	inner	approximation	is	completely	determined	by

(4.11)	
Next	we	use	matching	to	determine	the	constant	C.	We	can	introduce	an	overlap
domain	with	 time	scale	 	and	scaled	dimensionless	variable	 ,	but	we
prefer	to	apply	the	simple	condition	(3.15),	or

Both	limits	give	C	=	1.	A	uniformly	valid	approximation	is	therefore

or



Here	 the	 limits	 are	 taken	 with	 η	 fixed.	 In	 terms	 of	 the	 original	 dimensioned
variables	t	and	y,

(4.12)	
Intuition	proved	to	be	correct;	for	small	t	we	have

which	describes	 a	 rapidly	 rising	 function	with	 time	 scale	m/a.	 For	 larger	 t	 the
first	term	in	(4.12)	dominates	and

which	represents	a	function	that	is	decaying	exponentially	on	a	time	scale	a/k.
This	 example	 shows	 how	 physical	 reasoning	 can	 complement	 mathematical

analysis	 in	 solving	 problems	 arising	 out	 of	 empirics.	 The	 constant	 interplay
between	 the	 physics	 and	 the	mathematics	 leads	 to	 a	 good	 understanding	 of	 a
problem	and	gives	 insight	 into	 its	 structure,	 as	well	 as	 strategies	 for	 obtaining
solutions.



3.4.2	Enzyme	Kinetics
In	chemical	processes	it	is	important	to	know	the	concentrations	of	the	chemical
species	when	reactions	take	place.	The	differential	equations	of	reaction	kinetics
provide	a	rich	source	of	singular	perturbation	phenomena	because	reactions	in	a
chain	 often	 occur	 on	 different	 time	 scales.	 For	 example,	 some	 intermediary
chemical	species	may	be	short-lived,	and	reactions	creating	those	species	may	be
able	to	be	ignored,	thereby	leading	to	simplification	of	the	system.
In	Section	2.6	of	Chapter	2	we	introduced	mass	action	dynamics	for	chemical

kinetics.	We	review	some	of	those	ideas	and	we	recommend	readers	review	that
material	as	well,	especially	enzyme	kinetics.
The	basic	enzyme	reaction	is
(4.13)	

where	reactant	molecules	S	(a	substrate)	and	E	 (an	enzyme)	combine	to	form	a
complex	molecule	C.	The	molecule	C	breaks	up	 to	 form	a	product	molecule	P
and	 the	 original	 enzyme	 E,	 or	 the	 reverse	 reaction,	C	 disassociating	 into	 the
original	reactants	S	and	E	can	occur.	There	are	three	reactions	in	(4.13),	namely
S	+	E	 	C,	C	 	S	+	E,	and	C	 	P	+	E.	Here,	one	molecule	of	a	substrate	S
reacts	with	 an	 enzyme	E	 to	 produce	 an	 intermediate	 complex	C,	 and	 then	 the
final	 product	 P	 is	 produced,	 along	 with	 the	 recovery	 of	 the	 enzyme.	 The
formation	 of	 the	 complex	 C	 is	 a	 rapid	 reaction,	 and	 usually	 the	 initial
concentration	 of	 the	 enzyme	 is	 small	 compared	 to	 the	 substrate.	 Initially,	 we
assume	S(0)	=	S0,	E(0)	=	E0,	P(0)	=	0,	and	C(0)	=	0.	By	the	law	of	mass	action,
the	rate	equations	are	(we	are	using	τ	for	real	time)

Notice	that	once	C	 is	determined,	then	P	 is	determined	by	direct	integration;	P
does	not	enter	the	first	three	equations.	Thus,	there	are	only	three	equations	for



S,	E,	and	C.	We	can	instantly	find	the	conservation	laws	by	observation;	they	are

These	 equations	permit	 elimination	of	E	 and	 the	 reduction	 to	 a	 system	of	 two
nonlinear	equations	for	S	and	C,

(4.14)	

(4.15)	
Singular	Perturbation.	Let	us	rescale

where	T	is	a	yet	unchosen	time	scale.	Then	the	system	becomes

From	these	equations	we	can	note	that	there	are	two	obvious	possible	time	scales
T,

where	the	subscripts	s	and	f	denote	slow	and	fast;	typically,	E0	 is	much	smaller
than	S0.	To	understand	the	longer	time	behavior	we	use	the	slow	time	scale	Ts.
Substituting	into	the	equations,	while	letting

we	get

It	is	usually	the	case	that	μ	and	λ	are	order	1	quantities,	but	ε	 	1.
Outer	approximation.	The	equations	are



This	gives

Solving	the	second	equation	gives

where	A	is	a	constant	of	integration.
Inner	approximation.	Let

which	is	the	fast	time	scale.	Letting	X	=	x	and	Y	=	y	we	get

We	may	apply	the	initial	conditions	X(0)	=	1	and	Y(0)	=	0.	Then	to	leading	order,

This	means	X0	=	D	=	const.	=	1.	Thus

The	general	solution	of	the	differential	equation	is

Applying	the	initial	condition	gives	M	=	−	1/(λ	+	1).	Therefore,

Matching.	We	must	have



or

This	gives	consistency.	Therefore,

or	A	=	1.	In	summary,	the	outer	and	inner	solutions	are

The	uniform	approximation	 is	 the	outer	solution	plus	 the	 inner	solution,	minus
the	common	limit.	Thus,

Figures	3.5	 and	3.6	 show	 the	 fast	 time	 solution	 that	 approximates	 the	 initial
layer	 where	 the	 complex	 is	 rapidly	 formed	 and	 the	 slow	 time	 solution	 that
approximates	the	longer	behavior.

Figure	3.5	Fast	time	solution.	The	dashed	curve	is	the	complex	and	the	solid
curve	is	the	substrate.



Figure	3.6	Slow	time	solution.	The	dashed	curve	is	the	complex	and	the	solid
curve	is	the	substrate.



EXERCISES
1.	Use	a	singular	perturbation	method	to	find	a	leading-order	approximation
to	the	initial	value	problem

on	t	≥	0.	Calculate	the	residual	and	show	that	it	converges	to	zero	uniformly
on	t	≥	0	as	ε	→	0.
2.	Find	a	uniformly	valid	approximation	to	the	problem

as	ε	→	0.	Here,	b	is	smooth	and	b(t)	>	0,	and	T,	β,	γ	>	0.
3.	Find	a	uniformly	valid	approximation	to	the	problem

4.	Consider	a	nonlinear	damped	oscillator	whose	dynamics	 is	governed	by
the	initial	value	problem

where	the	mass	m	is	small.
a)	Non-dimensionalize	the	problem	with	a	correct	scaling.
b)	Find	a	leading-order	perturbation	approximation.

5.	Find	approximations	to	the	following	systems	where	0	<	ε	 	1:

6.	Find	a	uniform	approximation	to	the	initial	value	problem

7.	Consider	an	object	of	mass	m	 falling	 through	a	 fluid.	 It	 experiences	 the
force	of	gravity	and	a	resistive	force	proportional	to	its	velocity.	At	time	τ	=
0	it	is	located	at	height	H	and	at	some	time	T	it	is	located	at	height	0.

a)	Set	up	a	boundary	value	problem	for	the	height	h	=	h(τ).	(Orient	h	>	0
upward.)
b)	Assume	the	mass	is	very	small	and	nondimensionalize	the	problem	by
the	 obvious	 scales.	 (Use	 y	 for	 dimensionless	 height	 and	 t	 for



dimensionless	time.)	Obtain

for	appropriate	choices	of	ε	and	Q.
c)	Obtain	a	uniform	approximation	using	perturbation	methods	and	plot	it
for	generic	small	ε.	Finally,	compute	the	residual.

8.	 Consider	 an	 exothermic	 reaction	 X	 →	 products	 that	 releases	 heat.
Initially,	 the	 concentration	 and	 temperature	 are	 x(0)	 =	 x0	 and	 T(0)	 =	 T0,
respectively.	The	rate	k	=	k(T)	 is	a	function	of	temperature	and	is	given	by
the	Arrhenius	form

where	 E	 is	 the	 activation	 energy,	 R	 is	 the	 gas	 constant,	 and	 r	 is	 a
multiplicative	 constant.	As	 the	 reaction	 proceeds,	T	 is	 related	 to	 x	 via	 the
constitutive	 equation	 T	 =	 T0	 +	 h(x0	 −	 x),	 where	 h	 is	 the	 increase	 in
temperature	when	one	gram	of	x	is	consumed	by	reaction.

a)	If	y	=	(x0	−	x)/x0	is	a	progress	variable	that	measures	the	extent	of	the
reaction,	find	a	differential	equation	for	y.
b)	 Define	 a	 scaled	 temperature	 and	 time	 by	 θ	 =	 T/T0	 and	 τ	 =	 rt,
respectively,	and	show	that	the	model	can	be	written

for	appropriately	chosen	constants	A	and	β
c)	Find	an	initial	value	problem	for	the	scaled	temperature	θ.
d)	Assume	the	parameter	A	is	small	and	obtain	approximations	for	θ	and
y.
e)	Does	a	perturbation	method	work	for	A	large?	Perform	some	numerical
experiments	to	support	your	answer	to	this	question.

9.	A	thermochemical	model	for	the	scaled	concentration	u	and	temperature	q
in	a	reacting	fluid	is	given	by

where	u(0)	=	q(0)	=	0	and	ε	 	1.	Find	a	two-term	perturbation	solution.
10.	Consider	the	system



where	ε	 	1.	Find	the	outer	and	inner	approximations	and	use	matching	to
find	a	uniform	composite	approximation.
11.	Modify	the	Michaelis–Menten	model	by	including	the	reverse	reaction	P
+	E	 	C	where	the	enzyme	and	product	reform	into	the	complex.

a)	Make	the	quasi-steady-state	assumption	and	find	C	=	C(S).
b)	Find	the	velocity	V	=	dP/dt	and	compare	it	to	the	original	model.



3.5	The	WKB	Approximation
The	WKB	method	 (Wentzel–Kramers–Brillouin)	 is	 a	 perturbation	method	 that
applies	to	a	variety	of	problems—in	particular,	to	linear	differential	equations	of
the	form

(5.1)	

(5.2)	

(5.3)	
We	 note	 that	 (5.1)	 and	 (5.3)	 have	 a	 small	 parameter,	 while	 (5.2)	 has	 a	 large
parameter;	the	latter	may	be	changed	to	the	former	by	letting	ε	=	λ−1.
It	 is	 not	 possible,	 in	 general,	 to	 obtain	 a	 closed-form	 solution,	 in	 terms	 of

elementary	 functions,	 to	 differential	 equations	 with	 variable	 coefficients	 like
equations	 (5.1)–(5.3).	 So	 approximation	 methods	 are	 often	 useful.	 The	WKB
method	was	developed	by	several	individuals.	The	first	work	was	by	Liouville1
in	the	mid	1800s;	in	the	early	1900s	Liouville’s	method	was	extended	by	others,
for	 example,	 Rayleigh	 (in	 the	 context	 of	 sound	 wave	 reflection)	 and	 Jeffrey
(Mathieu’s	 equation);	 the	method	 now	 bears	 the	 initials	 of	Wentzel,	 Kramers,
and	Brillouin	because	of	 their	 important	application	of	 the	method	 in	quantum
mechanics.	 In	 the	 next	 few	 paragraphs	 we	 briefly	 develop	 some	 of	 the	 basic
concepts	 of	 quantum	 mechanics,	 which	 gives	 a	 physical	 context	 in	 which	 to
examine	the	WKB	approximation.
For	simplicity,	consider	a	particle	of	mass	m	moving	on	 the	x	axis	under	 the

influence	of	a	conservative	force	given	by	F(x).	The	potential	V(x)	is	defined	by
the	 equation	 F(x)	 =	 −V’(x).	 According	 to	 the	 canon	 of	 classical	 particle
mechanics,	the	motion	x	=	x(t)	is	governed	by	the	dynamical	equation

(5.4)	
which	is	Newton’s	second	law	of	motion.	If	the	initial	position	x(0)	and	velocity
dx/dt(0)	are	specified,	then	one	can,	in	theory,	determine	the	state	of	the	particle
(position	and	velocity)	for	all	times	t	>	0.	In	this	sense,	classical	mechanics	is	a
deterministic	 model.	 The	 dynamics	 can	 be	 easily	 analyzed	 using	 the
conservation	of	energy	law



where	 y	 =	 x’	 is	 the	 velocity	 and	 E	 is	 the	 constant	 energy	 in	 the	 system,
determined	 by	 the	 initial	 state.	 In	 xy	 (position-velocity)	 phase	 space	 the	 orbits
are	given	by

These	 orbits	 are	 valid	 in	 the	 domain	 where	 E	 >	 V(x),	 which	 is	 the	 classical
region.	 The	 particle	 cannot	 occupy	 the	 domain	 E	 <	 V(x),	 which	 is	 the
nonclassical	region.	Values	of	x	for	which	E	=	V(x)	are	called	turning	points.
In	the	early	1900s	it	was	found	that	 this	classic	model	of	motion	fails	on	the

atomic	 scale.	 Out	 of	 this	 revolution	 quantum	 mechanics	 was	 developed.
Quantum	 theory	 dictates	 that	 the	 particle	 has	 no	 definite	 position	 or	 velocity;
rather,	it	postulates	a	statistical	or	probabilistic	interpretation	of	the	state	of	the
particle	in	terms	of	a	wave	function	 (x,	t),	which	is	complex.	The	square	of	the
wave	 function	 is	 the	 probability	 density	 for	 the	 position,	 which	 is	 a	 random
variable	X.	Therefore,

is	the	probability	of	the	particle	being	in	the	interval	a	<	x	≤	b	at	time	t.	Also,

because	 the	 particle	 is	 located	 somewhere	 on	 the	 x	 axis.	 From	 elementary
probability	 theory	 it	 is	 known	 that	 the	 probability	 density	 contains	 all	 of	 the
statistical	information	for	a	given	problem	(for	example,	the	mean	and	variance
of	position).
The	question	is	how	to	find	the	wave	function.	The	equation	that	governs	the

evolution	of	a	quantum	mechanical	system	(the	analog	of	Newton’s	law	for	the
classic	system)	is	the	Schrödinger2	equation,	a	second-order	partial	differential
equation	having	the	form

(5.5)	
where	V	is	the	potential	energy,	m	is	the	mass,	and	 	=	h/2π,	where	h	=	6.625	·
10−34	kg	m2/	sec	is	Planck’s	constant.
Assuming	solutions	have	the	form	of	a	product	Φ(x,	 i)	=	y(x)ϕ(t),	we	obtain,



upon	substitution	into	(5.5)	and	after	rearrangement,

The	left	side	of	this	equation	depends	only	on	t,	and	the	right	side	depends	only
on	x.	The	only	way	equality	can	occur	for	all	t	and	x	is	if	both	sides	are	equal	to
the	 same	 constant,	which	we	 shall	 call	E.	 Therefore	we	 obtain	 two	 equations,
one	for	ϕ(t),

and	one	for	y(x),	namely

(5.6)	
The	 solution	 of	 the	 time	 equation	 is	 the	 periodic	 function	 ϕ	 =	C	 exp(−iEt/ ),
where	C	 is	 a	 constant.	 Equation	 (5.6),	 whose	 solution	 y(x)	 gives	 the	 spatial
(steady-state)	 part	 of	 the	 wave	 function,	 is	 called	 the	 time-independent
Schrödinger	 equation,	 and	 it	 is	 one	 of	 the	 fundamental	 equations	 of
mathematical	physics.	The	condition

is	a	normalizing	condition.
Because	 	 is	 extremely	 small,	 we	may	 set	 	 and	 obtain	 a

problem	 of	 the	 form	 (5.1),	 where	 q(x)	 =	 E	 −	 V(x).	 From	 our	 knowledge	 of
constant	coefficient	equations,	if	q(x)	=	E	−	V(x)	>	0	we	expect	the	equation

has	rapidly	varying	oscillatory	solutions	(this	is	the	classical	region),	and	if	q(x)
=	 E	 −	 V(x)	 <	 0	 we	 expect	 exponentially	 growing	 and	 decaying	 solutions
(nonoscillatory).	The	latter	region	is	forbidden	in	classical	physics,	but	we	shall
observe	later	that	in	quantum	mechanics	there	can	be	nonzero	probability	of	the
particle	existing	in	this	region.



3.5.1	The	Nonoscillatory	Case
We	first	consider	equation	(5.1)	 in	 the	case	 that	q(x)	 is	 strictly	negative	on	 the
interval	of	 interest.	For	definiteness,	 let	us	write	q(x)	=	−k(x)2,	where	k(x)	>	0,
and	consider	the	equation

(5.7)	
If	k	were	a	constant,	say	k	=	k0,	then	(5.7)	would	have	real,	rapidly	increasing	or
decreasing	exponential	solutions	of	the	form	exp(±k0x/ε).	This	suggests	making
in	(5.7)	the	substitution

Then	(5.7)	becomes

(5.8)	
Now	we	try	a	regular	perturbation	expansion

Substituting	this	expansion	into	(5.8)	gives

at	O(1)	and	O(ε),	respectively.	Therefore,

and	the	expansion	for	v	becomes

Consequently,	u	is	given	by

where	 a	 is	 an	 arbitrary	 constant;	 the	 other	 constants	 are	 incorporated	 into	 the
indefinite	integral.	Finally,	the	expansion	for	y(x)	is

This	 equation	 defines	 two	 linearly	 independent	 approximations	 (one	 with	 the
plus	 sign	 and	one	with	 the	minus	 sign)	 to	 the	 linear	 equation	 (5.7);	 taking	 the



linear	 combination	 of	 these	 gives	 the	 WKB	 approximation	 to	 (5.7)	 in	 the
nonoscillatory	case:
(5.9)	

The	 arbitrary	 constants	 c1	 and	 c2	 can	 be	 determined	 by	 boundary	 data;	 the
arbitrary	lower	limit	of	integration	a	should	be	taken	at	the	point	where	the	data
is	 given.	 We	 note	 that	 the	 solutions	 may	 also	 be	 expressed	 in	 terms	 of	 the
hyperbolic	functions	cosh	and	sinh.

Example	3.14
Find	the	WKB	approximation	to	the	equation

Here,	 k(x)	 =	 1	 +	 x	 and	 .	 Therefore	 the	 WKB
approximation	is

If	we	append	boundary	conditions	y(0)	=	0	and	limx→∞	y(x)	=	0,	then	c1	=	0	to
ensure	the	latter	condition	at	infinity.	Then	the	condition	at	x	=	0	forces	c2	=	1.
So

The	quantum	mechanical	 interpretation	of	exponential	solutions	 is	discussed	in
Chapter	8.	See	also	the	highly	readable	text	by	D.	J.	Griffiths	(2005).



3.5.2	The	Oscillatory	Case
In	the	case	that	q(x)	is	strictly	positive,	we	expect	oscillatory	solutions	of	(5.1).
In	quantum	mechanics,	this	is	the	classical	region.	So,	we	consider	the	equation

(5.10)	
where	 k(x)	 >	 0.	 Nearly	 the	 same	 calculation	 can	 be	 made	 as	 for	 the
nonoscillatory	 case.	 Now	 we	 make	 the	 substitution	 y(x)	 =	 exp(iu(x)/ε)	 into
equation	(5.10)	and	proceed	exactly	as	before	to	obtain	the	WKB	approximation
in	the	oscillatory	case	as

This	 is	 the	same	result	except	for	 the	presence	of	 the	complex	number	 i	 in	 the
exponential.	 Using	 Euler’s	 formula,	 eiθ	 =	 cos	 θ	 +	 i	 sin	 θ,	 we	 can	 rewrite	 the
approximation	to	(5.10)	in	terms	of	sines	and	cosines	as
(5.11)	

These	are	rapidly	oscillating	solutions.

Example	3.15
(Schrödinger	equation)	In	the	case	that	E	>	V(x),	which	is	the	oscillatory	case,
the	WKB	approximation	(5.11)	to	the	Schrödinger	equation	(5.6)	is	often	written
in	 terms	 of	 an	 amplitude	 A	 and	 phase	 ϕ	 (which	 play	 the	 role	 of	 arbitrary
constants)	as

Example	3.16
The	WKB	 approximation	 can	 be	 used	 to	 determine	 the	 large	 eigenvalues	 for
simple	 differential	 operators.	 (A	 detailed	 discussion	 of	 eigenvalue	 problems	 is
presented	in	Chapter	5.)	For	the	present,	consider	the	boundary	value	problem

(5.12)	



We	assume	q(x)	>	0.	A	number	λ	is	called	an	eigenvalue	of	the	boundary	value
problem	(5.12)	 if	 there	 exists	 a	 nontrivial	 solution	 of	 (5.12)	 for	 that	 particular
value	of	λ;	the	corresponding	nontrivial	solutions	are	called	eigenfunctions.	It	is
an	important	problem	to	determine	all	the	eigenvalues	and	eigenfunctions	for	a
given	boundary	value	problem.	In	the	present	case,	if	we	define	ε	=	1/√λ	and	k(x)
=	√q(x),	then	the	differential	equation	in	(5.12)	has	the	form

for	which	the	WKB	method	applies,	provided	ε	is	small	or,	equivalently,	if	λ	is
large	in	(5.12).	The	WKB	approximation	is	given	by

But	y(0)	=	0	forces	c2	=	0,	and	y(π)	=	0	forces

Choosing	c1	=	0	gives	the	trivial	solution,	which	we	are	trying	to	avoid;	so	we
force

which	can	be	satisfied	by	choosing	λ	such	that

where	n	is	a	large	integer	(recall,	the	approximation	is	valid	only	for	large	values
of	λ	).	Thus,	the	large	eigenvalues	of	problem	(5.12)	are	given	by

for	large	n.	The	corresponding	eigenfunctions	are

for	large	n.
If	 the	 function	q(x)	 has	 zeros	 in	 the	 interval	 of	 interest,	 then	 the	problem	of

determining	 asymptotic	 approximations	 of	 (5.1)	 is	 significantly	more	 difficult.
On	one	side	of	a	simple	zero	of	q	the	solution	is	oscillatory,	and	on	the	other	side



it	is	exponential;	therefore	these	two	solutions	must	be	connected,	or	matched,	in
a	layer	located	at	that	root.	As	we	remarked	earlier,	the	points	x	where	q(x)	=	0
are	called	turning	points;	 in	terms	of	quantum	mechanics	and	the	Schrödinger
equation	(5.6),	 the	 turning	points	are	 the	values	of	x	where	E	=	V(x),	or	where
the	 total	 energy	 equals	 the	 potential	 energy.	 We	 refer	 the	 reader	 to	 Holmes
(1995)	 for	 an	 elementary	 treatment	 of	 turning	 point	 problems.	Murray	 (1984)
shows	how	to	apply	the	WKB	method	to	the	more	general	Liouville	equation

Interestingly	enough,	even	though	the	WKB	approximation	is	valid	for	λ	 	1
or	ε	 	1,	 it	often	provides	a	good	approximation	even	when	λ	and	ε	are	O(1).
Several	numerical	examples	are	discussed	in	Bender	and	Orszag	(1978).

EXERCISES
1.	Use	the	WKB	method	to	find	an	approximate	solution	to	the	initial	value
problem

for	large	λ.
2.	Show	that	the	large	eigenvalues	of	the	problem

are	given	approximately	by

for	large	integers	n,	and	find	the	corresponding	eigenfunctions.
3.	Consider	the	eigenvalue	problem

Find	an	approximation	for	the	large	eigenvalues	and	eigenfunctions.
4.	 Show	 that	 the	 differential	 equation	 y″	 +	 p(x)y’	 +	 q(x)y	 =	 0	 can	 be
transformed	into	the	equation	u″	+	r(x)u	=	0,	r	=	q	−	p′/2	−	p2/4,	without	a
first	derivative,	by	the	Liouville	transformation	u	=	y	exp(1/2	ƒxa	p(ξ)	dξ).
5.	Find	a	formula	in	terms	of	the	sinh	function	for	the	WKB	approximation
to	the	initial	value	problem



6.	The	slowly	varying	oscillator	equation	is

where	ε	 	1	and	q	is	strictly	positive.	Find	an	approximate	solution.	Why	is
the	equation	called	“slowly	varying”?
7.	Find	an	approximation	for	the	large	eigenvalues	of

8.	Find	an	approximation	for	the	general	solution	of

Hint:	let	y	=	exp(iu/ε),	ε	=	1/λ.



3.6	Asymptotic	Expansion	of
Integrals
The	 solution	 of	 differential	 equations	 often	 leads	 to	 formulas	 involving
complicated	integrals	that	cannot	be	evaluated	in	closed	form.	For	example,	the
initial	value	problem

has	solution

but	we	cannot	calculate	the	integral	because	there	is	no	antiderivative	in	terms	of
simple	 functions.	 For	 some	 problems,	 however,	 we	 may	 want	 to	 know	 the
behavior	of	y	for	large	t	(with	λ	fixed),	or	we	may	want	to	determine	the	value	of
y	for	a	fixed	value	of	t	in	the	case	that	λ	is	a	large	parameter.	Problems	like	this
are	common	 in	applied	mathematics,	and	 in	 this	 section	we	 introduce	standard
techniques	to	approximate	certain	kinds	of	integrals.



3.6.1	Laplace	Integrals
One	type	of	integral	we	wish	to	study	has	the	form

(6.1)	
where	 g	 is	 a	 strictly	 increasing	 function	 on	 [a,	 b]	 and	 the	 derivative	 g′	 is
continuous.	Here,	a	<	b	≤	+∞,	and	λ	 	1	is	another	notation	for	the	asymptotic
statement	“as	λ	→	∞.”	An	example	is	the	Laplace	transform

Actually,	it	is	sufficient	to	examine	integrals	of	the	form

(6.2)	
To	observe	 this,	we	can	make	a	change	of	variables	s	=	g(t)	−	g(a)	 in	 (6.1)	 to
obtain

where	t	=	t(s)	is	the	solution	of	the	equation	s	=	g(t)	−	g(a)	for	t.	The	integral	on
the	right	has	the	form	of	(6.2).
The	fundamental	idea	in	obtaining	an	approximation	for	(6.2)	is	to	determine

what	 subinterval	 gives	 the	 dominant	 contribution.	 The	 function	 exp(−λt)	 is	 a
rapidly	decaying	exponential;	thus,	if	f	does	not	grow	too	fast	at	infinity	and	if	it
is	 reasonably	well	 behaved	at	 t	=	0,	 then	 it	 appears	 that	 the	main	 contribution
comes	 from	 a	 neighborhood	 of	 t	 =	 0.	 A	 detailed	 example	 will	 illustrate	 our
reasoning;	the	method	is	called	Laplace’s	method.

Example	3.17
Consider	the	integral

(6.3)	
Figure	 2.8,	 which	 shows	 a	 graph	 of	 the	 integrand	 for	 different	 values	 of	 λ,
confirms	that	the	main	contribution	to	the	integral	occurs	near	t	=	0.	To	proceed



we	partition	the	interval	of	integration	into	two	parts,	[0,	T]	and	[T,	∞],	to	obtain

(6.4)	
where	 T	 is	 any	 positive	 real	 number.	 For	 any	 T,	 the	 second	 integral	 is	 an
exponentially	small	term	(EST);	that	is,	it	has	order	λ−1	exp(−λT)	as	λ	→	∞.	A
simple	calculation	confirms	this	fact:

We	note	 that	an	exponentially	small	 term	is	o(λ−m),	 for	any	positive	 integer	m,
which	means	that	it	decays	much	faster	than	any	power	of	λ.	Thus,

In	the	finite	interval	[0,	T]	we	can	replace	sin	t/t	by	its	Taylor	series	about	t	=	0,

Thus

Now	change	variables	via	u	=	λt	to	obtain

But	now	the	upper	limit	can	be	replaced	by	∞	since	the	error	incurred	by	doing
this	 is	 exponentially	 small	 as	 λ	 →	 ∞.	 (Since	 we	 are	 already	 discarding
algebraically	 small	 terms,	 there	 is	 no	worry	 about	 adding	 exponentially	 small
terms	to	the	integral.)	Consequently,	we	obtain

We	can	now	use	the	integration	formula

(6.5)	
to	obtain	the	asymptotic	approximation	of	(6.3)	given	by



Before	discussing	general	problems,	we	pause	to	define	a	special	function,	the
gamma	function,	which	plays	an	important	role	in	subsequent	calculations.	It	is
defined	by

Because	the	gamma	function	has	the	property

it	 generalizes	 the	 idea	 of	 a	 factorial	 function	 to	 non-integer	 values	 of	 the
argument;	note	that	Γ(n)	=	(n	−	1)!	for	positive	integers	n,	and	Γ(1/2)	=	√π.	Other
values	of	the	gamma	function	are	tabulated	in	handbooks	on	special	functions.
We	now	formulate	a	general	 result	known	as	Watson’s	 lemma,	which	gives

the	asymptotic	behavior	of	a	large	number	of	integrals.	We	shall	only	outline	the
proof,	 and	 those	 interested	 in	 a	 more	 detailed	 discussion	 should	 consult,	 for
example,	Murray	(1984).

Theorem	3.18
(Watson’s	Lemma)	Consider	the	integral

(6.6)	
where	α	>	−1,	where	h(t)	has	a	Taylor	series	expansion	about	t	=	0,	with	h(0)	≠	0,
and	where	|h(t)|	<	kect,	0	<	t	<	b,	for	some	positive	constants	k	and	c.	Then

(6.7)	

Proof
The	condition	on	α	will	guarantee	the	convergence	of	the	improper	integral	at	t	=
0	 and	 the	 exponential	 boundedness	 of	h	 is	 required	 to	 ensure	 that	 the	 integral
converges	as	t	goes	to	infinity.	The	argument	is	similar	to	the	one	in	the	previous
example.	We	split	up	the	integral	(6.6)	for	any	T	>	0,	where	T	lies	in	the	radius	of
convergence	of	the	power	series	for	h.	Then



The	second	integral	is	exponentially	small.	Now	we	substitute	the	Taylor	series
expansion	for	h	about	t	=	0	in	the	first	integral	to	obtain

Making	the	substitution	u	=	λt	and	then	replacing	the	upper	limit	of	integration
by	∞	gives

The	result	(6.7)	now	follows	from	the	definition	of	the	gamma	function.

Example	3.19
Some	 integrals	 that	 do	 not	 have	 the	 form	 (6.6)	 can	 be	 transformed	 into	 an
integral	that	does.	For	example,	consider	the	complementary	error	function,	erfc
defined	by

(6.8)	
Letting	t	=	s	−	λ	gives

Watson’s	lemma	applies,	and	we	leave	it	as	an	exercise	to	show	that
(6.9)	



3.6.2	Integration	by	Parts
Sometimes	 an	 asymptotic	 expansion	 can	 be	 found	 by	 a	 simple,	 successive
integration	by	parts	procedure.	However,	 this	method	is	not	often	as	applicable
as	 the	Laplace	method,	and	 it	usually	 involves	more	work.	Let	us	consider	 the
erfc	function.	Using	integration	by	parts,	we	have

The	integral	on	the	right	may	be	integrated	by	parts	to	get

Thus,

By	 repeated	 integration	 by	 parts	 we	 can	 eventually	 reproduce	 (6.9).	 It	 is
important	 in	 this	method	 to	 ensure	 that	 each	 succeeding	 term	generated	 in	 the
expansion	is	asymptotically	smaller	than	the	preceding	term;	this	is	required	by
the	definition	of	asymptotic	expansion	in	Section	2.1.
Using	the	ratio	test,	we	can	easily	observe	that	for	fixed	λ	the	series	in	(6.9)	for

erfc	 is	 not	 convergent.	 One	 may	 legitimately	 ask,	 therefore,	 how	 a	 divergent
series	 can	be	 useful	 in	 approximating	values	 of	 erfc(λ);	 for	 fixed	 λ	we	 cannot
obtain	a	good	approximation	by	taking	more	and	more	terms.	For	calculations,



the	idea	is	to	fix	the	number	of	terms	n	and	apply	the	resulting	approximation	for
large	values	of	λ.	The	error	in	this	approximation	is	about	the	magnitude	of	the
first	 discarded	 term.	 Practically,	 then,	 to	 approximate	 erfc(λ),	we	 compute	 the
magnitude	of	the	first	few	terms	of	the	series	and	then	terminate	the	series	when
the	magnitude	begins	to	increase.
To	illustrate	this	strategy,	we	approximate	erfc(2).	We	have

After	 the	 fifth	 term,	 the	 magnitude	 of	 the	 terms	 begins	 to	 increase.	 So	 we
terminate	after	 five	 terms	and	obtain	erfc(2)	≈	0.004744;	 the	 tabulated	value	 is
0.004678	and	thus	our	approximation	has	an	error	of	0.000066.
The	reader	might	inquire	why	one	shouldn’t	just	write

and	 then	 replace	exp(−t2)	 by	 its	Taylor	 series	 expansion	 and	 integrate	 term-by
term.	This	procedure	would	yield	a	convergent	series.	So,	adopting	this	strategy
we	get

The	 reader	 should	check	 that	 it	 takes	about	20	 terms	 to	get	 the	 same	accuracy
that	 the	 divergent,	 asymptotic	 series	 gave	 in	 only	 five	 terms.	 Therefore,
asymptotic	expansions	can	be	significantly	more	efficient	than	traditional	Taylor
series	expansions.	For	small	λ,	however,	the	Taylor	series	in	preferable.



3.6.3	Other	Integrals
We	can	extend	the	previous	ideas	to	approximate	integrals	of	the	form

(6.10)	
where	f	is	continuous	and	g	is	sufficiently	smooth	and	has	a	unique	maximum	at
the	point	t	=	c	in	(a,	b).	Specifically,	g′(c)	=	0,	g″(c)	<	0.	Again	we	expect	 the
main	 contribution	 of	 (6.10)	 to	 come	 from	where	 g	 assumes	 its	 maximum.	 To
obtain	a	leading	order	approximation	we	replace	f(t)	by	f(c),	and	we	replace	g	by
the	first	three	terms	of	its	Taylor	series	(the	g′	term	is	zero)	to	obtain

(6.11)	

(6.12)	
Letting	 ,	we	get

(6.13)	
We	 may	 now	 replace	 the	 limits	 of	 integration	 by	 −∞	 and	 +∞	 and	 use	

	to	obtain

(6.14)	

Remark	3.20
If	the	maximum	of	g	occurs	at	an	endpoint,	 then	c	=	a	or	c	=	b	and	one	of	 the
limits	of	integration	in	(6.11)	 is	zero;	 thus	we	will	obtain	one-half	of	 the	value
indicated	in	(6.12).

Example	3.21
Approximate	the	integral



for	large	λ.	Here	f(t)	=	1,	and	g(t)	=	sin	t	has	its	maximum	at	t	=	π/2	with	g″(π/2)
=	−1.	Thus,	by	(6.12),	 .

EXERCISES
1.	Verify	(6.9).
2.	Find	a	two-term	approximation	for	large	λ	for

3.	 Consider	 the	 integral	 in	 (6.10),	 where	 the	 maximum	 of	 g	 occurs	 at	 an
endpoint	 of	 the	 interval	with	 a	 nonzero	 derivative.	To	 fix	 the	 idea	 assume
that	 the	maximum	occurs	 at	 t	 =	b	with	g′(t)	>	0	 for	a	 ≤	 t	 ≤	b.	 Derive	 the
formula

4.	Verify	the	following	approximations	for	large	λ.
a)	
b)	

c)	
5.	Use	integration	by	parts	to	show

6.	Find	a	three-term	asymptotic	expansion	of

for	large	λ.
7.	Find	a	leading-order	asymptotic	approximation	for	the	following	integrals,
λ	 	1.

a)	

b)	

c)	



d)	
8.	The	modified	Bessel	function	In(x)	has	integral	representation

Find	the	leading-order	asymptotic	approximation	of	In(x)	as	x	→	+∞.
9.	Find	the	first	two	terms	in	the	asymptotic	expansion	of	the	integral

10.	Show	that

11.	Use	integration	by	parts	to	find	a	two-term	asymptotic	approximation	of
the	function

for	large	λ.
12.	Consider	the	real	exponential	integral

for	large	values	of	λ.
a)	Use	integration	by	parts	to	show	that

where

b)	Show	that	for	fixed	n,	|rn(λ)|	→	0	as	λ	→	∞.

c)	 Show	 that	 for	 fixed	 ,	 and

conclude	that	Ei(λ)	has	asymptotic	expansion



d)	Show	that	the	asymptotic	series	in	part	(c)	diverges	for	fixed	λ.
e)	Approximate	Ei(10).

13.	Use	integration	by	parts	to	obtain	an	asymptotic	expansion	for	large	λ	of
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Chapter	4

Calculus	of	Variations

Generally,	 the	 calculus	 of	 variations	 is	 concerned	 with	 the	 optimization	 of
variable	 quantities	 called	 functionals	 over	 some	 admissible	 class	 of	 competing
objects.	Many	of	its	methods	were	developed	over	two	hundred	years	ago	by	L.
Euler1,	 L.	 Lagrange2,	 and	 others.	 It	 continues	 to	 the	 present	 day	 to	 bring
important	 techniques	 to	 many	 branches	 of	 engineering,	 physics,	 and	 optimal
control	theory,	and	it	introduces	many	important	methods	to	applied	analysis.
This	chapter	is	more	or	less	independent	from	the	remainder	of	the	text.	One

concept,	that	of	a	normed	linear	space,	appears	in	later	chapters;	at	that	time	the
reader	may	refer	here,	to	Section	4.2.1,	for	the	basic	definitions.



4.1	Variational	Problems

4.1.1	Functionals
To	motivate	 the	 basic	 concepts	 of	 the	 calculus	 of	 variations	 we	 review	 some
simple	notions	in	elementary	differential	calculus.	One	of	the	central	problems	in
the	calculus	is	to	maximize	or	minimize	a	given	real	valued	function	of	a	single
variable.	If	f	is	a	given	function	defined	in	an	open	interval	I,	then	f	has	a	local
(or	relative)	minimum	at	a	point	x0	in	I	if	f(x0)	≤	f(x)	for	all	x,	satisfying	|x	−	x0|
<	δ	for	some	δ.	If	f	has	a	local	minimum	at	x0	in	I	and	f	is	differentiable	in	I,	then
it	is	well	known	that

(1.1)	
where	the	prime	denotes	the	ordinary	derivative	of	f.	Similar	statements	can	be
made	 if	 f	 has	 a	 local	 maximum	 at	 x0.	 Condition	 (1.1)	 is	 called	 a	 necessary
condition	for	a	local	minimum;	that	is,	if	f	has	a	local	minimum	at	x0,	then	(1.1)
necessarily	 follows.	 However,	 equation	 (1.1)	 is	 not	 sufficient	 for	 a	 local
minimum;	that	is,	if	(1.1)	holds,	it	does	not	guarantee	that	x0	provides	an	actual
minimum.	 The	 following	 conditions	 are	 sufficient	 conditions	 for	 f	 to	 have	 a
local	minimum	at	x0,

provided	f″	exists.	Again,	similar	conditions	can	be	formulated	for	local	maxima.
If	(1.1)	holds,	we	say	f	is	stationary	at	x0	and	that	x0	is	an	critical	point	of	f.
The	calculus	of	variations	deals	with	generalizations	of	this	problem	from	the

calculus.	 Rather	 than	 find	 conditions	 under	 which	 functions	 have	 extreme
values,	the	calculus	of	variations	deals	with	extremizing	general	quantities	called
functionals.	A	 functional	 is	 a	 rule	 that	 assigns	 a	 real	 number	 to	 each	 function
y(t)	in	a	well-defined	class.	Like	a	function,	a	functional	is	a	rule	or	association,
but	 its	domain	is	a	set	of	functions	rather	 than	a	subset	of	real	numbers.	To	be
more	precise	let	A	be	a	set	of	functions	y,	z,…;	then	a	functional	J	on	A	is	a	rule
that	associates	to	each	y	 	A	a	real	number	denoted	by	J(y).	Figure	4.1	illustrates
this	notion	and	it	is	symbolically	represented	as	J	:	A	→	 .	We	say	J	maps	A	into
.



Figure	4.1	Schematic	of	a	functional	J:	A	→	reals	mapping	a	function	space	A
into	the	real	numbers.

A	fundamental	problem	of	the	calculus	of	variations	can	be	stated	as	follows:
Given	 a	 functional	 J	 and	 a	 well-defined	 set	 of	 functions	A,	 determine	 which
functions	in	A	afford	a	minimum	(or	maximum)	value	to	J.	The	word	minimum
can	 be	 interpreted	 as	 a	 local	minimum	 (if	A	 is	 equipped	with	 some	 device	 to
measure	closeness	of	its	elements)	or	an	absolute	minimum,	that	is,	a	minimum
relative	to	all	elements	in	A.	The	set	A	is	called	the	set	of	admissible	functions,
and	those	in	A	are	the	competing	functions	for	extremizing	J.	For	example,	the
set	 of	 admissible	 functions	might	 be	 the	 set	 of	 all	 continuous	 functions	 on	 an
interval	 [a,	 b],	 the	 set	 of	 all	 continuously	 differentiable	 functions	 on	 [a,	 b]
satisfying	the	condition	f(a)	=	0,	or	whatever,	as	long	as	the	set	is	well	defined.
Later	we	impose	some	general	conditions	on	A.	For	 the	most	part	 the	classical
calculus	 of	 variations	 restricts	 itself	 to	 functionals	 that	 are	 defined	 by	 certain
integrals	and	to	the	determination	of	both	necessary	and	sufficient	conditions	for
extrema.	The	problem	of	extremizing	a	functional	J	over	the	set	A	is	also	called	a
variational	problem.	Several	examples	are	presented	in	the	next	section.
In	summary,	the	calculus	of	variations	may	be	characterized	as	the	‘calculus	of

functionals.’	 In	 this	 chapter	 we	 restrict	 ourselves	 to	 an	 analysis	 of	 necessary
conditions	 for	 extrema.	Applications	 of	 the	 calculus	 of	 variations	 are	 found	 in
geometry,	 physics,	 engineering,	 numerical	 analysis,	 ordinary	 and	 partial
differential	equations,	and	optimal	control	theory.



4.1.2	Examples
We	now	formulate	a	few	classical	variational	problems	to	 illustrate	 the	notions
of	a	functional	and	the	corresponding	admissible	functions.

Example	4.1
(Arclength)	Let	A	be	 the	 set	of	all	 continuously	differentiable	 functions	on	an
interval	a	≤	x	≤	b	that	satisfy	the	boundary	conditions	y(a)	=	y0,	y(b)	=	y1.	Let	J
be	the	arclength	functional	on	A	defined	by

To	each	y	in	A	the	functional	J	associates	a	real	number	that	is	the	arclength	of
the	curve	y	 =	y(x)	 between	 the	 two	 fixed	points	P:	 (a,	y0)	 and	Q:	 (b,	 y1).	 The
associated	 problem	 in	 the	 calculus	 of	 variations	 is	 to	 minimize	 J,	 that	 is,	 the
arclength,	over	the	set	A.	Clearly	the	minimizing	arc	is	the	straight	line	between
P	and	Q	given	by

The	general	methods	of	the	calculus	of	variations	lead	to	a	proof	of	this	fact:	the
shortest	distance	between	two	points	is	a	straight	line.

Example	4.2
(Brachistochrone	problem)	A	bead	of	mass	m	with	 initial	velocity	zero	slides
with	no	friction	under	the	force	of	gravity	g	from	a	point	(0,	b)	to	a	point	(a,	0)
along	a	wire	defined	by	a	curve	y	=	y(x)	in	the	xy	plane.	Which	curve	leads	to	the
fastest	 time	 of	 descent?	 Historically	 this	 problem	 was	 important	 in	 the
development	 of	 the	 calculus	 of	 variations.	 J.	 Bernoulli	 posed	 it	 in	 1696	 and
several	 well-known	 mathematicians	 of	 that	 day	 proposed	 solutions;	 Euler’s
solution	led	to	general	methods	that	were	useful	in	solving	a	wide	variety	of	such
problems.	The	solution	curve	itself	is	an	arc	of	a	cycloid,	the	curve	traced	out	by
a	 point	 on	 the	 rim	 of	 a	 rolling	wheel;	 so	 the	brachistochrone,	 or	 the	 curve	 of
shortest	 time,	 is	 a	 cycloid.	To	 formulate	 this	problem	analytically	we	compute
the	time	of	descent	T	for	a	fixed	curve	y	=	y(x)	connecting	the	points	(0,	b)	and
(a,	 0)	 (see	Fig.	4.2).	Letting	 s	 denote	 the	 arc-length	 along	 the	 curve	measured



from	the	initial	point	(0,	b),	we	have

Figure	4.2	The	brachistochrone	problem.

where	S	is	the	total	arc-length	of	the	curve	and	v	denotes	the	velocity.	Because	ds
=	(1	+	y′(x)2)1/2	dx	we	have

To	 obtain	 an	 expression	 for	 v	 in	 terms	 of	 x	 we	 use	 the	 fact	 that	 energy	 is
conserved	energy	conservation;	that	is,

In	terms	of	our	notation,

Solving	for	v	gives

Therefore	the	time	required	for	the	bead	to	descend	is

(1.2)	
where	we	have	explicitly	noted	that	T	depends	on	the	curve	y.	Here,	 the	set	of
admissible	 functions	A	 is	 the	 set	 of	 all	 continuously	 differentiable	 functions	 y



defined	on	0	≤	x	≤	a	that	satisfy	the	boundary	conditions	y(0)	=	b,	y(a)	=	0,	and
the	conditions

Equation	(1.2)	 defines	 a	 functional	 on	A.	 A	 real	 number	 is	 associated	 to	 each
curve,	 namely	 the	 time	 required	 for	 the	 bead	 to	 descend	 the	 curve.	 The
associated	variational	problem	is	to	minimize	T(y),	where	y	 	A,	 that	 is,	 to	find
which	 curve	 y	 in	 A	 minimizes	 the	 time.	 Because	 of	 the	 fixed	 boundary
conditions,	this	problem,	like	Example	4.1,	is	called	a	fixed-endpoint	problem.

Example	4.3
Let	A	be	the	set	of	all	nonnegative	continuous	functions	on	an	interval	x1	≤	x	≤	x,
and	define	the	functional	J	on	A	by

which	 gives	 the	 area	 under	 the	 curve	 y	 =	 y(x).	 Clearly	 y(x)	 =	 0	 provides	 an
absolute	minimum	for	J	and	there	is	no	maximum.
The	types	of	functional	that	are	of	interest	in	the	classic	calculus	of	variations

are	ones	defined	by	integral	expressions	of	the	form

(1.3)	
where	L	 =	L(x,	 y,	 y′)	 is	 some	 given	 function	 and	A	 is	 a	well-defined	 class	 of
functions.	 In	 the	 last	 three	examples	 the	 functionals	are	each	of	 the	 form	(1.3)
with

(1.4)	

(1.5)	
(1.6)	

respectively.	 The	 function	 L	 is	 called	 the	 Lagrangian	 (after	 Lagrange).	 We
assume	that	L	is	twice	continuously	differentiable	in	each	of	its	three	arguments.
It	 is	 customary	 to	 drop	 the	 independent	 variable	x	 in	 parts	 of	 the	 integrand	 in
(1.3)	and	just	write



As	is	customary	practice	in	physics,	in	problems	where	time	is	the	independent
variable	we	often	write

where	the	overdot	on	y	denotes	differentiation	with	respect	to	t.

EXERCISES
1.	Show	that	the	functional

where	 y	 is	 continuously	 differentiable	 on	 0	 ≤	 t	 ≤	 1,	 actually	 assumes	 its
maximum	value	2/π	for	the	function	y(t)	=	−t.
2.	 Consider	 the	 functional	 J(y)	 =	 ƒ10	 (1	 +	 x)	 (y′)2	 dx,	 where	 y	 is	 twice
continuously	 differentiable	 and	 y(0)	 =	 0,	 y(1)	 =	 1.	Of	 all	 functions	 of	 the
form	y(x)	=	x	+	c1x(1	−	x)	+	c2x2(1	−	x),	where	c1	and	c2	are	constants,	find
the	one	that	minimizes	J.



4.2	Necessary	Conditions	for	Extrema

4.2.1	Normed	Linear	Spaces
As	noted	 in	Section	4.1,	 a	necessary	condition	 for	 a	 function	 f	 to	 have	 a	 local
minimum	at	some	point	x0	is	f′(x0)	=	0.	A	similar	condition	holds	for	functionals,
provided	 the	 concept	 of	 derivative	 can	 be	 defined.	 In	 elementary	 calculus	 the
derivative	of	a	function	f	at	x0	is	defined	by	a	limit	process,	that	is,

if	the	limit	exists.	For	a	functional	J:	A	→	 ,	this	formula	makes	no	sense	if	f	is
replaced	 by	 J,	 and	 x0	 and	 Δx	 are	 replaced	 by	 functions	 in	 A.	 However,	 the
essence	 of	 the	 derivative,	 namely	 the	 limit	 process,	 can	 be	 carried	 over	 in	 a
natural	way	to	functionals.
To	define	the	derivative	of	a	functional	J	at	some	function	y0	in	its	domain	A,

we	 require	 a	 notion	 of	 closeness	 in	 the	 set	 A	 so	 that	 the	 value	 J(y0)	 can	 be
compared	to	J(y)	for	a	function	y	close	to	y0.	To	carry	out	this	idea	in	a	general
manner	we	assume	that	 the	set	of	admissible	functions	A	has	a	linear	algebraic
structure	 imposed	 on	 it.	 In	 particular,	 we	 assume	A	 is	 a	 subset	 of	 a	 normed
linear	 space	 where	 addition	 of	 functions	 and	 multiplication	 by	 scalars	 (real
numbers)	are	defined,	and	there	is	some	measuring	device	that	gives	definiteness
to	 the	 idea	of	 the	size	of	a	 function.	Actually,	 the	objects	 in	 the	normed	 linear
space	 may	 be	 vectors	 (in	 a	 geometric	 sense),	 functions,	 numbers,	 tensors,
matrices,	 and	 so	 on.	 Normed	 linear	 spaces	 whose	 elements	 are	 functions	 are
frequently	called	function	spaces.	We	make	a	precise	definition	in	two	parts—
first	we	define	a	linear	space,	and	then	we	define	a	norm.
A	 collection	 V	 of	 objects	 u,	 v,	 w,…	 is	 called	 a	 real	 linear	 space	 if	 the

following	conditions	are	satisfied:
1.	There	is	a	binary	operation	+	on	V	such	that	u	+	v	 	V	whenever	u,	v	 	V.
That	is,	V	is	closed	under	the	operation	+,	which	is	called	addition.
2.	Addition	is	commutative	and	associative;	that	is,	u	+	v	=	v	+	u	and	u	+	(v	+
w)	=	(u	+	v)	+	w.
3.	There	is	zero	element	0	in	V	that	has	the	property	that	u	+	0	=	u	for	all	u	



V.	 The	 zero	 element	 is	 also	 called	 the	 identity	 under	 addition	 and	 it	 is
unique.
4.	For	each	u	 	V	there	is	a	v	 	V	such	that	u	+	v	=	0.	The	element	v	is	called
the	inverse	and	u	and	is	denoted	by	−	u.
5.	For	each	u	 	V	and	α	 	 ,	scalar	multiplication	αu	is	defined	and	αu	 	V.
6.	Scalar	multiplication	is	associative	and	distributive;	that	is,

for	all	α,	β	 	 ,	and	u,	v	 	V.
7.	1u	=	u	for	all	u	 	V.
These	conditions,	or	axioms,	put	algebraic	structure	on	the	set	V.	The	first	four

conditions	state	that	there	is	an	addition	defined	on	V	that	satisfies	the	usual	rules
of	 arithmetic;	 the	 last	 three	 conditions	 state	 that	 the	 objects	 of	 V	 can	 be
multiplied	 by	 real	 numbers	 and	 that	 reasonable	 rules	 governing	 that
multiplication	hold	 true.	The	 reader	 is	already	 familiar	with	 some	examples	of
linear	 spaces.	 In	 linear	 algebra	 courses,	 linear	 spaces	 are	 usually	 called	 vector
spaces.

Example	4.4
(The	set	 n)	Here	an	object	is	an	n-tuple	of	real	numbers	(x1,	x2,…,	xn),	where	xi	
	 .	Addition	and	scalar	multiplication	are	defined	by

and

The	zero	element	is	(0,	0,…,	0)	and	the	inverse	of	(x1,…,	xn)	is	(−x1,…,	−xn).	It
is	easily	checked	that	the	remaining	properties	hold	true.	The	objects	of	 n	are
called	 vectors	 and	 they	 are	 represented	 by	 directed	 arrows	 in	 two	 and	 three
dimensions.

Example	4.5
(Continuous	 functions)	 The	 function	 space	C[a,	 b]	 represents	 the	 set	 of	 all
continuous	functions	 f,	g,	h,…	defined	on	an	 interval	a	≤	x	≤	b3	Addition	 and



scalar	multiplication	are	defined	pointwise	by

From	calculus	we	know	that	the	sum	of	two	continuous	functions	is	a	continuous
function,	and	a	continuous	function	multiplied	by	a	constant	is	also	a	continuous
function.	 The	 zero	 element	 is	 the	 0	 function,	 that	 is,	 the	 function	 that	 is
constantly	zero	on	[a,	b].	The	 inverse	of	 f	 is	−f,	which	 is	 the	 reflection	of	 f(x)
through	 the	 x	 axis.	 Again	 it	 is	 easily	 checked	 that	 the	 other	 conditions	 are
satisfied.	Geometrically	 the	 sum	 of	 the	 two	 functions	 f	 and	g	 is	 the	 graphical
sum,	and	multiplication	of	f	by	α	stretches	the	graph	of	f	vertically	by	a	factor	α.

Example	4.6
The	function	space	C1[a,	b]	is	the	set	of	all	continuous	functions	on	an	interval
[a,	b]	whose	derivative	is	also	continuous.	Addition	and	scalar	multiplication	are
defined	as	in	the	last	example.	It	is	clear	that	C1[a,	b]	satisfies	the	other	axioms
for	a	linear	space.	This	linear	space	is	commonly	called	the	set	of	continuously
differentiable,	or	 smooth,	 functions	on	 the	 interval	 [a,	b].	 In	 a	 similar	way	we
define	 C2[a,	 b]	 as	 the	 set	 of	 continuous	 functions	 on	 [a,	 b]	 whose	 second
derivatives	 are	 also	 continuous.	 Similarly,	 we	 define	 Cn[a,	 b]	 as	 the	 set	 of
continuous	functions	whose	nth	derivatives	are	continuous.
The	 linear	spaces,	or	 function	spaces,	 in	 the	 last	 two	examples	are	 typical	of

those	occurring	in	the	calculus	of	variations.	Later,	 in	Chapter	5,	we	define	the
Lp	spaces,	which	play	a	key	role	in	modern	applied	analysis.
A	linear	space	is	said	to	have	a	norm	if	there	is	a	rule	that	determines	the	size

of	a	given	element	in	the	space.	In	particular	if	V	is	a	linear	space,	then	a	norm
on	V	 is	 a	 mapping	 that	 associates	 to	 each	 y	 	 V	 a	 nonnegative	 real	 number
denoted	by	||y||,	called	the	norm	of	y,	and	that	satisfies	the	following	conditions:

1.	||y||	=	0	if,	and	only	if,	y	=	0.
2.	||αy||	=	|α|||y||	for	all	α	 	 ,	y	 	V.
3.	||y1	+	y2||	≤	||y1||	+	||y2||	for	all	y1,	y2	 	V.
A	normed	linear	space	is	a	linear	space	V	on	which	there	is	defined	a	norm	||

·||.	The	number	||y||	is	interpreted	as	the	magnitude	or	size	of	y.	Thus,	a	norm	puts
geometric	 structure	 on	 V.	 The	 examples	 show	 that	 there	 are	 several	 ways	 to
define	a	norm	on	a	given	space.



Example	4.7
The	linear	space	 n	is	a	normed	linear	space	if	we	define	a	norm	by

It	 is	 not	 difficult	 to	 show	 that	 this	 (Euclidean)	 norm	 satisfies	 the	 conditions	 1
through	3.	A	norm	on	a	linear	space	is	not	unique.	In	 n	the	quantity

also	defines	a	norm.

Example	4.8
C[a,	b]	becomes	a	normed	linear	space	if	we	define	a	norm	of	a	function	by

(2.1)	
This	norm	is	called	the	strong	norm.	The	quantity

(2.2)	
also	defines	a	norm	on	C[a,	b],	called	the	L1-norm.	Both	these	norms	provide	a
way	to	define	the	magnitude	of	a	continuous	function	on	[a,	b],	and	both	easily
satisfy	the	Axioms	1	through	3.

Example	4.9
In	the	function	space	C1[a,	b]	the	norm	defined	by

(2.3)	
is	 called	 the	 weak	 norm	 and	 it	 plays	 an	 important	 role	 in	 the	 calculus	 of
variations.	The	same	norm	could	also	be	defined	in	Cn[a,	b],	n	≥	2.
If	V	 is	 a	 normed	 linear	 space	with	 norm	 ||·||,	 then	 the	distance	 between	 the

elements	y1	and	y2	in	V	is	defined	by

The	motivation	for	this	definition	comes	from	the	set	of	real	numbers	 ,	where
the	absolute	value	|x|	is	a	norm.	The	distance	between	two	real	numbers	a	and	b
is	 |a	−	b|.	Another	example	 is	 the	distance	between	 two	 functions	y1	and	y2	 in
C1[a,	b]	measured	in	the	weak	norm	(2.3),



(2.4)	
Having	the	notion	of	distance	allows	us	to	talk	about	nearness.	Two	elements	of
a	 normed	 linear	 space	 are	 close	 if	 the	 distance	 between	 them	 is	 small.	 Two
functions	y1	and	y2	in	C1[a,	b]	are	close	 in	 the	weak	norm	(2.3)	 if	 the	quantity
||y1	 −	 y2||w	 is	 small;	 this	 means	 that	 y1	 and	 y2	 have	 values	 that	 do	 not	 differ
greatly,	and	 their	derivatives	do	not	differ	greatly.	The	 two	functions	y1	and	y2
shown	in	Fig.	4.3	are	not	close	in	the	weak	norm,	but	they	are	close	in	the	strong
norm	because	max	|y1(x)	−	y2(x)|	is	small.	Hence,	closeness	in	one	norm	does	not
imply	closeness	in	another.

Figure	4.3	Two	functions	in	C1[a,	b]	close	in	the	strong	norm	but	not	close	in
the	weak	norm.



4.2.2	Derivatives	of	Functionals
For	a	variational	problem	we	assume	the	set	of	admissible	functions	A	is	a	subset
of	a	normed	 linear	space	V.	Then	 the	 set	A	 can	 inherit	 the	norm	and	algebraic
properties	 of	 the	 space	V.	 Therefore	 the	 notions	 of	 local	maxima	 and	minima
make	sense.	If	J:	A	→	 	is	a	functional	on	A,	where	A	⊆	V	and	V	 is	a	normed
linear	space	with	norm	||·||,	then	J	has	a	local	minimum	at	y0	 	A,	provided	J(y0)
≤	J(y)	for	all	y	 	A	with	||y	−	y0||	<	d,	for	some	positive	number	d.	We	call	y0	an
extremal	of	J	and	say	J	is	stationary	at	y0.	In	the	special	case	that	A	is	a	set	of
functions	and	A	⊆	C1[a,	b]	with	 the	weak	norm,	we	say	J	has	a	weak	relative
minimum	at	y0.	If	the	norm	on	C1[a,	b]	is	the	strong	norm,	then	we	say	J	has	a
strong	relative	minimum	at	y0.
In	 the	 calculus	 of	 variations	 the	norm	comes	 into	play	only	 in	 the	 theory	of

sufficient	 conditions	 for	 extrema.	 In	 this	 chapter	 we	 focus	 only	 on	 necessary
conditions.
To	motivate	 the	 definition	 of	 a	 derivative	 of	 a	 functional,	 let	 us	 rewrite	 the

limit	definition	of	derivative	of	a	function	f	at	x0	as

The	differential	of	f	at	x0,	defined	by	df	(x0,	Δx)	=	f’(x0)	Δx,	is	the	linear	part	in
the	increment	Δx	of	the	total	change	Δf	 	f(x0	+	Δx)	−	f	(x0).	Therefore,

Now	consider	 a	 functional	J:	A	→	 ,	where	A	 is	 a	 subset	 of	 a	 normed	 linear
space	V.	Specifically,	V	may	be	a	function	space.	Let	y0	 	A.	To	increment	y0	we
fix	an	element	h	 	V	such	that	y0	+	εh	is	in	A	for	all	real	numbers	ε	sufficiently
small.	The	 increment	εh	 is	 called	 the	variation	of	 the	 function	y0	 and	 is	often
denoted	 by	 δy0;	 that	 is,	 δy0	 	 εh.	 Then	 we	 define	 the	 total	 change	 in	 the
functional	J	due	to	the	change	εh	in	y0	by

Our	goal	is	to	calculate	the	linear	part	of	this	change.	To	this	end,	we	define	the
real-valued	function

which	is	a	function	of	a	real	variable	ε	defined	by	evaluating	the	functional	J	on



the	 one	 parameter	 family	 of	 functions	 y0	 +	 εh.	 Assuming	 	 is	 sufficiently
differentiable	in	ε,	we	have

Therefore,	 ’(0)ε	is	like	a	differential	for	the	functional	J,	being	the	linear	part,
or	lowest	order,	of	the	increment	ΔJ	Thus,	we	are	led	to	the	following	definition.

Definition	4.10
Let	J:	A	→	 	be	a	functional	on	A,	where	A	⊆	V,	and	V	a	normed	linear	space.
Let	y0	 	A	and	h	 	V	such	that	y0	+	εh	 	A	for	all	ε	sufficiently	small.	Then	the
first	variation	(also	called	the	G teaux	derivative)	of	J	at	y0	in	the	direction	of
h	is	defined	by

(2.5)	
provided	the	derivative	exists.	Such	a	direction	h	for	which	(2.5)	exists	is	called
an	admissible	variation	at	y0.
There	 is	 an	 analogy	 of	 δJ	 with	 a	 directional	 derivative.	 Let	 f(X)	 be	 a	 real

valued	function	defined	for	X	=	(x,	y)	in	 2,	and	let	n	=	(n1,	n2)	be	a	unit	vector.
We	recall	from	calculus	that	the	directional	derivative	of	f	at	X0	=	(x0,	y0)	in	the
direction	n	is	defined	by

When	(2.5)	is	written	out	in	limit	form,	it	becomes

and	the	analogy	stands	out	clearly.
The	 recipe	 for	 calculating	 the	 first	 variation	δJ(y0,	h)	 is	 to	 use	 (2.5);	 that	 is,

evaluate	J	 at	y0	 +	 εh,	where	h	 is	 chosen	 such	 that	 y0	 +	 εh	 	A;	 then	 take	 the
derivative	with	 respect	 to	ε,	afterwards	setting	ε	=	0.	Examples	are	 in	 the	next
section.



4.2.3	Necessary	Conditions
Let	J:	A	→	 	 be	 a	 functional	 on	A,	 where	A	⊆	V,	 and	 let	 y0	 	A	 be	 a	 local
minimum	for	J	relative	to	a	norm	||·||	in	V.	Guided	by	results	from	the	calculus,
we	expect	that	the	first	variation	δ	J	of	J	should	vanish	at	y0.	It	is	not	difficult	to
see	 that	 this	 is	 indeed	 the	 case.	 Let	 h	 ε	 V	 be	 such	 that	 y0	 +	 εh	 is	 in	 A	 for
sufficiently	small	values	of	ε.	Then	the	function	 (ε)	defined	by

has	a	local	minimum	at	ε	=	0.	Hence	from	ordinary	calculus	we	must	have	 ’(0)
=	0	or	δJ(y0,	h)	=	0.	This	follows	regardless	of	which	h	 	V	is	chosen.	Hence	we
have	proved	the	following	theorem	that	gives	a	necessary	condition	for	a	 local
minimum.

Theorem	4.11
Let	J:	A	→	 	be	a	functional,	A	⊆	V.	If	y0	 	A	provides	a	local	minimum	for	J
relative	to	the	norm	||·||,	then

(2.6)	
for	all	admissible	variations	h.
The	 fact	 that	 (2.6)	 holds	 for	 all	 admissible	 variations	 h	 often	 allows	 us	 to

eliminate	h	from	the	condition	and	obtain	an	equation	just	in	terms	of	y0,	which
can	then	be	solved	for	y0.	 In	 the	calculus	of	variations,	 the	equation	for	y0	is	a
differential	equation.	Since	(2.6)	is	a	necessary	condition	we	are	not	guaranteed
that	solutions	y0	actually	will	provide	a	minimum.	Therefore,	all	we	know	is	that
y0	 satisfying	 (2.6)	 are	 extremals,	 which	 are	 the	 candidates	 for	 maxima	 and
minima.	In	other	words,	J(y)	is	stationary	at	y0	in	the	direction	h.

Example	4.12
Consider	the	functional	J(y)	=	ƒ10	(1	+	y′(x)2)dx,	where	y	 	C1[0,	1]	and	y(0)	=	0,
y(1)	=	1.	Let	y0(x)	=	x	and	h(x)	=	x(1	−	x).	Two	members	of	the	family	of	curves
y0	+	εh	=	x	+	εx(1	−	x)	are	sketched	in	Fig.	4.4.	These	are	the	variations	in	y0(x)
=	x.	We	evaluate	J	on	the	family	y0	+	εh	to	get



Figure	4.4	Two	members	of	the	one-parameter	family	of	curves	y0(x)	+	εh(x)	=	x
+	εx(1	−	x)	(dashed)	for	two	different	values	of	the	parameter	ε.

Then	 	and	 ’(0)	=	0.	Hence	we	conclude	that	δJ(y0,	h)	=	0	and	y0	=
x	is	an	extremal;	J	is	stationary	at	y0	=	x	in	the	direction	h	=	x(1	−	x).

EXERCISES
1.	Determine	whether	the	given	set	constitutes	a	real	linear	space	under	the
usual	operations	associated	with	elements	of	the	set.

a)	The	set	of	all	polynomials	of	degree	≤2.
b)	The	set	of	all	continuous	functions	on	[0,	1]	satisfying	f(0)	=	0.
c)	The	set	of	all	continuous	functions	on	[0,	1]	satisfying	f(1)	=	1.

2.	If	J(y)	=	ƒ10(x2	−	y2	+	(y′)2)dx,	y	 	C2[0,	1],	calculate	ΔJ	and	δJ(y,	h)	when
y(x)	=	x	and	h(x)	=	x2.
3.	 Consider	 the	 functional	 	 where	 y	 	C2	 and
y(0)	=	0	and	y(1)	=	1.	Show	that	δJ(y0,	h)	=	0	for	all	h	 	C2	and	h(0)	=	h(1)	=
0,	where	y0(x)	=	ln(1	+	x)/ln	2.
4.	Consider	the	functional	 .	Sketch	the	function	y0(x)	=
x	and	the	family	y0(x)	+	εh(x),	where	h(x)	=	sin	x.	Compute	 (ε)	 	J(y0	+	εh)



and	show	that	 (0)	=	0.	Deduce	that	J	is	stationary	at	x	in	the	direction	sin	x.
5.	Let	 ,	where	y	is	a	continuous	function
on	0	≤	x	≤	1.	Let	y	=	x	and	h	=	x	+	1,	0	≤	x	≤	1.	Compute	δJ(x,	h).
6.	Prove	that	(2.1)	and	(2.2)	both	satisfy	properties	for	a	norm	on	C[a,	b].
7.	In	C1[0,	1]	compute	the	distances	between	the	two	functions	y1(x)	=	0	and	

	in	both	the	weak	and	strong	norms.
8.	Show	that	the	first	variation	δJ(y0,	h)	satisfies	the	homogeneity	condition

9.	A	functional	J:	V	→	 	is	linear	if

and

Which	of	the	following	functionals	on	C1	[a,	b]	are	linear?
a)	

b)	

c)	
d)	

e)	

f)	 	 where	 G	 is	 a	 given	 differentiable
function

10.	A	functional	J:	V	→	 ,	where	V	is	a	normed	linear	space,	is	continuous
at	y0	 	V	if	for	any	ε	>	0	there	is	a	δ	>	0	such	that	|J(y)	−	J(y0)|	<	ε	whenever
||y	−	y0||	<	δ.

a)	Let	V	=	C1	[a,	b].	Prove	that	if	J	is	continuous	in	the	strong	norm,	then
it	is	continuous	in	the	weak	norm.
b)	Give	a	specific	example	to	show	that	continuity	in	the	weak	norm	does
not	imply	continuity	in	the	strong	norm.

11.	 Compute	 the	 first	 variation	 of	 the	 functionals	 on	 C1[a,	 b]	 given	 in
Exercise	5(a)−(f).
12.	Let	J:	V	→	 	be	a	linear	functional	and	V	a	normed	linear	space.	Prove
that	if	J	is	continuous	at	y0	=	0,	then	it	is	continuous	at	each	y	 	V.



13.	The	second	variation	of	a	functional	J:	A	→	 	at	y0	 	A	in	the	direction	h
is	defined	by

Find	the	second	variation	of	the	functional

where	y	 	C2[0,	1].



4.3	The	Simplest	Problem

4.3.1	The	Euler	Equation
The	simplest	problem	in	the	calculus	of	variations	is	to	find	a	local	minimum	for
the	functional

(3.1)	
where	y	 	C2[a,	b]	and	y(b)	=	y0,	y(b)	=	y1.	Here	L	is	a	given,	twice	continuously
differentiable	function	on	[a,	b]	×	 2,	and	||·||	is	some	norm	in	C2[a,	b].	Actually,
our	 assumption	 that	y	 is	 of	 class	C2	 could	 be	weakened	 to	y	 	C1	 [a,	 b].	 The
increased	smoothness	assumption,	however,	will	make	the	work	a	little	easier.	In
this	 discussion	 we	 assume	 that	 the	 competing	 functions	 are	 class	 C2.	 The
references	 at	 the	 end	 of	 the	 chapter	 can	 be	 consulted	 to	 see	 how	 the	 analysis
changes	if	smoothness	conditions	are	relaxed.
We	seek	a	necessary	condition.	Guided	by	 the	 last	 two	sections	we	compute

the	 first	 variation	 of	 J.	Let	y	 be	 a	 local	minimum	 and	h	 a	 twice	 continuously
differentiable	function	satisfying	h(a)	=	h(b)	=	0.	Then	y	+	εh	 is	an	admissible
function	and

Therefore,

where	Ly	denotes	∂L/∂y	and	Ly’	denotes	∂L/∂y’.	Hence,

Therefore,	a	necessary	condition	for	y(x)	to	be	a	local	minimum	is



(3.2)	
for	all	h	 	C2[a,	b]	with	h(a)	=	h(b)	=	0.
Condition	(3.2)	 is	not	useful	as	 it	 stands	for	determining	y(x).	Using	 the	 fact

that	 it	must	 hold	 for	 all	h,	 however,	we	 can	 eliminate	h	 and	 thereby	 obtain	 a
condition	 for	 y	 alone.	 First	 we	 integrate	 the	 second	 term	 in	 (3.2)	 by	 parts	 to
obtain
(3.3)	

Because	h	 vanishes	 at	 a	 and	 b,	 the	 boundary	 terms	 vanish	 and	 the	 necessary
condition	becomes

(3.4)	
for	all	h	 	C2[a,	b]	with	h(a)	=	h(b)	=	0.	The	following	lemma,	due	to	Lagrange,
provides	the	final	step	in	our	calculation	by	effectively	allowing	us	to	eliminate	h
from	 condition	 (3.4).	 This	 lemma	 is	 one	 version	 of	 what	 is	 called	 the
fundamental	lemma	of	the	calculus	of	variations.

Lemma	4.13
If	f(x)	is	continuous	on	[a,	b]	and	if

(3.5)	
for	every	twice	continuously	differentiable	function	h	with	h(a)	=	h(b)	=	0,	then
f(x)	=	0	for	x	 	[a,	b].

Proof
The	 proof	 is	 by	 contradiction.	 Assume	 for	 some	 x0	 in	 (a,	 b)	 that	 f(x0)	 >	 0.
Because	f	is	continuous,	f(x)	>	0	for	all	x	in	some	interval	(x1,	x2)	containing	x0.
For	h(x)	choose



a	graph	of	which	is	shown	in	Fig.	4.5.	The	cubic	factors	(x	−	x1)3	and	(x2	−	x)3

appear	so	that	h	is	smoothed	out	at	x1	and	x2	and	is,	therefore,	of	class	C2.	Then

Figure	4.5	Plot	of	the	C2	function	h(x).

because	f	is	positive	on	(x1,	x2).	This	contradicts	(3.5)	and	the	lemma	is	proved.
Applying	the	lemma	to	(3.4)	with	f(x)	=	Ly(x,	y,	y′)	−	(d/dx)Ly’	(x,	y,	y′),	which

is	 continuous	 because	 L	 is	 twice	 continuously	 differentiable,	 we	 obtain	 the
following	important	theorem.

Theorem	4.14
If	a	function	y	provides	a	local	minimum	for	the	functional

where	y	 	C2[a,	b]	and

then	y	must	satisfy	the	differential	equation

(3.6)	
Equation	(3.6)	is	called	the	Euler	equation	or	Euler-Lagrange	equation.	It	is

a	 second-order	 ordinary	 differential	 equation	 that	 is,	 in	 general,	 nonlinear.	 It
represents	a	necessary	condition	for	a	local	minimum	and	it	is	analogous	to	the
derivative	condition	f′(x)	=	0	in	differential	calculus.	Therefore	its	solutions	are
not	necessarily	local	minima.	The	solutions	of	(3.6)	are	(local)	extremals.	If	y	is



an	extremal,	then	δJ(y,	h)	=	0	for	all	h,	and	J	is	stationary	at	y.
By	 writing	 out	 the	 total	 derivative	 in	 (3.6)	 using	 the	 chain	 rule,	 the	 Euler

equation	becomes

Thus	it	is	evident	that	the	Euler	equation	is	second	order,	provided	Ly’y′	≠	0.



4.3.2	Solved	Examples
We	now	determine	the	extremals	for	some	specific	variational	problems.

Example	4.15
Find	the	extremals	of	the	functional

The	 Lagrangian	 is	L	 =	 (y’)2	 +	 3y	 +	 2x.	 Then	Ly	 =	 3,	Ly′	 =	 2y′	 and	 the	 Euler
equation	is

Integrating	twice	gives	the	extremals

The	 boundary	 conditions	 readily	 give	 C2	 =	 0	 and	 C1	 =	 1/4.	 Therefore	 the
extremal	of	J	satisfying	the	boundary	conditions	is

Further	calculations	would	be	required	to	determine	whether	 this	maximizes	or
minimizes	J.

Example	4.16
The	arclength	functional	is

where	y	 	C2[a,	b],	y(a)	=	y0	and	y(b)	=	y1.	A	necessary	condition	for	J	to	have	a
local	minimum	at	y	is	that	y	satisfy	the	Euler	equation

or



Hence,

where	C	is	a	constant.	Solving	for	y′	gives

where	K	is	a	constant.	Therefore,

and	 the	 extremals	 are	 straight	 lines.	 Applying	 the	 boundary	 conditions
determines	the	constants	K	and	M,

Therefore	the	unique	extremal	is	 ,	which	is	the	equation
of	the	straight	line	connecting	(a,	y0)	and	(b,	y1).



4.3.3	First	Integrals
The	 Euler	 equation	 is	 a	 second-order	 ordinary	 differential	 equation	 and	 the
solution	will	generally	contain	two	arbitrary	constants.	In	special	cases,	when	the
Lagrangian	 does	 not	 depend	 explicitly	 on	 one	 of	 its	 variables	 x,	 y,	 or	 y′,	 it	 is
possible	to	make	an	immediate	simplification	of	the	Euler	equation.	We	consider
three	cases:

1.	If	L	=	L(x,	y),	then	the	Euler	equation	is	Ly(x,	y)	=	0,	which	is	an	algebraic
equation.
2.	If	L	=	L(x,	y′),	then	the	Euler	equation	is

(3.7)	
where	C	is	any	constant.
3.	If	L	=	L(y,	y’),	then	the	Euler	equation	is

(3.8)	
where	C	is	any	constant.
Propositions	 (1)	and	 (2)	 follow	obviously	 from	 the	Euler	 equation.	To	prove

(3)	we	note	that

Equations	 (3.7)	 and	 (3.8)	 are	 first	 integrals	 of	 the	 Euler	 equation.	 A	 first
integral	 of	 a	 second-order	 differential	 equation	 F(x,	 y,	 y’,	 y”)	 =	 0	 is	 an
expression	 of	 the	 form	 g(x,	 y,	 y′),	 involving	 one	 lower	 derivative,	 which	 is
constant	whenever	y	 is	 a	 solution	 of	 the	 original	 equation	F(x,	 y,	 y’,	 y”)	 =	 0.
Hence

represents	 an	 integration	 of	 the	 second-order	 equation.	 In	 the	 calculus	 of
variations,	if	L	is	independent	of	x,	then	L	−	y’Ly’	is	a	first	integral	of	the	Euler
equation	and	we	say	L	−	y′Ly’	 is	constant	on	 the	extremals.	 In	mechanics,	 first
integrals	are	called	conservation	laws.



Example	4.17
(Brachistochrone)	We	determine	 the	extremals	of	 the	brachistochrone	problem.
The	functional	is

subject	 to	 the	 boundary	 conditions	 y(0)	 =	 b,	 y(a)	 =	 0.	 The	 Lagrangian	 is
independent	of	x,	and	therefore	a	first	integral	of	the	Euler	equation	is	given	by
(3.8).	Then

which	simplifies	to

Taking	the	square	root	of	both	sides	and	separating	variables	gives

where	 the	 minus	 sign	 is	 taken	 because	 dy/dx	 <	 0.	 The	 last	 equation	 can	 be
integrated	by	making	the	trigonometric	substitution

(3.9)	
One	obtains

which	yields

(3.10)	
Equations	 (3.9)	 and	 (3.10)	 are	 parametric	 equations	 for	 a	 cycloid.	 Here,	 in
contrast	 to	 the	 problem	 of	 finding	 the	 curve	 of	 shortest	 length	 between	 two
points,	it	is	not	clear	that	the	cycloids	just	obtained	actually	minimize	the	given
functional.	Further	calculations	would	be	required	for	confirmation.

Example	4.18



(Fermat’s	 principle)	 In	 the	 limit	 of	 geometric	 optics	 the	 principle	 of	 Fermat
(1601–1665)	 states	 that	 the	 time	 elapsed	 in	 the	 passage	 of	 light	 between	 two
fixed	 points	 in	 a	 medium	 is	 an	 extremum	 with	 respect	 to	 all	 possible	 paths
connecting	the	points.	For	simplicity	we	consider	only	light	rays	that	lie	in	the	xy
plane.	 Let	 c	 =	 c(x,	 y)	 be	 a	 positive	 continuously	 differentiable	 function
representing	the	velocity	of	light	in	the	medium.	Its	reciprocal	n	=	c−1	is	called
the	index	of	refraction	of	the	medium.	If	P:	(x1,	y1)	and	Q:	(x2,	y2)	are	two	fixed
points	in	the	plane,	then	the	time	required	for	light	to	travel	along	a	given	path	y
=	y(x)	connecting	the	two	points	is

Therefore,	the	actual	light	path	connecting	P	and	Q	is	the	one	that	extremizes	the
integral	T(y).	The	differential	equation	for	the	extremal	path	is	the	Euler	equation

EXERCISES
1.	Find	the	extremal(s).

a)	

b)	

c)	
2.	Find	extremals	for	the	following	functionals:

3.	Show	that	the	Euler	equation	for	the	functional

has	the	form

4.	Find	an	extremal	for



5.	 Prove	 that	 the	 functional	

,	where	p	 and	q	 are	 positive,	 assumes	 its	 absolute	minimum	value	 for	 the
function	y	=	Y(x),	where	Y	is	the	solution	to	the	Euler	equation.
6.	 Obtain	 a	 necessary	 condition	 for	 a	 function	 y	 	C[a,	 b]	 to	 be	 a	 local
minimum	of	the	functional

where	K(s,	t)	is	a	given	continuous	function	of	s	and	t	on	the	square	R:	{(s,	t)
|	a	≤	s	≤	b,	a	≤	t	≤	b},	K(s,	t)	=	K(t,	s),	and	f	 	C[a,	b].	(The	Euler	equation	is
an	integral	equation.)
7.	Find	the	extremal	for	J(y)	=	ƒ10(1	+	x)(y′)2dx,	y	 	C2	and	y(0)	=	0,	y(1)	=
1.	What	is	the	extremal	if	the	boundary	condition	at	x	=	1	is	changed	to	y′(1)
=	0?
8.	Describe	the	paths	of	light	rays	in	the	plane	where	the	medium	has	index
of	refraction	given	by

a)	
b)	
c)	
d)	

9.	Show	that	the	Euler	equation	for	the	problem

can	be	written	in	the	form

10.	Show	that	the	minimal	area	of	a	surface	of	revolution	is	a	catenoid,	that
is,	the	surface	found	by	revolving	a	catenary

about	the	x	axis.



11.	Find	the	extremals	for

12.	A	Lagrangian	has	the	form

where	G	is	a	given	differentiable	function.	Find	Euler’s	equation	and	a	first
integral.
13.	Find	extremals	of	the	functional

over	 the	 domain	 .	 Show	 that	 J
does	not	assume	a	maximum	value	at	these	extremals.	Explain	why	it	does,
or	does	not,	follow	that	the	extremals	yield	minimum	values	of	J.
14.	(Economics)	Let	y	=	y(t)	be	an	individual’s	total	capital	at	time	t	and	let	r
=	r(t)	be	the	rate	that	capital	is	spent.	If	U	=	U(r)	 is	 the	rate	of	enjoyment,
then	his	total	enjoyment	over	a	lifetime	0	≤	t	≤	T	is

where	 the	 exponential	 factor	 reflects	 the	 fact	 that	 future	 enjoyment	 is
discounted	 over	 time.	 Initially,	 his	 capital	 is	 Y,	 and	 he	 desires	 y(T)	 =	 0.
Because	his	capital	gains	interest	at	rate	α,

Assume	α	<	2β	<	2α.	Determine	r(t)	and	y(t)	for	which	the	individual’s	total
enjoyment	is	maximized	if	his	enjoyment	function	is	U(r)	=	2√r.



4.4	Generalizations

4.4.1	Higher	Derivatives
In	the	simplest	variational	problem	the	Lagrangian	depends	on	x,	y,	and	y’.	An
obvious	generalization	 is	 to	 include	higher	derivatives	 in	 the	Lagrangian.	Thus
we	consider	the	second-order	problem

(4.1)	
where	A	is	the	set	of	all	y	 	C4[a,	b]	that	satisfy	the	boundary	conditions

(4.2)	
The	function	L	is	assumed	to	be	twice	continuously	differentiable	in	each	of	its
four	arguments.
Again	we	seek	a	necessary	condition.	Let	y	 	A	provide	a	local	minimum	for	J

with	respect	to	some	norm	in	C4[a,	b],	and	choose	h	 	C4[a,	b]	satisfying

(4.3)	
To	compute	the	first	variation,	we	form	the	function	J(y	+	εh).	Then

where	Ly,	and	Ly’,	and	Ly″	are	evaluated	at	(x,	y,	y’,	y”).	In	this	calculation	two
integrations	by	parts	are	required	on	the	term	Ly″h“.	Proceeding,

(4.4)	



By	(4.3)	the	terms	on	the	boundary	at	x	=	a	and	x	=	b	vanish.	Therefore,

(4.5)	
for	all	h	 	C4[a,	b]	satisfying	(4.3).	To	complete	the	argument,	another	version	of
the	fundamental	lemma	is	needed.

Lemma	4.19
If	f	is	a	continuous	function	on	[a,	b],	and	if

for	all	h	 	C4[a,	b]	satisfying	(4.3),	then	f(x)	 	0	for	x	 	[a,	b].
The	proof	is	nearly	the	same	as	before	and	is	left	as	an	exercise.	Applying	this

lemma	to	(4.5)	gives	a	necessary	condition	for	y	to	be	a	local	minimum,	that	is,

(4.6)	
This	 is	 the	 Euler	 equation	 for	 the	 second-order	 problem	 defined	 by	 (4.1).
Equation	 (4.6)	 is	 a	 fourth-order	 ordinary	 differential	 equation	 for	 y,	 and	 its
general	 solution	 involves	 four	 arbitrary	 constants	 that	 can	 be	 determined	 from
the	boundary	conditions.
The	nth-order	variational	problem	is	defined	by	the	functional

y	 	C2n[a,	b],	with

The	Euler	equation	in	this	case	is

which	is	an	ordinary	differential	equation	of	order	2n.



4.4.2	Several	Functions
The	functional	J	may	depend	on	several	functions	y1,…,	yn.	To	fix	the	notion,	let
n	=	2	and	consider	the	functional

(4.7)	
where	y1,	y2	 	C2[a,	b]	with	boundary	conditions	given	by

(4.8)	
In	this	case	suppose	the	pair	y1	and	y2	provide	a	local	minimum	for	J.	We	vary
each	independently	by	choosing	h1	and	h2	in	C2[a,	b],	satisfying

(4.9)	
and	forming	a	one-parameter	admissible	pair	of	functions	y1	+	εh1	and	y2	+	εh2.
Then

and	 	has	a	local	minimum	at	ε	=	0.	Now

Integrating	the	last	two	terms	in	the	integrand	by	parts	and	applying	conditions
(4.9)	gives

(4.10)	
for	all	h1,	h2	 	C2[a,	b].	Picking	h2	=	0	on	[a,	b]	gives

for	all	h1	 	C2[a,	b].	By	the	fundamental	lemma,

(4.11)	



Now	in	(4.10)	pick	h1	=	0	on	[a,	b].	Then

for	all	h1	 	C2[a,	b].	Applying	the	fundamental	lemma	again	yields

(4.12)	
Consequently,	 if	 the	pair	y1,	y2	provides	a	 local	minimum	for	J,	 then	y1	and	y2
must	satisfy	the	system	of	two	ordinary	differential	equations	(4.11)	and	(4.12).
These	 are	 the	 Euler	 equations	 for	 the	 problem.	 The	 four	 arbitrary	 constants
appearing	in	the	general	solution	can	be	determined	from	the	boundary	data.
In	general,	if	J	depends	on	n	functions,

(4.13)	
where	yi	 	C2[a,	b],	and

then	a	necessary	condition	for	y1,…,	yn	to	provide	a	local	minimum	for	J	is	that
y1,…,	yn	satisfy	the	Euler	system	of	n	ordinary	differential	equations

(4.14)	
If	the	Lagrangian	L	 is	 independent	of	explicit	dependence	on	x,	 that	is,	Lx	=	0,
then	it	is	left	as	an	exercise	to	show	that

is	a	first	integral	of	(4.14).



4.4.3	Natural	Boundary	Conditions
Let	 us	 consider	 the	 following	 problem:	 A	 river	 with	 parallel	 straight	 banks	 b
units	apart	has	stream	velocity	given	by	v(x,	y)	=	v(x)j,	where	j	is	the	unit	vector
in	the	y	direction	(see	Fig.	4.6).	Assuming	that	one	of	the	banks	is	the	y	axis	and
that	 the	point	 (0,	0)	 is	 the	point	of	departure,	what	 route	should	a	boat	 take	 to
reach	the	opposite	bank	in	the	shortest	possible	time?	Assume	that	the	speed	of
the	boat	in	still	water	is	c,	where	c	>	v.

Figure	4.6	Path	y	=	y(x)	across	a	river	with	velocity	field	v(x,	y)	=	v(x)j.

This	 problem	 differs	 from	 those	 in	 earlier	 sections	 in	 that	 the	 right-hand
endpoint,	 the	 point	 of	 arrival	 on	 the	 line	 x	 =	 b,	 is	 not	 specified;	 it	 must	 be
determined	 as	 part	 of	 the	 solution	 to	 the	 problem.	 It	 can	 be	 shown	 (see	 the
Exercises)	that	the	time	required	for	the	boat	to	cross	the	river	along	a	given	path
y	=	y(x)	is

(4.15)	
The	variational	problem	is	to	minimize	J(y)	subject	to	the	conditions

Such	 a	 problem	 is	 called	 a	 free	 endpoint	problem,	 and	 if	y(x)	 is	 an	 extremal
then	 a	 certain	 condition	must	 hold	 at	 x	 =	 b.	 Conditions	 of	 these	 types,	 called
natural	boundary	conditions,	 are	 the	 subject	of	 this	 section.	 Just	 as	 common
are	problems	where	both	endpoints	are	unspecified.
To	fix	the	notion	we	consider	the	problem



(4.16)	
where	y	 	C2[a,	b]	and
(4.17)	

Let	y	be	a	local	minimum.	Then	the	variations	h	must	be	C2	functions	that	satisfy
the	single	condition
(4.18)	

Figure	4.7	shows	several	variations	y	+	εh	of	the	extremal	y.	No	condition	on	h
at	x	=	b	is	required,	because	the	admissible	functions	are	unspecified	at	the	right
endpoint.

Figure	4.7	Variations	y	=	y(x)	+	εh(x)	of	y(x)	satisfying	h(a)	=	0.

The	first	variation	is

Because	h(a)	=	0,	a	necessary	condition	for	y	to	be	a	local	minimum	is

(4.19)	
for	every	h	 	C2(a,	b)	satisfying	h(a)	=	0.	Because	 (4.19)	 holds	 for	 these	h,	 it
must	hold	for	h	also	satisfying	the	condition	h(b)	=	0.	Hence



(4.20)	
and	by	the	fundamental	lemma,	y	must	satisfy	the	Euler	equation

(4.21)	
Then,	substituting	(4.21)	into	(4.19)	gives

(4.22)	
Now,	because	(4.22)	holds	for	all	choices	of	h(b),	we	must	have

(4.23)	
which	 is	 a	 condition	 on	 the	 extremal	 y	 at	 x	 =	 b.	 Equation	 (4.23)	 is	 called	 a
natural	 boundary	 condition.	 The	 Euler	 equation	 (4.21),	 the	 fixed	 boundary
condition	 y(a)	 =	A,	 and	 the	 natural	 boundary	 condition	 (4.23)	 are	 enough	 to
determine	the	extremal	for	the	variational	problem	(4.16)	and	(4.17).	By	similar
arguments	 if	 the	 left	 endpoint	 y(a)	 is	 unspecified,	 then	 the	 natural	 boundary
condition	on	an	extremal	y	at	x	=	a	is	Ly’(a,	y(a),y′(a))	=	0.

Example	4.20
We	find	the	natural	boundary	condition	at	x	=	b	 for	 the	river	crossing	problem
(4.15).	In	this	case

The	boundary	condition	(4.23)	becomes

which	can	be	simplified	to

Thus,	 the	 slope	 that	 the	boat	 enters	 the	bank	at	x	 =	b	 is	 the	 ratio	 of	 the	water
speed	at	the	bank	to	the	boat	velocity	in	still	water.

Example	4.21
Find	 the	 differential	 equation	 and	 boundary	 conditions	 for	 the	 extremal	 of	 the
variational	problem



where	p	and	q	are	positive	smooth	functions	on	[0,	1].	In	this	case	Ly	=	−2q(x)y,
Ly’	=	2p(x)y′,	and	the	Euler	equation	is

which	is	a	Sturm–Liouville	type	equation.	The	natural	boundary	condition	at	x	=
1	is	given	by	(4.23),	or

Because	p	>	0,	the	boundary	conditions	are

EXERCISES
1.	Find	extremals	for	the	following	functionals:

a)	

b)	

c)	

d)	

e)	

2.	Prove	that	 the	Euler	equation	for	 	has	 first
integral	Ly’	−	(d/dx)Ly″	=	C	when	L	is	independent	of	y.	If	L	is	independent
of	x,	show	that

is	a	first	integral.



3.	 One	 version	 of	 the	 Ramsey	 growth	 model	 in	 economics	 involves
minimizing	the	total	product

over	a	fixed	planning	period	[0,	T],	where	M	=	M(t)	 is	 the	capital	at	 time	 t
and	M(0)	 =	M0	 is	 the	 initial	 capital.	 If	M(t)	minimizes	 J,	 find	 the	 capital
M(T)	at	the	end	of	the	planning	period.
4.	Find	the	extremals	for	a	functional	of	the	form

given	that	L	satisfies	the	condition	 .
5.	Find	the	extremals	for
a)	
b)	

c)	
d)	
e)	
6.	 Determine	 the	 natural	 boundary	 condition	 at	 x	 =	 b	 for	 the	 variational
problem	defined	by

where	G	is	a	given	differentiable	function	on	 .
7.	Find	the	extremal(s)	of	the	functional

in	the	class	of	all	C2[0,	b]	functions	with	y(0)	=	0	and	y(b)	free.	Take	0	<	k	<
1.
8.	Find	the	natural	boundary	condition	at	x	=	2	associated	with	the	functional



4.5	Hamilton’s	Principle
According	to	the	doctrine	of	classical	dynamics,	one	associates	with	the	system
being	described	a	set	of	quantities	or	dynamical	variables,	each	of	which	has	a
well-defined	 value	 at	 each	 instant	 of	 time	 and	 which	 defines	 the	 state	 of	 the
dynamical	system	at	that	instant.	Further,	it	is	assumed	that	the	time	evolution	of
the	system	is	completely	determined	if	its	state	is	known	at	some	given	instant.
Analytically	 this	doctrine	 is	 expressed	by	 the	 fact	 that	 the	dynamical	variables
satisfy	a	set	of	differential	equations	(the	equations	of	motion	of	the	system)	as
functions	 of	 time,	 along	 with	 initial	 conditions.	 The	 program	 of	 classical
dynamics	 consists	 of	 listing	 the	 dynamical	 variables	 and	 formulating	 the
equations	of	motion	that	predict	the	system’s	evolution	in	time.	Newton’s	second
law	of	motion	describes	the	dynamics	of	a	mechanical	system.
Another	 method	 of	 obtaining	 the	 equations	 of	 motion	 is	 from	 a	 variational

principle.	This	method	is	based	on	the	idea	that	a	system	should	evolve	along	a
path	 of	 least	 resistance.	 Principles	 of	 this	 sort	 have	 a	 long	 history	 in	 physical
theories	 dating	 back	 to	 antiquity	 when	Hero	 of	 Alexandria	 stated	 a	minimum
principle	 concerning	 the	 path	 of	 reflected	 light	 rays.	 In	 the	 17th	 century,
Fermat’s	principle,	that	light	rays	travel	along	the	path	of	shortest	time,	was	put
forth.	For	mechanical	systems,	Maupertuis’s	principle	of	least	action	stated	that	a
system	should	evolve	from	one	state	to	another	in	such	a	way	that	the	action	(a
vaguely	defined	 term	with	 the	energy	×	 time)	 is	 smallest.	Lagrange	and	Gauss
were	 advocates	 of	 similar	 principles.	 In	 the	 early	 part	 of	 the	 19th	 century,
however,	 W.	 R.	 Hamilton	 (1805–1865)	 stated	 what	 has	 become	 an
encompassing,	aesthetic	principle	that	can	be	generalized	to	embrace	many	areas
of	physics.
Hamilton’s	 principle	 states	 that	 the	 time	 evolution	 of	 a	 mechanical	 system

occurs	 in	such	a	manner	 that	 the	 integral	of	 the	difference	between	kinetic	and
potential	 energy	 is	 stationary.	To	be	more	precise,	 let	y1,…,	yn	 denote	 a	 set	 of
generalized	 coordinates	 of	 a	 given	 dynamical	 system.	 That	 is,	 regarded	 as
functions	of	 time,	we	assume	 that	y1,…,	yn	 completely	 specify	 the	 state	of	 the
system	at	any	instant.	Further,	we	assume	that	there	are	no	relations	among	the
yi,	 so	 that	 they	 may	 be	 regarded	 as	 independent.	 In	 general,	 the	 yi	 may	 be
lengths,	 angles,	 or	 whatever.	 The	 time	 derivatives	 yi,…,	 yn	 are	 called	 the



generalized	 velocities.	 The	 kinetic	 energy	 T	 is,	 in	 the	 most	 general	 case,	 a
quadratic	form	in	the	yi,	that	is,

(5.1)	
where	 the	 aij	 are	 known	 functions	 of	 the	 coordinates	 y1,…,	 yn.	 The	 potential
energy	V	is	a	scalar	function
(5.2)	

We	define	the	Lagrangian	of	the	system	by

(5.3)	
Hamilton’s	principle	for	these	systems	may	then	be	stated	as	follows:	Consider
a	 mechanical	 system	 described	 by	 generalized	 coordinates	 y1,…,	 yn	 with
Lagrangian	given	by	(5.3).	Then	the	motion	of	 the	system	from	time	 t0	 to	 t1	 is
such	that	the	functional

(5.4)	
is	 stationary	 for	 the	 functions	 y1(t),…,	 yn(t),	 which	 describe	 the	 actual	 time
evolution	 of	 the	 system.	 If	 we	 regard	 the	 set	 of	 coordinates	 y1,…,	 yn	 as
coordinates	in	n	dimensional	space,	then	the	equations

are	parametric	equations	of	a	curve	C	that	joins	two	states	S0:	 (y1(t0),…,	yn(t0))
and	S1:	(y1(t1),…,	yn(t1)).	Hamilton’s	principle	then	states	that	among	all	paths	in
configuration	space	connecting	the	initial	state	S0	to	the	final	state	S1,	the	actual
motion	 takes	place	along	 the	path	 that	affords	an	extreme	value	 to	 the	 integral
(5.4).	 The	 actual	 path	 is	 an	 extremal.	 In	 physics	 and	 engineering,	 Hamilton’s
principle	is	often	stated	concisely	as

The	functional	ƒ	L	dt	is	called	the	action	integral	for	the	system.
Because	the	curve	yi	=	yi(t),	i	=	1,…,	n,	along	which	the	motion	occurs,	makes

the	functional	J	stationary,	it	follows	from	the	calculus	of	variations	that	the	yi(t)
must	satisfy	the	Euler	equations



(5.5)	
In	mechanics,	the	Euler	equations	(5.5)	are	called	Lagrange’s	equations.	They
form	 the	 equations	 of	motion,	 or	 governing	 equations,	 for	 the	 system.	We	 say
that	the	governing	equations	follow	from	a	variational	principle	 if	we	can	find
an	 L	 such	 that	 δ	 ƒ	 L	 dt	 =	 0	 gives	 those	 governing	 equations	 as	 necessary
conditions	for	an	extremum.
If	the	Lagrangian	L	is	independent	of	time	t,	that	is,	Lt	=	0,	then	a	first	integral

is

This	equation	is	a	conservation	law.	The	quantity	 	 is	called
the	Hamiltonian	 of	 the	 system,	 and	 it	 frequently	 represents	 the	 total	 energy.
Thus,	if	L	is	independent	of	time,	then	energy	is	conserved.

Example	4.22
(Harmonic	 oscillator)	 Consider	 the	motion	 of	 a	mass	m	 attached	 to	 a	 spring
obeying	Hooke’s	 law,	where	 the	restoring	force	 is	F	=	−ky.	The	variable	y	 is	a
generalized	coordinate	representing	the	positive	displacement	of	 the	mass	from
equilibrium,	and	k	>	0	is	the	spring	constant.	The	kinetic	and	potential	energies
are

The	Lagrangian	is	therefore

and	Hamilton’s	principle	states	that	the	motion	takes	place	in	such	a	way	that

is	stationary.	Lagrange’s	equation	is

or



which	expresses	Newton’s	second	law	that	force	equals	mass	times	acceleration.
Its	solution	gives	the	extremals

where	C1	and	C2	are	constants	that	can	be	determined	from	boundary	conditions.

Example	4.23
(Pendulum)	Consider	a	simple	pendulum	of	length	l	and	bob	mass	m	suspended
from	 a	 frictionless	 support.	 To	 describe	 the	 state	 at	 any	 time	 t	 we	 choose	 the
generalized	 coordinate	 θ	 measuring	 the	 angle	 displaced	 from	 the	 vertical
equilibrium	 position.	 If	 s	 denotes	 the	 actual	 displacement	 of	 the	 bob	 along	 a
circular	arc	measured	from	equilibrium,	then	the	kinetic	energy	is

where	 we	 have	 used	 s	 =	 lθ.	 The	 potential	 energy	 of	 the	 bob	 is	mg	 times	 the
height	above	its	equilibrium	position,	or

By	Hamilton’s	principle	the	motion	takes	place	so	that

is	stationary.	Lagrange’s	equation	is

or

which	describes	the	evolution	the	system.	For	small	displacements	sin	θ	≈	θ	and
the	equation	becomes	 	+	(g/l)θ	=	0,	whose	 solution	 exhibits	 simple	harmonic
motion.

Example	4.24
(Central	force	field)	Consider	the	planar	motion	of	a	mass	m	that	is	attracted	to
the	origin	with	a	force	inversely	proportional	to	the	square	of	the	distance	from
the	 origin	 (see	 Fig.	 4.8).	 For	 generalized	 coordinates	 we	 take	 the	 polar
coordinates	r	and	θ	of	the	position	of	the	mass.	The	kinetic	energy	is



Figure	4.8	The	motion	of	a	mass	in	an	inverse-square,	central	force	field.

The	force	is	−k/r2	for	some	constant	k,	and	thus	the	potential	energy	is

Hamilton’s	principle	requires	that

is	stationary.	Lagrange’s	equations	are

or

These	can	be	rewritten	as



which	 is	 a	 coupled	 system	 of	 ordinary	 differential	 equations.	 The	 Exercises
request	a	solution.
In	 summary,	 Hamilton’s	 principle	 gives	 us	 a	 procedure	 for	 finding	 the

equations	of	motion	of	a	system	if	we	can	write	down	the	kinetic	and	potential
energies.	This	offers	an	alternative	approach	 to	writing	down	Newton’s	second
law	for	a	system,	which	requires	 that	we	know	the	forces.	Because	Hamilton’s
principle	only	 results	 in	writing	 the	equations	of	motion,	why	not	 just	directly
determine	the	governing	equations	and	forgo	the	variational	principle	altogether?
Actually,	this	may	be	a	legitimate	objection,	particularly	in	view	of	the	fact	that
the	variational	principle	is	usually	derived	a	posteriori,	 that	is,	from	the	known
equations	of	motion	and	not	conversely,	as	would	be	relevant	from	the	point	of
view	of	the	calculus	of	variations.	Moreover,	if	a	variational	principle	is	given	as
the	 basic	 principle	 for	 the	 system,	 then	 there	 are	 complicated	 sufficient
conditions	for	extrema	that	must	be	considered,	and	they	seem	to	have	little	or
no	role	in	physical	problems.	Finally,	although	variational	principles	do	to	some
extent	 represent	 a	 unifying	 concept	 for	 physical	 theories,	 the	 extent	 is	 by	 no
means	universal;	it	is	impossible	to	state	such	principles	for	some	systems	with
constraints	or	dissipative	forces.
On	the	other	hand,	aside	from	the	aesthetic	view,	the	ab	initio	 formulation	of

the	 governing	 law	 by	 a	 variational	 principle	 has	 arguments	 on	 its	 side.	 The
action	 integral	 plays	 a	 fundamental	 role	 in	 the	 development	 of	 numerical
methods	 for	 solving	 differential	 equations	 (Rayleigh–Ritz	 method,	 Galerkin
methods,	 etc.);	 it	 also	 plays	 a	 decisive	 role	 in	 the	 definition	 of	 Hamilton’s
characteristic	 function,	 the	 basis	 for	 the	Hamilton–Jacobi	 theory.	 Furthermore,
many	 variational	 problems	 occur	 in	 geometry	 and	 other	 areas	 apart	 from
physics;	 in	 these	 problems	 the	 action	 or	 fundamental	 integral	 is	 an	 a	 priori
notion.	 In	 summary,	 the	 calculus	 of	 variations	 provides	 a	 general	 context	 in
which	 to	 study	wide	 classes	 of	 problems	of	 interest	 in	many	 areas	 of	 science,
engineering,	and	mathematics.



4.5.1	Hamilton’s	Equations
The	Euler	equations	for	the	variational	problem

(5.6)	
form	 a	 system	 of	 n	 second-order	 ordinary	 differential	 equations.	 We	 now
introduce	 a	 canonical	 method	 for	 reducing	 these	 equations	 to	 a	 system	 of	 2n
first-order	equations.	For	simplicity	we	examine	the	case	n	=	1,

(5.7)	
The	Euler	equation	is

(5.8)	
First	we	define	a	new	variable	p,	called	the	canonical	momentum	by

(5.9)	
If	 ,	 then	 the	 implicit	 function	 theorem	 guarantees	 that	 (5.9)	 can	 be
solved	for	y	in	terms	of	t,	y,	and	p	to	get
(5.10)	

Now	we	define	the	Hamiltonian	H	by

(5.11)	
Notice	 that	H	 is	 just	 the	expression	 ,	where	 	 is	given	by	(5.10).	 In
many	systems	H	is	the	total	energy.

Example	4.25
For	a	particle	of	mass	m	moving	in	one	dimension	with	potential	energy	V(y),	the
Lagrangian	 is	 given	 by	 .	 Hence	 ,	 which	 is	 the
momentum	of	the	particle,	and

which	 is	 the	 total	 energy	 of	 the	 particle	 written	 in	 terms	 of	 position	 and
momentum.



Now,	from	(5.11),

and

Therefore,	 we	 have	 shown	 that	 the	 Euler	 equation	 (5.8)	 can	 be	 written	 as	 an
equivalent	system	of	equations

(5.12)	
Equations	(5.12)	are	called	Hamilton’s	equations.	They	form	a	system	of	first-
order	differential	equations	for	y	and	p.

Example	4.26
Consider	the	harmonic	oscillator	whose	Lagrangian	is

(5.13)	
The	canonical	momentum	is

Solving	for	 	gives

and	therefore	the	Hamiltonian	is

which	 is	 the	sum	of	 the	kinetic	and	potential	energy,	or	 the	 total	energy	of	 the
system.	Now

and	so	Hamilton’s	equations	are

(5.14)	



One	way	 to	 solve	 these	 equations	 in	 the	yp	 (phase)	plane	 is	 to	divide	 them	 to
obtain

Separating	variables	and	integrating	yields

which	is	a	family	of	ellipses	in	the	yp	plane.
For	the	general	action	integral

depending	on	n	functions	y1,…,	yn,	the	canonical	momenta	are

(5.15)	
Assuming

we	can	solve	the	system	of	n	equations	(5.15)	for	y1,…,	yn	to	obtain

The	Hamiltonian	H	is	defined	by

Using	an	argument	exactly	 like	 the	one	used	 for	 the	case	n	=	1,	we	obtain	 the
canonical	form	of	the	Euler	equations,

(5.16a)	

(5.16b)	
i	 =	 1,…,	 n,	 which	 are	 Hamilton’s	 equations.	 They	 represent	 2n	 first-order
ordinary	 differential	 equations	 for	 the	 2n	 functions	 y1,…,	 yn,	 p1,…,	 pn.	 A
complete	 discussion	 of	 the	 role	 of	 the	 canonical	 formalism	 in	 the	 calculus	 of



variations,	geometry,	and	physics	can	be	found	in	Rund	(1966).



4.5.2	The	Inverse	Problem
In	general,	a	variational	principle	exists	for	a	given	physical	system	if	there	is	a
Lagrangian	L	such	that	the	Euler	equations

corresponding	to	the	action	integral	ƒ	L	dt	coincide	with	the	governing	equations
of	the	system.	For	conservative	mechanical	systems	Hamilton’s	principle	tells	us
that	L	=	T	−	V.	How	can	we	determine	the	Lagrangian	L	for	other	systems	if	we
know	the	equations	of	motion?	This	problem	is	known	as	the	inverse	problem	of
the	calculus	of	variations.	Let	us	formulate	the	inverse	problem	for	n	=	1.	Given
a	second-order	ordinary	differential	equation
(5.17)	

find	a	Lagrangian	 	such	that	(5.17)	is	the	Euler	equation

(5.18)	
Generally,	 the	problem	has	 infinitely	many	solutions.	To	determine	L	we	write
the	Euler	equation	as

or

There	 is	 a	 general	 procedure	 for	 characterizing	 all	 such	 Lagrangians,	 but	 it	 is
often	 simpler	 to	 proceed	 directly	 by	 matching	 terms	 in	 the	 Euler	 equation	 to
terms	in	the	given	differential	equation.

Example	4.27
Consider	a	damped	spring-mass	oscillator	where	a	mass	m	is	suspended	from	a
spring	with	 spring	 constant	 k	 and	 there	 is	 a	 dashpot	 offering	 a	 resistive	 force
numerically	 equal	 to	 ,	 where	 a	 is	 the	 damping	 constant,	 and	 y	 is	 the
displacement	of	the	mass	from	equilibrium.	By	Newton’s	law

or
(5.19)	



Equation	(5.19)	 is	 the	damped	harmonic	oscillator	equation.	The	system	 is	not
conservative	 because	 of	 the	 damping,	 and	 there	 is	 not	 a	 scalar	 potential.	 We
cannot	apply	Hamilton’s	principle	directly.	We	seek	a	Lagrangian	L(t,	y,	y)	such
that	 (5.19)	 is	 the	Euler	equation.	Multiplying	 (5.19)	by	a	nonnegative	 function
f(t)	we	obtain
(5.20)	

Equation	(5.20)	must	coincide	with	the	Euler	equation

An	obvious	choice	is	to	take	 ,	so	that

and

where	M	and	N	are	arbitrary	functions.	It	follows	that

or

Thus	mf’(t)	=	af(t),	or	f(t)	=	eat/m.	Hence

Selecting	M	 =	 0	 gives	N	 =	 −(k/2)y2eat/m,	 and	 therefore	 a	 Lagrangian	 for	 the
damped	harmonic	oscillator	is

This	 expression	 is	 the	 Lagrangian	 for	 the	 undamped	 oscillator	 times	 a	 time-
dependent	factor.

EXERCISES
1.	 Consider	 the	 functional	 .	 Find	 the
Hamiltonian	H(t,	y,	p)	and	write	down	Hamilton’s	equations	for	the	problem.
2.	Write	down	Hamilton’s	equations	for	the	functional

Solve	the	equations	and	sketch	the	solution	curves	in	the	yp	plane.



3.	Derive	Hamilton’s	equations	for	the	functional

representing	the	motion	of	a	pendulum	in	a	plane.
4.	 A	 particle	 of	 unit	 mass	moves	 along	 a	 y	 axis	 under	 the	 influence	 of	 a
potential	given	by

where	ω	and	a	are	positive	constants.
a)	What	is	the	potential	energy	V(y)?	Determine	the	Lagrangian	and	write
down	the	equation	of	motion.
b)	 Find	 the	 Hamiltonian	H(y,	 p)	 and	 show	 it	 coincides	 with	 the	 total
energy.	 Write	 down	 Hamilton’s	 equations.	 Is	 energy	 conserved?	 Is
momentum	conserved?
c)	If	the	total	energy	E	is	ω2/10,	and	at	time	t	=	0	the	particle	is	at	y	=	0,
what	is	the	initial	velocity?
d)	 Sketch	 the	 possible	 phase	 trajectories	 in	 phase	 space	when	 the	 total
energy	 in	 the	 system	 is	 given	 by	 E	 =	 ω6/12a2.	 [Hint:	 note	 that	 p	 =	

	 What	 is	 the	 value	 of	 E	 above	 which	 oscillatory
motion	is	not	possible?

5.	 Give	 an	 alternate	 derivation	 of	 Hamilton’s	 equations	 by	 rewriting	 the
action	integral

as

where	 ,	treating	y	and	p	as	independent	and	finding	the
Euler	equations.
6.	A	particle	 of	mass	m	moves	 in	 one	 dimension	 under	 the	 influence	 of	 a
force	F(y,	 t)	 =	 ky−2et,	 where	 y	 is	 position,	 t	 is	 time,	 and	 k	 is	 a	 constant.
Formulate	Hamilton’s	 principle	 for	 this	 system	 and	 derive	 the	 equation	 of
motion.	Determine	the	Hamiltonian	and	compare	it	with	the	total	energy.	Is
energy	conserved?



7.	A	particle	of	mass	m	 is	 falling	under	 the	action	of	gravity	with	resistive
forces	 neglected.	 If	 y	 denotes	 the	 distance	 measured	 downward,	 find	 the
Lagrangian	 for	 the	 system	 and	 determine	 the	 equation	 of	 motion	 from	 a
variational	principle.
8.	Consider	a	system	of	n	particles	where	mi	 is	 the	mass	of	 the	 ith	particle
and	(xi,	yi,	zi)	is	its	position	in	space.	The	kinetic	energy	of	the	system	is

and	assume	that	the	system	has	a	potential	energy

such	that	the	force	acting	on	the	ith	particle	has	components

Show	that	Hamilton’s	principle	applied	to	this	system	yields

which	are	Newton’s	equations	for	a	system	of	n	particles.
9.	Consider	 a	 simple	 plane	 pendulum	with	 a	 bob	 of	mass	m	 attached	 to	 a
string	of	length	l.	After	the	pendulum	is	set	in	motion	the	string	is	shortened
by	 a	 constant	 rate	dl/dt	 =	 −α	=	 const.	 Formulate	Hamilton’s	 principle	 and
determine	 the	 equation	 of	 motion.	 Compare	 the	 Hamiltonian	 to	 the	 total
energy.	Is	energy	conserved?
10.	Consider	the	differential	equations

governing	the	motion	of	a	mass	in	an	inverse	square	central	force	field.
a)	Using	the	chain	rule	show	that

and	therefore	the	equations	of	motion	may	be	written

b)	Let	r	=	u−1	and	show	that



c)	Solve	the	differential	equation	in	part	(b)	to	obtain

where	ε	and	θ0	are	constants	of	integration.
d)	Show	that	elliptical	orbits	are	obtained	when	ε	<	1.

11.	Find	a	Lagrangian	 	such	that	the	Euler	equation	coincides	with
the	Emden–Fowler	equation

12.	 A	 particle	moving	 in	 one	 dimension	 in	 a	 constant	 external	 force	 field
with	frictional	force	proportional	to	its	velocity	has	equation	of	motion

Find	a	Lagrangian	 .
13.	Using	 the	electrical–mechanical	 analogy	and	 the	 result	 for	 the	damped
harmonic	 oscillator,	 determine	 a	 Lagrangian	 for	 an	 RCL	 electrical	 circuit
whose	differential	equation	is

where	I(t)	 is	 the	current,	L	 the	 inductance,	C	 the	capacitance,	and	R	 the
resistance.

14.	Consider	the	nonlinear	equation

where	p	 and	 f	 are	 continuous	 functions	with	 antiderivatives	P(t)	 and	F(y),
respectively.	Find	a	Lagrangian	L	=	L(t,	y,	y’)	such	 that	 the	Euler	equation
associated	 with	 the	 functional	 J(y)	 =	 ƒba	 L	 dt	 is	 equivalent	 to	 the	 given
equation.	(Hint:	Multiply	the	equation	by	ep(t).)



4.6	Isoperimetric	Problems
In	differential	calculus	the	problem	of	minimizing	a	given	function	f(x,	y)	subject
to	a	subsidiary	condition	g(x,	y)	=	constant	is	a	common	one.	Now	we	consider
classes	of	variational	problems	in	which	the	competing	functions	are	required	to
conform	 to	 certain	 restrictions,	 in	 addition	 to	 the	 normal	 endpoint	 conditions.
Such	 restrictions	are	called	constraints	 and	 they	may	 take	 the	 form	of	 integral
relations,	algebraic	equations,	or	differential	equations.	 In	 this	 section	we	 limit
the	discussion	to	integral	constraints.
One	method	 for	 solving	 the	 constraint	 problem	 in	 calculus	 is	 the	Lagrange

multiplier	rule.	We	state	this	necessary	condition	precisely	because	it	is	used	in
the	subsequent	discussion.

Theorem	4.28
Let	f	and	g	be	differentiable	functions	with	gx(x0,	y0)	and	gy(x0,	y0)	not	both	zero.
If	 (x0,	 y0)	 provides	 an	 extreme	 value	 to	 f	 subject	 to	 the	 constraint	 g	 =	C	 =
constant,	then	there	exists	a	constant	λ	such	that

(6.1)	

(6.2)	
and
(6.3)	

where

The	proof	can	be	found	in	most	calculus	books.	For	practical	calculations	the
three	conditions	in	the	theorem	can	be	used	to	determine	x0,	y0,	and	the	Lagrange
multiplier	λ.
A	 variational	 problem	 having	 an	 integral	 constraint	 is	 known	 as	 an

isoperimetric	problem.	 In	 particular,	 consider	 the	 problem	 of	minimizing	 the
functional

(6.4)	
subject	to



(6.5)	
where	y	 	C2	[a,	b]	and

(6.6)	
and	k	is	a	fixed	constant.	The	given	functions	L	and	G	are	assumed	to	be	twice
continuously	 differentiable.	 The	 subsidiary	 condition	 (6.5)	 is	 called	 an
isoperimetric	constraint.
In	 essence,	we	 follow	 the	procedure	 in	 earlier	 sections	 for	problems	without

constraints.	We	embed	an	assumed	local	minimum	y(x)	in	a	family	of	admissible
functions.	 A	 one-parameter	 family	 y(x)	 +	 εh(x)	 is	 not,	 however,	 a	 suitable
choice,	because	those	curves	may	not	maintain	the	constancy	of	W.	Therefore	we
introduce	a	two-parameter	family

where	h1,	h2	 	C2[a,	b],

(6.7)	
and	ε1	and	ε2	are	real	parameters	ranging	over	intervals	containing	the	origin.	We
assume	that	W	does	not	have	an	extremum	at	y.	Then	for	any	choice	of	h1	and	h2
there	will	be	values	of	ε1	and	ε2	in	the	neighborhood	of	(0,	0)	for	which	W(z)	=	k.
Evaluating	J	and	W	at	z	gives

Because	y	is	the	local	minimum	for	(6.4)	subject	to	the	constraint	(6.5),	the	point
(ε1,	ε2)	=	(0,	0)	must	be	a	local	minimum	for	 (ε1,	ε2)	subject	to	the	constraint	
(ε1,	ε2)	=	k.	This	 is	 just	a	differential	calculus	problem	and	so	 the	Lagrange

multiplier	rule	may	be	applied.	There	must	exist	a	constant	λ	such	that

(6.8)	
where	 *	is	defined	by



with
(6.9)	

We	 now	 calculate	 the	 derivatives	 in	 (6.8),	 afterward	 setting	 ε1	 =	 ε2	 =	 0.
Accordingly,

Integrating	the	second	term	by	parts	and	applying	conditions	(6.7)	give

From	(6.8),	and	because	of	 the	arbitrary	character	of	h1	or	h2,	 the	 fundamental
lemma	implies

(6.10)	
which	is	a	necessary	condition	for	an	extremum.
In	 practice,	 the	 solution	 of	 the	 second-order	 differential	 equation	 (6.10)	will

yield	 a	 function	 y(x)	 that	 involves	 two	 arbitrary	 constants	 and	 the	 unknown
multiplier	λ.	These	may	be	evaluated	by	the	two	boundary	conditions	(6.6)	and
by	substituting	y(x)	into	the	isoperimetric	constraint	(6.5).

Example	4.29
(Shape	of	a	Hanging	Rope)	A	 rope	of	 length	 l	with	 constant	density	ρ	hangs
from	 two	 fixed	points	 (a,	y0)	 and	 (b,	y1)	 in	 the	 plane.	Let	y(x)	 be	 an	 arbitrary
configuration	 of	 the	 rope	 with	 the	 y	 axis	 adjusted	 so	 that	 y(x)	 >	 0.	 A	 small
element	of	length	ds	at	(x,	y)	has	mass	ρds	and	potential	energy	ρgy	ds	relative	to
y	=	0.	Therefore,	 the	 total	potential	energy	of	 the	rope	hanging	 in	 the	arbitrary
configuration	y	=	y(x)	is	given	by	the	functional

(6.11)	
It	 is	 known	 that	 the	 actual	 configuration	 minimizes	 the	 potential	 energy.
Therefore,	 we	 are	 faced	 with	 minimizing	 (6.11)	 subject	 to	 the	 isoperimetric
condition



(6.12)	
Hence,	we	form	the	auxiliary	function

and	write	the	associated	Euler	equation	(6.10).	In	this	case	L*	does	not	depend
explicitly	on	x,	and	thus	a	first	integral	is

or

Solving	for	y′	and	separating	variables	yields

Letting	u	=	ρ	gy	+	λ	and	using	the	antiderivative	formula

gives

Then

Therefore,	the	shape	of	a	hanging	rope	is	a	catenary.	The	constants	C,	C2,	and	λ
may	be	determined	from	(6.12)	and	the	endpoint	conditions	y(a)	=	y0	and	y(b)	=
y1.	 In	 practice	 this	 calculation	 is	 difficult,	 and	 there	 may	 not	 be	 a	 smooth
solution	for	large	values	of	l.	(Why?)

Example	4.30
Consider	the	problem	of	minimizing

subject	to	the	constraint



(6.13)	
Here	 	 and	m	 are	 constants,	 and	V	 =	V(x)	 is	 a	 given	 function.	 The	 auxiliary
Lagrangian

where	−E	is	a	Lagrange	multiplier.	The	Euler	equation	is

or

(6.14)	
Equation	(6.14)	is	the	Schrödinger	equation	for	the	wave	function	 	in	quantum
mechanics	for	a	particle	of	mass	m	under	the	influence	of	a	potential	V.	Equation
(6.13)	 is	a	normalization	condition	 for	 the	wave	 function	 ,	whose	 square	 is	 a
probability	density.	In	general,	solutions	 	of	(6.14)	will	exist	only	for	discrete
values	of	the	multiplier	E,	which	are	identified	with	the	possible	energy	levels	of
the	particle	and	are	the	eigenvalues.	These	problems	are	discussed	in	Chapter	5.

EXERCISES
1.	Find	extremals	of	the	isoperimetric	problem

subject	to

2.	Find	extremals	for	the	isoperimetric	problem

3.	 Derive	 a	 necessary	 condition	 for	 an	 extremum	 for	 the	 isoperimetric
problem:	Minimize



subject	to

and

where	C,	A1,	A2,	B1,	and	B2	are	constants.
4.	Use	the	result	of	the	preceding	exercise	to	maximize

subject	to

Show	 that	 J	 represents	 the	 area	 enclosed	 by	 a	 curve	 with	 parametric
equations	x	=	x(t),	y	=	y(t),	and	the	constraint	fixes	the	length	of	the	curve.
Thus,	 this	 is	 the	 problem	 of	 determining	 which	 curve	 of	 a	 specified
perimeter	 encloses	 the	 maximum	 area.	 The	 term	 isoperimetric,	 meaning
same	perimeter,	originated	in	this	context.
Answer:	Circles	(x	−	c1)2	+	(y	−	c2)2	=	λ2.
5.	Determine	the	equation	of	the	shortest	arc	in	the	first	quadrant	that	passes
through	 (0,	0)	and	 (1,	0)	and	encloses	a	prescribed	area	A	with	 the	x	 axis,
where	0	<	A	≤	π/8.
6.	 Write	 down	 equations	 that	 determine	 the	 solution	 of	 the	 isoperimetric
problem

subject	to

where	p,	q,	and	r	are	given	functions	and	y(a)	=	y(b)	=	0.	The	result	is	a
Sturm–Liouville	eigenvalue	problem	(Chapter	5).



7.	Consider	the	problem	of	minimizing	the	functional

(6.15)	
subject	to	the	algebraic	constraint
(6.16)	

and	boundary	conditions

with	all	of	the	functions	possessing	the	usual	differentiability	conditions.	If
y(t)	and	z(t)	provide	a	local	minimum,	show	that	there	exists	a	function	λ(t)
such	that

(Hint:	Solve	(6.16)	 to	get	 z	=	g(t,	y),	 and	 substitute	 into	 (6.15)	 to	 obtain	 a
functional	 depending	 only	 upon	 y.	 Find	 the	 Euler	 equation	 and	 use	 the
condition	(∂/∂y)G(t,	y,	g(t,	y))	=	0.)
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Chapter	5

Boundary	Value	Problems	and	Integral
Equations

Topics	 in	 this	 chapter	 form	 the	 traditional	 core	 of	 applied	 mathematics—
boundary	 value	 problems,	 orthogonal	 expansions,	 integral	 equations,	 Green’s
functions,	 and	distributions.	All	of	 these	 subjects	 are	 interrelated	 in	one	of	 the
most	aesthetic	theories	in	all	of	mathematics.	The	descriptive	term	‘far-reaching’
is	an	understatement.
We	 can	 take	 a	 very	 general	 overview	 and	 summarize	 our	 perspective	 as

follows.	 In	 an	 abstract	 sense,	 mathematics	 can	 be	 thought	 of	 as	 imposing
structures	on	sets	of	objects	and	studying	their	properties.	In	linear	algebra,	for
example,	the	algebraic	structure	of	a	vector	space	is	imposed,	and	addition	and
scalar	multiplication	are	defined	that	satisfy	certain	rules.	We	can	further	define
a	 geometric	 structure	 on	 a	 vector	 space	 that	 imposes	 concepts	 like
perpendicularity	 and	 distance.	 Finally,	 linear	 transformations	 between	 vector
spaces	are	introduced	and	we	study	how	they	interrelate	with	the	algebraic	and
geometric	 structures.	 This	 all	 leads	 to	 the	 solution	 of	 linear	 systems,	 the
eigenvalue	 problem,	 and	 the	 decomposition	 of	 the	 vector	 space	 and	 the
transformation	 into	 fundamental,	 or	 canonical,	 forms.	 These	 ideas	 extend	 in	 a
straightforward	 manner	 to	 infinite-dimensional	 function	 spaces	 and	 linear
differential	 and	 integral	 operators	 on	 those	 spaces.	 This	 theory	 is	 not	 only
insightful,	 but	 it	 has	 far-reaching	 applications	 to	 science,	 engineering,	 and
mathematics.
To	go	 further,	 elementary	 linear	 algebra	deals	with	 finite	 dimensional	 vector

spaces,	such	as	 n.	The	vector	space	 n	is	the	set	of	all	n-tuples	of	real	numbers,
and	we	represent	a	vector	as	column	vector	x.	Any	set	of	n	independent	vectors
forms	a	basis	for	 n,	which	means	every	vector	in	 n	can	be	uniquely	expanded
as	 a	 linear	 combination	 of	 those	 n	 vectors.	 Then,	 a	 linear	 transformation	 A
between	 two	 vector	 spaces,	 A	 :	 n	→	 m,	 can	 be	 represented	 by	 an	 n	 ×	m



matrix.	The	important	problems	can	then	be	formulated	using	matrices.
1.	(Solvability	Problem)	Given	a	linear	transformation	A	:	 n	→	 m	and	a
vector	f	 	 m,	find	a	vector	x	 	 n	for	which

This	is	the	problem	of	solving	m	equations	in	n	unknowns	and	characterizing
the	solution	structure.
2.	 (The	Eigenvalue	Problem)	Given	a	 linear	 transformation	A	 :	 n	→	 n

from	 a	 vector	 space	 into	 itself,	 find	 values	 A	 (eigenvalues)	 and
corresponding	nonzero	vectors	x	(eigenvectors)	for	which

Recall	that	all	n	×	n	matrices	have	n	eigenvalues,	but	they	do	not	necessarily
have	a	full	set	of	n	independent	eigenvectors.	For	special	matrices,	however,	e.g.,
real	 symmetric	 matrices	 where	 AT	 =	 A,	 there	 is	 a	 basis	 of	 n	 orthogonal
eigenvectors	for	the	entire	space	 n.	This	permits	us	to	decompose	the	space	into
orthogonal	 subspaces	 (the	 eigenspaces)	 and	write	 the	matrix	 itself	 as	 a	 sum	of
projections	onto	those	eigenspaces.
In	this	and	subsequent	chapters	we	want	to	extend	these	ideas	from	 n	and	 n

to	 structures	 on	 infinite	 dimensional	 function	 spaces	 and	 transformations	 that
lead	to	ordinary	and	partial	differential	equations,	and	integral	equations.
In	Chapter	 4	we	 introduced	different	 kinds	of	 vector	 spaces	whose	 elements

are	 not	 classical,	 geometric	 vectors	 with	 magnitude	 and	 direction,	 but	 rather
functions.	For	example,	the	set	of	all	continuous	functions	on	an	interval	[a,	b],
denoted	by	C[a,	b],	is	a	vector	space	or,	using	other	language,	a	linear	space.	A
linear	space	like	C[a,	b]	 is	 infinite	dimensional,	not	finite	dimensional;	 there	is
not	a	finite	number	of	continuous	functions	on	[a,	b]	for	which	every	continuous
function	 in	C[a,	 b]	 can	 be	written	 as	 a	 linear	 combination	 of	 those	 functions.
There	is	no	finite	basis.	We	can	consider	 linear	 transformations	on	C[a,	b]	and
the	solvability	problem.	For	example,	define	 the	 linear	operator	K	 :	C[a,	b]	→
C[a,	b]	by

where	k(x,	y)	 is	 a	 given	 continuous	 function	 for	x,	y	 	 [a,	 b].	 (In	 the	 function
space	 context,	 we	 use	 the	 term	 linear	 operator	 rather	 than	 linear
transformation.)	As	above,	the	solvability	problem	can	be	represented

That	is,	 if	 f	=	f(x)	 is	a	given	continuous	function	on	C[a,	b],	does	 there	exist	a



function	 u	 =	 u(x)	 satisfying	 this	 equation?	 An	 equation	 like	 this,	 where	 the
unknown	 u	 occurs	 under	 an	 integral	 sign,	 is	 called	 an	 integral	 equation.
Similarly,	we	can	study	the	eigenvalue	problem

Are	 there	values	of	λ	and	corresponding	continuous	 functions	u	 for	which	 this
equation	holds?	Integral	equations	are	the	subject	of	Section	5.3.
First,	in	Section	5.2,	we	extend	these	ideas	of	linear	differential	operators	L	 :

C2[a,	 b]	 →	C[a,	 b]	 that	 associate	 to	 every	 twice	 continuously	 differentiable
function	u	 =	u(x),	 satisfying	 conditions	u(a)	 =	ua	 and	u(b)	 =	 ub,	 a	 continuous
function.	Then	we	can	consider	the	solvability	problem

where	 f	 	C[a,	b]	 is	 given.	This	 is	 the	 problem	of	 solving	 a	 nonhomogeneous
differential	 equation	 with	 boundary	 conditions.	 Similarly,	 the	 differential
eigenvalue	problem	is	to	find	values	of	λ	and	corresponding	C2[a,	b]	functions	u,
again	satisfying	the	boundary	conditions,	for	which

A	simple	example	is	the	differential	operator

where	the	boundary	conditions	comprise	part	of	the	definition	of	the	operator.
We	 show	 that	 differential	 and	 integral	 operators	 of	 special	 types	 have	 an

eigenstructure	similar	to	matrices.	They	have	a	full	set	of	eigenfuctions	that	are
orthogonal	and	form	a	basis	for	the	(infinite	dimensional)	space.	Along	with	that
comes	 the	 spectral	 decomposition,	 or	 diagonalization,	 of	 the	 operators,
orthogonal	 projections,	 and	 all	 the	 machinery	 of	 finite	 dimensional	 linear
algebra.	One	can	envision	a	large	body	of	literature	in	mathematics,	science,	and
engineering	that	addresses	all	these	questions.	And	these	issues	only	scratch	the
surface	of	a	vast	subject.



5.1	Boundary-Value	Problems
Chapters	 1	 and	 2	 focused	 on	 initial	 value	 problems	 for	 differential	 equations,
where	the	auxiliary,	initial	conditions	are	given	at	a	single	value	of	time,	usually
t	=	0,	and	the	system	evolves	dynamically	from	that	initial	state.	Now	we	bring
boundary	value	problems	(BVPs)	into	focus,	where	conditions	on	a	differential
equation	are	specified	at	two	different	points.	We	use	the	independent	variable	x
instead	of	 time	 t	 because	BVPs	are	on	a	 spatial	domain.	We	 illustrate	 the	 idea
with	a	model	in	heat	flow.
Let	 us	 consider	 the	 following	 problem	 in	 steady-state	 heat	 conduction.	 A

cylindrical,	 uniform,	 metallic	 bar	 of	 length	 L	 and	 cross-sectional	 area	 A	 is
insulated	on	its	lateral	side.	We	assume	the	left	face	at	x	=	0	is	maintained	at	T0
degrees	 and	 that	 the	 right	 face	 at	 x	 =	 L	 is	 held	 at	 TL	 degrees.	 What	 is	 the
temperature	distribution	u	=	u(x)	 in	 the	bar	after	 it	comes	to	equilibrium?	Here
u(x)	represents	the	temperature	at	each	point	of	the	entire	cross-section	of	the	bar
at	position	x,	where	0	<	x	<	L.	We	are	assuming	that	heat	flows	only	in	the	axial
direction	along	the	bar,	and	we	are	assuming	that	any	transients	caused	by	initial
temperatures	in	the	bar	have	decayed	away.	In	other	words,	we	have	waited	long
enough	for	the	temperature	to	reach	a	steady	state.	One	might	conjecture	that	the
temperature	distribution	is	a	linear	function	of	x	along	the	bar;	that	is,	u(x)	=	T0	+
((TL	−	T0)/L)x.	This	is	indeed	the	case,	which	we	show	below.	But	also	we	want
to	 consider	 a	 more	 complicated	 problem	 where	 the	 bar	 has	 both	 a	 variable
conductivity	and	an	internal	heat	source	along	its	length.	An	internal	heat	source,
for	example,	 could	be	 resistive	heating	produced	by	a	current	 running	 through
the	medium.
The	physical	law	that	provides	the	basic	model	is	conservation	of	energy.	If	[x,

x	+	dx]	is	any	small	section	of	the	bar,	then	the	rate	that	heat	flows	in	at	x,	minus
the	 rate	 that	 heat	 flows	 out	 at	 x	 +	 dx,	 plus	 the	 rate	 that	 heat	 is	 generated	 by
sources,	must	equal	zero,	because	the	system	is	in	a	steady	state.	See	Fig.	5.1.

Figure	5.1	Cylindrical	bar,	laterally	insulated,	through	which	heat	is	flowing	in
the	x-direction.	The	temperature	is	uniform	in	a	fixed	cross-section.



We	denote	the	heat	flux	by	ϕ(x),	which	is	the	rate	that	heat	flows	to	the	right	at
any	 section	x,	measured	 in	 energy/(area·	 time),	 and	we	 let	 f(x)	denote	 the	 rate
that	heat	is	internally	produced	at	x,	measured	in	energy/(volume	·	time),	then

Cancelling	A,	dividing	by	dx,	and	rearranging	gives

Taking	the	limit	as	dx	→	0	yields
(1.1)	

This	is	an	expression	of	energy	conservation	in	terms	of	energy	flux.	But	what
about	 temperature?	 Empirically,	 the	 flux	 ϕ(x)	 at	 a	 section	 x	 is	 found	 to	 be
proportional	 to	 the	 negative	 temperature	 gradient	 −u’(x)	 (which	 measures	 the
steepness	of	the	temperature	distribution,	or	profile,	at	that	point),	or
(1.2)	

This	is	Fourier’s	heat	conduction	law.	The	given	proportionality	factor	K(x)	is
called	 the	 thermal	 conductivity,	 in	 units	 of	 energy/(length	 ·	 degrees	 ·	 time),
which	 is	 a	 measure	 of	 how	 well	 the	 bar	 conducts	 heat	 at	 location	 x.	 For	 a
uniform	bar,	K	is	constant.	The	minus	sign	in	(1.2)	means	that	heat	flows	from
higher	 temperatures	 to	 lower	 temperatures.	 Fourier’s	 law	 seems	 intuitively
correct	and	 it	conforms	with	 the	second	 law	of	 thermodynamics;	 the	 larger	 the
temperature	 gradient,	 the	 faster	 heat	 flows	 from	 high	 to	 low	 temperatures.
Combining	(1.1)	and	(1.2)	leads	to	the	equation
(1.3)	

which	 is	 the	 steady-state	 heat	 conduction	 equation.	 When	 the	 boundary
conditions
(1.4)	

are	appended	to	(1.3),	we	obtain	a	boundary	value	problem	for	the	temperature



u(x).	Boundary	conditions	are	conditions	imposed	on	the	unknown	temperature	u
=	u(x)	at	two	fixed	values	of	the	independent	variable	x,	unlike	initial	conditions
that	are	imposed	at	a	single	value.	For	boundary	value	problems	we	usually	use	x
as	 the	 independent	 variable	 because	 boundary	 conditions	 usually	 refer	 to	 the
boundary	of	a	spatial	domain.
Note	that	we	could	expand	the	heat	conduction	equation	to
(1.5)	

but	in	general	there	is	little	advantage	in	doing	so.

Example	5.1
If	 there	 are	 no	 sources	 (f(x)	 =	 0)	 and	 if	 the	 thermal	 conductivity	K(x)	 =	K	 is
constant,	then	the	boundary	value	problem	reduces	to

Thus	 the	 bar	 is	 homogeneous	 and	 can	 be	 characterized	 by	 a	 constant
conductivity.	 The	 general	 solution	 of	 u″	 =	 0	 is	 u(x)	 =	 c1x	 +	 c2;	 applying	 the
boundary	 conditions	 determines	 the	 constants	 c1	 and	 c2	 and	 gives	 the	 linear
temperature	distribution	u(x)	=	T0	+	(TL	−	T0)/L)x,	as	we	previously	conjectured.
The	 thermal	 conductivity	 K	 and	 heat	 source	 f	 may	 also	 depend	 on	 the

temperature	u	as	well.	In	this	case	the	steady-state	heat	conduction	equation	(1.3)
takes	the	more	general	form

which	is	a	nonlinear	second-order	equation	for	the	temperature	distribution	u	=
u(x).
Boundary	 conditions	 at	 the	 ends	 of	 the	 bar	may	 also	 specify	 the	 flux	 rather

than	 the	 temperature.	 For	 example,	 if	 heat	 is	 injected	 at	 x	 =	 0	 at	 a	 rate	 of	N
calories	per	area	per	time,	then	the	left	boundary	condition	takes	the	form	ϕ(0)	=
N,	or

Thus,	a	 flux	condition	at	 an	endpoint	 imposes	a	condition	on	 the	derivative	of
the	temperature	at	that	endpoint.	If	the	end	x	=	0,	say,	is	insulated,	so	that	no	heat
passes	through	that	end,	then	the	boundary	condition	is	simply

which	is	called	an	insulated	boundary	condition.	We	may	also	have	conditions



of	the	combination

at	the	boundary,	where	h	and	c	are	given	constants.	These	types	of	conditions	are
called	radiation	conditions,	 and	we	examine	 their	origin	 in	Chapter	6.	As	 the
reader	 may	 imagine,	 there	 are	 myriad	 interesting	 boundary	 value	 problems
associated	 with	 heat	 flow.	 Similar	 equations	 arise	 in	 diffusion	 processes	 in
biology	and	chemistry,	 for	example,	 in	 the	diffusion	of	 toxic	substances	where
the	unknown	is	the	chemical	concentration.
Boundary	 value	 problems	 are	much	 different	 from	 initial	 value	 problems	 in

that	 they	 may	 have	 no	 solution,	 or	 they	 may	 have	 infinitely	 many	 solutions.
Consider	the	following.

Example	5.2
When	K	=	1	and	the	heat	source	term	is	f(u)	=	9u	and	both	ends	of	a	bar	of	length
L	=	2	are	held	at	u	=	0	degrees,	the	boundary	value	problem	becomes

The	general	solution	to	the	DE	is	u(x)	=	c1	sin	3x	+	c2	cos	3x,	where	c1	and	c2	are
arbitrary	 constants.	Applying	 the	 boundary	 condition	 at	 x	 =	 0	 gives	u(0)	 =	 c1
sin(3	·	0)	+	c2	cos(3	·	0)	=	c2	=	0.	So	the	solution	must	have	the	form	u(x)	=	c1
sin	3x.	Next	apply	the	boundary	condition	at	x	=	2.	Then	u(2)	=	c1	sin(6)	=	0,	to
obtain	c1	 =	 0.	We	 have	 shown	 that	 the	 only	 solution	 is	u(x)	 =	 0.	 There	 is	 no
nontrivial	steady	state.	However,	if	we	make	the	bar	length	π,	then	we	obtain	the
boundary	value	problem

The	 reader	 should	check	 that	 this	boundary	value	problem	has	 infinitely	many
solutions	 u(x)	 =	 c1	 sin	 3x,	 where	 c1	 is	 any	 number.	 If	 we	 change	 the	 right
boundary	condition,	one	can	check	that	the	boundary	value	problem

has	no	solution	at	all.
The	 next	 example	 illustrates	 the	 type	 of	 problem	 that	 occupies	much	 of	 the

remaining	part	of	the	book—an	eigenvalue	problem.	In	an	eigenvalue	problem



we	seek	values	of	 a	parameter	 in	 a	boundary	value	problem	so	 that	 a	 solution
exists.	 This	 is	 the	 differential	 equation	 analog	 of	 the	 eigenvalue	 problem	 for
matrices.

Example	5.3
Problem:	Find	all	real	values	of	λ	for	which	the	boundary	value	problem

has	a	nontrivial	solution.	These	values	of	λ	are	called	the	eigenvalues,	and	 the
corresponding	nontrivial	 solutions	are	called	 the	eigenfunctions.	 Interpreted	 in
the	heat	flow	context,	the	left	boundary	is	held	at	zero	degrees	and	the	right	end
is	insulated.	The	heat	source	is	f(u)	=	λu.	We	are	trying	to	find	which	linear	heat
sources	 lead	 to	 nontrivial	 steady	 states.	 To	 solve	 this	 problem	 we	 consider
different	cases	because	the	form	of	the	solution	will	be	different	for	λ	=	0,	λ	<	0,
λ	>	0.	If	λ	=	0	then	the	general	solution	of	u”	=	0	is	u(x)	=	ax+b.	Then	u’(x)	=	a.
The	boundary	condition	u(0)	=	0	implies	b	=	0	and	the	boundary	condition	u’(π)
=	0	implies	a	=	0.	Therefore,	when	λ	=	0,	we	get	only	a	trivial	solution	(and	thus,
λ	 =	 0	 is	 not	 an	 eigenvalue).	Next	 consider	 the	 case	 λ	 <	 0	 so	 that	 the	 general
solution	has	the	form

The	condition	u(0)	=	0	forces	b	=	0.	Then	u’(x)	=	 	cosh	 .	The	right
boundary	condition	becomes	u′(π)	=	 	 cosh	 	=	0,	 giving	a	 =	 0.
Recall	that	cosh	0	=	1.	Again	there	is	only	the	trivial	solution,	and	there	are	no
negative	eigenvalues.	Finally,	assume	λ	>	0.	Then	the	general	solution	takes	the
form

The	boundary	condition	u(0)	=	0	forces	b	=	0.	Then	u(x)	=	a	sin	 	and	u′(x)	=	
.	Applying	the	right	boundary	condition	gives

Now	 we	 do	 not	 have	 to	 choose	 a	 =	 0	 (which	 would	 again	 give	 the	 trivial
solution)	because	we	can	satisfy	this	last	condition	with

by	 choosing	 the	 yet	 unknown	 values	 of	 λ.	 The	 cosine	 function	 is	 zero	 at	 the
values	π/2	±	nπ,	n	=	0,	1,	2,	3,….	Therefore



Solving	for	λ	yields

Consequently,	the	values	of	λ	for	which	the	original	boundary	value	problem	has
a	 nontrivial	 solution	 are	 .	 These	 are	 the	 eigenvalues.	 The
corresponding	solutions	are

These	 are	 the	 eigenfunctions	 associated	 with	 the	 eigenvalues.	 Notice	 that	 the
eigenfunctions	are	unique	only	up	to	a	constant	multiple.	In	terms	of	heat	flow,
the	eigenfunctions	represent	possible	steady-state	temperature	profiles	in	the	bar.
The	eigenvalues	are	 those	values	λ	 for	which	 the	boundary	value	problem	will
have	steady-state	profiles.
Boundary	value	problems	are	of	great	interest	in	applied	mathematics,	science,

and	engineering,	occurring	in	many	contexts	other	than	heat	flow,	for	example,
in	wave	motion,	quantum	mechanics,	and	the	partial	differential	equations.

EXERCISES
1.	A	 homogeneous	 bar	 of	 length	 40	 cm	has	 its	 left	 and	 right	 ends	 held	 at
30°C	and	10°C,	respectively.	If	the	temperature	in	the	bar	is	in	steady	state,
what	is	the	temperature	in	the	cross-section	12	cm	from	the	left	end?	If	the
thermal	conductivity	is	K,	what	is	the	rate	that	heat	is	leaving	the	bar	at	its
right	face?
2.	 The	 thermal	 conductivity	 of	 a	 bar	 of	 length	L	 =	 20	 and	 cross-sectional
area	A	=	2	is	K(x)	=	1,	and	an	internal	heat	source	is	given	by	f(x)	=	0.5x(L	−
x).	If	both	ends	of	the	bar	are	maintained	at	zero	degrees,	what	is	the	steady-
state	temperature	distribution	in	the	bar?	Sketch	a	graph	of	u(x).	What	is	the
rate	that	heat	is	leaving	the	bar	at	x	=	20?
3.	For	a	metal	bar	of	length	L	with	no	heat	source	and	thermal	conductivity
K(x),	show	that	the	steady	temperature	in	the	bar	has	the	form

where	c1	and	c2	are	constants.	What	is	the	temperature	distribution	if	u(0)	=
0	 and	−K(L)u’(L)	 =	 1?	 Find	 an	 analytic	 formula	 and	 plot	 the	 temperature
distribution	in	the	special	case	that	K(x)	=	1	+	x.



4.	Determine	the	values	of	λ	for	which	the	boundary	value	problemz

has	a	nontrivial	solution.
5.	Consider	the	nonlinear	heat	flow	problem

where	the	thermal	conductivity	depends	on	temperature	and	is	given	by	K(u)
=	u.	Find	the	steady-state	temperature	distribution.
6.	Show	 that	 if	 there	 is	 a	 solution	u	=	u(x)	 to	 the	boundary	value	problem
(1.3)–(1.4),	then	the	following	condition	must	hold.

Interpret	this	condition	physically.
7.	Consider	the	boundary	value	problem

where	a,	b,	L,	and	ω	are	fixed	parameters	with	a,	b	≠	0.	When	does	a	unique
solution	exist?
8.	Find	the	eigenvalues	λ	for	the	boundary	value	problem

9.	Show	that	the	eigenvalues	of	the	boundary	value	problem

are	given	by	the	numbers	λn	=	p2n,	n	=	1,	2,	3,…,	where	the	pn	are	roots	of
the	 equation	 tan	 p	 =	 1/p.	 Plot	 graphs	 of	 tan	 p	 and	 1/p	 and	 indicate
graphically	 the	 locations	 of	 the	 values	 pn.	 Numerically	 calculate	 the	 first
four	eigenvalues.
10.	Find	the	eigenvalues	λ	of	the	boundary	value	problem

[Hint:	this	is	a	Cauchy–Euler	equation.]
11.	Derive	the	steady-state	heat	equation	in	the	case	that	the	cross-sectional



area	of	the	bar	varies	a	function	of	x,	or	A	=	A(x).



5.2	Sturm–Liouville	Problems
The	eigenvalue	boundary	value	problem	in	heat	conduction	introduced	in	the	last
section	is	a	special	case	of	a	far	more	general	problem,	called	a	Sturm–Liouville
problem	(SLP).	A	Sturm–Liouville	differential	equation	has	the	form
(2.1)	

where	λ	is	constant	and	p	and	q	are	real-valued	functions	defined	on	[a,	b].	We
take	 y	 	 C2,	 and	 complex-valued.	 The	 equation	 is	 usually	 accompanied	 by
homogeneous	boundary	conditions	on	y(x)	of	the	form
(2.2)	

where	the	constants	α1	and	α2	are	not	both	zero,	and	the	constants	β1	and	β2	are
not	both	zero	(i.e.,	the	boundary	condition	at	an	endpoint	does	not	collapse).	Two
special	cases	of	the	boundary	conditions	(2.2)	are

and

On	a	bounded	 interval	 [a,	b],	 if	p,	p′,	 and	q	 are	 continuous	 functions	 on	 the
interval	 [a,	b],	and	p	 is	 never	 zero	 in	 [a,	b],	 then	 the	 boundary	 value	 problem
(2.1)–(2.2)	is	called	a	regular	Sturm–Liouville	problem	(SLP).	Otherwise	it	is
called	 singular.	 Singular	 problems	 arise	 when	 the	 interval	 [a,	b]	 is	 infinite	 or
when	p(x0)	=	0	for	some	x0	 	[a,	b].	SLPs	are	named	after	J.	C.	F.	Sturm	and	J.
Liouville,	who	studied	such	problems	in	the	mid-1800s.



5.2.1	The	Eigenvalue	Problem
A	regular	SLP	always	has	the	trivial	solution	y(x)	 	0.	The	question	is	when	will
it	have	a	nontrivial	solution.	A	value	of	λ	for	which	there	is	a	nontrivial	solution
of	(2.1)–(2.2)	is	called	an	eigenvalue,	and	the	corresponding	nontrivial	solution
is	 called	 an	 associated	 eigenfunction.	Notice	 that	 any	 constant	multiple	 of	 an
eigenfunction	gives	another	eigenfunction	(but	not	an	independent	one).

Remark	5.4
(Quantum	mechanics)	Readers	of	the	the	section	on	the	WKB	approximation	in
Chapter	4	will	 recognize	 the	Sturm–Liouville	differential	 equation	 is	 a	general
version	of	the	one-dimensional,	time-independent	Schrodinger	equation

where	V(x)	is	the	potential	function	and	E	is	the	energy.	Under	certain	boundary
conditions,	 the	 problem	 is	 to	 find	 the	 values	 of	 the	 energy	 (eigenvalues)	 for
which	 there	 is	 a	wave	 function	y(x).	 The	 eigenvalue	 problem	 is	 often	 singular
because	of	an	 infinite	domain.	Also,	 the	potential	 function	may	be	a	piecewise
continuous	function.
As	we	observe	in	the	sequel,	the	interesting	fact	about	regular	SLPs	is	that	they

have	 an	 infinite	 number	 of	 eigenvalues,	 and	 the	 corresponding	 eigenfunctions,
which	are	 in	C2,	 form	an	orthonormal	 set	 in	 the	 space	of	 all	 square-integrable
functions,	which	makes	orthogonal	expansions	possible.	These	 facts	generalize
results	 from	 finite-dimensional	 linear	 algebra,	 say	 in	 n	 or	 n	 regarding	 the
existence	of	eigenvalues	and	eigenvectors	of	a	matrix	and	the	representation	of
vectors	in	orthogonal	coordinates.

Example	5.5
A	simple	example	of	a	regular	SLP	is	the	problem

which	 is	 similar	 to	 the	 steady-state	 heat	 conduction	 problem	 from	 the	 last
section.	 Here,	 p(x)	 =	 q(x)	 =	 1	 and	 the	 interval	 is	 [0,	 π].	 This	 problem	 has
eigenvalues	λ	=	λn	=	n2	and	corresponding	eigenfunctions	y	=	yn(x)	=	sin	nx,	n	=



1,	2,….	Thus,	the	problem	has	solution	y	=	sin	x	when	λ	=	1,	y	=	sin	2x	when	λ	=
4,	 and	 so	 on.	 One	 way	 to	 find	 the	 eigenvalues	 and	 eigenfunctions	 is	 to	 go
through	a	case-by-case	argument	separately	considering	λ	=	0,	λ	>	0,	and	λ	<	0.
(We	prove	later	that	λ	cannot	be	a	complex	number.)	We	examine	different	cases
because	the	solution	of	the	differential	equation	has	a	different	form	depending
on	the	sign	of	λ.	If	λ	=	0,	then	the	equation	has	the	form	y″	=	0,	whose	general
solution	is	the	linear	function	y(x)	=	Ax	+	B.	But	y(0)	=	0	implies	B	=	0,	and	y(π)
=	0	implies	A	=	0.	Thus	we	get	only	the	trivial	solution	in	this	case	and	so	λ	=	0
is	not	an	eigenvalue.	If	λ	<	0,	say	for	definiteness	λ	=	−k2,	then	the	equation	has
the	form	y″	−	k2y	=	0	with	general	solution

The	boundary	conditions	require

which	in	turn	force	A	=	B	=	0,	and	therefore	we	obtain	only	the	trivial	solution	in
this	case.	Thus,	there	are	no	negative	eigenvalues.	Finally,	consider	the	case	λ	>
0,	or	λ	=	k2.	Then	the	differential	equation	takes	the	form

which	has	general	solutions

First,	y(0)	=	0	forces	A	=	0.	Thus	y(x)	=	B	sin	kx.	The	right	boundary	condition
yields

But	now	we	are	not	required	to	take	B	=	0;	rather,	we	can	select	k	to	make	this
equation	 hold.	 Because	 the	 sine	 function	 vanishes	 at	 multiples	 of	 π,	 we	 can
choose	k	−	n,	a	nonzero	integer	(we	have	already	considered	the	case	when	k	=
0),	or

The	corresponding	solutions,	or	eigenfunctions,	are

Here	we	have	arbitrarily	selected	the	constant	B	=	1	for	each	eigenfunction;	we
can	 always	 multiply	 eigenfunctions	 by	 a	 constant	 to	 get	 another	 (not
independent)	 eigenfunction.	Alternately,	we	 could	write	 the	 eigenfunctions	 as,
for	 example,	 yn(x)	 =	Bn	 sin	 nx,	 where	 a	 different	 constant	 is	 chosen	 for	 each
eigenfunction.	 The	 constants	Bn	 are	 chosen	 to	 normalize	 the	 eigenfunction	 in



some	manner.	We	 can	 easily	 plot	 the	 eigenfunctions;	 they	 are	 just	 sine	 curves
with	higher	and	higher	frequencies	as	n	 increases.	Note	that	 the	eigenfunctions
are	 real,	 and,	generally,	we	can	always	 take	 the	 eigenfunctions	of	 a	SLP	 to	be
real.
We	can	always	carry	out	the	preceding	argument	to	determine	the	eigenvalues

and	 eigenfunctions	 of	 a	 SLP.	 But	 these	 calculations	 can	 be	 tedious,	 or
impossible,	and	so	it	is	advantageous	to	have	some	general	results	that	give	the
properties	of	eigenvalues	and	eigenfuntions.	We	discuss	this	matter	in	the	sequel,
but	 first	 we	 review	 the	 finite-dimensional	 problem	 for	 both	 guidance	 and
comparison.
Finite	dimensional	problems.	Let	 n	denote	the	vector	space	of	all	n-tuples	of
complex	 numbers	 equipped	 with	 the	 usual	 definitions	 of	 addition	 and	 scalar
multiplication.	We	regard	the	elements	as	column	vectors	x,	y,	and	so	on,	without
arrows	or	boldface	type.	Geometry	in	 n	can	be	imposed	by	defining	an	 inner
product	(or	dot	product),

Then,	the	norm,	or	size,	of	a	vector	is	defined	by

and	 the	 distance	 between	 two	 vectors	 is	 ||x	 −	 y||.	 We	 say	 two	 vectors	 are
orthogonal	 if	 (x,	y)	 =	 0.	A	 set	 of	 vectors	 forms	 an	 orthogonal	 set	 if	 they	 are
mutually	orthogonal,	and	the	set	of	vectors	forms	an	orthonormal	set	 if	 it	 is	an
orthogonal	set	and	each	element	in	the	set	has	norm	1.	Recall	that	a	vector	can
always	be	normalized	by	dividing	by	 its	 norm.	The	 inner	 product	 satisfies	 the
conditions:

(i)	(x,	y)	=	 .
(ii)	(x,	y	+	z)	=	(x,	y)	+	(x	+	z).
(iii)	αx,	y)	=	α(x,	y),	α	 	 .
(iv)	(x,	x)	≥	0	and	(x,	x)	=	0	if,	and	only	if,	x	=	0.
The	properties	of	the	norm	are
(i)	||x||	≥	0	for	x	≠	0,	and	||x||	≥	0	implies	x	=	0.
(ii)	||αx||	=	|α|||x||.
(iii)	||x	+	y||	≤	||x||	+	||y||.	(triangle	inequality)
(iv)	|(x,	y)	|≤	||x||	||y||.	(Cauchy–Schwartz	inequality)



Now	consider	the	algebraic	eigenvalue	problem

where	A	is	an	n	×	n	matrix	with	complex	entries.	For	certain	classes	of	matrices
the	eigenvalue	problem	has	extraordinarily	useful	properties	and	they	give	direct
insight	into	the	treatment	of	Sturm–Liouville	problems;	in	fact,	one	can	see	that
both	 the	 algebraic	 EVP	 and	 the	 SLP	 are	 really	 special	 cases	 of	 the	 same
overarching	concept.
We	say	that	a	complex	matrix	A	is	Hermitian	if

That	is,	the	matrix	is	equal	to	its	complex	conjugate	transposed.	Then,	a	simple
calculation	shows

Thus,	for	Hermitian	matrices,	the	matrix	operator	can	be	taken	off	the	first	vector
and	 put	 on	 the	 second	 vector	 in	 an	 inner	 product;	 that	 is,	 the	 matrix	 A	 is
symmetric	with	respect	to	the	inner	product.	This	leads	to	a	key	definition.

Definition	5.6
For	any	matrix	A,	the	adjoint	of	A	is	the	matrix	A*	where	(Ax,	y)	=	(x,	A*y)	for
all	x,	y	 	 n.	A	matrix	is	self-adjoint	if	A	=	A*.
Therefore,	Hermitian	matrices	 are	 self-adjoint.	 In	 the	 same	way,	 if	A	 is	 a	 real
symmetric	matrix,	 that	 is,	A	 =	AT,	 then	A	 is	 self-adjoint	 because	 (Ax,	 y)	 =	 (x,
ATy)	=	(x,	Ay).
For	self-adjoint	matrices	on	finite	dimensional	vector	spaces	we	can	prove	the

following	important	results.

Theorem	5.7
If	A	is	a	self-adjoint	matrix,	then:

(a)	(Ax,	x)	is	real.
(b)	The	eigenvalues	are	real.
(c)	Eigenvectors	associated	with	distinct	eigenvalues	are	orthogonal.
(d)	There	is	an	orthonormal	basis	formed	by	the	eigenvectors.
(e)	There	 is	 a	matrix	matrix	U,	whose	 columns	 are	 the	 eigenvectors,	 such
that	U*	=	U−1



where	D	is	a	diagonal	matrix	with	the	eigenvalues	on	the	diagonal.

Proof
The	proofs	of	these	facts,	except	(d),	are	straightforward.	To	prove	(a)	observe

If	Ax	=	λx,	then	it	follows	that	 ,	which	proves	(b).	To
prove	(c)	assume	that	Ax	=	λx	and	Ay	=	μy.	Then

Subtracting,	we	get	(λ	−	μ)(x,	y)	=	0.	Because	λ	and	μ	are	distinct,	(x,	y)	=	0.	If
(d)	 is	 true,	 then	 take	 U	 as	 indicated,	 a	 matrix	 whose	 columns	 are	 the	 n
eigenvectors	 of	A.	 For	 the	 proof	 of	 (d),	 which	 is	 more	 difficult,	 we	 refer	 the
reader	to	a	text	on	linear	algebra.
Differential	operators.	The	Sturm–Liouville	differential	 equation	 (2.1)	 can	be
written	in	the	same	way	and	produces	similar	results	as	in	the	finite-dimensional
case.	We	write	the	equation	in	operator	form	as

where	L	is	a	differential	operator	defined	by

where	y	 is	 a	C2,	 complex-valued	 function	 on	 [a,	 b].	 The	 boundary	 conditions
(2.2)	 are	 considered	 to	 be	 a	 part	 of	 the	 definition	 of	 the	 operator	 L;	 in	 other
words,	 the	 domain	 of	 the	 operator	 L	 is	DL	 =	 {y	 	C2	 :	 (2.2)	 holds}.	 These
functions	 form	 a	 linear	 space,	 or	 vector	 space	 (Chapter	 4),	 over	 the	 complex
numbers.	The	geometrical	concepts	of	inner	product	and	norm	can	be	defined	in
a	space	of	functions;	these	are	generalizations	of	the	inner	(or	dot)	product,	and
the	length	of	vectors	in	 n.

Definition	5.8
If	u,	v	 	C2,	then	the	inner	product	of	u	and	v	is	a	complex	number	defined	by

(2.3)	
It	is	easy	to	check	using	properties	of	integrals	that	the	inner	product	satisfies	the
same	 properties	 of	 scalar	 products	 of	 complex	 vectors.	 This	 inner	 product
induces	a	norm	defined	by



This	norm	is	called	the	L2-norm.	It	satisfies	the	same	properties	as	the	norm	of
complex	 vectors.	 The	 same	 definitions	 of	 orthogonal,	 orthogonal	 sets,	 and
orthonormal	sets	hold.

Example	5.9
Consider	the	set	of	complex-valued	exponential	functions

for	−π	≤	x	≤	π.	Clearly,	for	m	≠	n,

So,	the	functions	are	orthogonal.	If	m	=	n,	 then	obviously	(eimx,	einx)	=	2π,	and
the	norm	is	 .	Hence,	the	set

is	an	orthonormal	set	on	−π	≤	x	≤	π.

Example	5.10
In	Example	5.5	we	found	the	eigenvalues	λn	=	n2	and	eigenfunctions	yn(x)	=	sin
nx,	 for	n	=	1,	2,…	for	 the	SLP	−y″	=	λy,	y(0)	=	y(π)	=	0.	 It	 is	 an	 exercise1	 to
show	that	the	eigenfunctions	satisfies	the	property

so	the	eigenfunctions	form	an	orthogonal	set.	Each	of	 these	eigenfunctions	can
be	normalized	by	dividing	by	its	norm.	We	have

Therefore	the	functions

form	an	orthonormal	set	of	eigenfunctions	for	the	SLP.	Thus,



The	 self-adjoint	 property	 of	 a	 real	 or	 complex	matrix	was	 the	 the	 important
property	 that	 led	 to	 the	 symmetric	 relation	 (Ax,	 y)	 =	 (x,	 Ay)	 with	 the	 inner
product.	Now	we	show	that	 the	same	 is	 true	 for	a	Sturm–Liouville	operator	L.
We	want	to	show,	therefore,	that

where	 u	 and	 v	 satisfy	 the	 boundary	 conditions	 (2.2).	 We	 first	 prove	 a
fundamental	identity.

Lemma	5.11
(Green’s	 identity)	Let	u	 and	v	 be	 continuously	differentiable,	 complex-valued
functions	on	the	interval	[a,	b],	and	let	p	be	real	and	continuously	differentiable.
Then

Proof
We	 can	 remove	 the	 differential	 operator	 from	 u	 and	 put	 it	 on	 	 using	 two
integrations	by	parts.	We	have

Applying	this	lemma	to	the	Sturm–Liouville	operator	Lu	=	−(pu′)′	+	qu	gives

In	terms	of	the	inner	product,	this	is	exactly

(2.5)	
Many	may	recognize	the	expression

which	is	the	Wronskian	of	u	and	 .	Now	we	apply	the	boundary	conditions	(2.2).
For	 simple	 Dirichlet	 or	 Neumann	 boundary	 conditions,	 it	 is	 clear	 that	 the
Wronskian	is	zero	at	both	x	=	a	and	x	=	b	because	both	eigenfunctions,	and	their



complex	 conjugates,	 satisfy	 the	 boundary	 conditions.	 For	 the	 general,	 mixed
boundary	conditions	(2.2)	 the	Wronskian	 is	zero	as	well.	For	example,	without
loss	of	generality	we	can	assume	α1	≠	0.	Then,	the	first	boundary	condition	for	u
and	 	can	be	written

Then,	substituting	into	the	right	side	of	(2.5),

Similarly,	we	can	show	W(b)	=	0.
In	summary,	we	have	proved:

Theorem	5.12
For	the	regular	Sturm–Liouville	problem	(2.1)–(2.2),	 the	differential	operator	L
is	self-adjoint,	or

Finally	 we	 show	 each	 eigenvalue	 has	 only	 eigenfunction.	 Let	 λ	 be	 an
eigenvalue	and	u	and	v	be	corresponding,	independent	real	eigenfunctions.	[Note
that	 we	 may	 always	 take	 the	 eigenfunctions	 to	 be	 real,	 because	 the	 real	 and
imaginary	parts	of	a	complex-valued	eigenfunction	are	eigenfunctions.]	Then,	by
definition	of	independence,	the	only	solution	of	the	system

is	 c1	 =	 c2	 =	 0	 for	 all	 x.	 This	means	 the	 coefficient	 determinant,	 which	 is	 the
Wronskian	 W(x),	 must	 be	 nonzero	 for	 all	 x.	 But	 we	 have	 W(a)	 =	 0,	 a
contradition.	Thus	u	and	v	must	be	dependent.
Now	we	can	state	a	fundamental	theorem	for	eigenvalues	of	a	regular	Sturm–

Liouville	problem.

Theorem	5.13
The	 regular	 Sturm–Liouville	 problem	 (2.1)–(2.2)	 has	 infinitely	 many	 real
eigenvalues	λn,	n	=	1,	2,…,	which	can	be	arranged	in	an	increasing	sequence

To	 each	 eigenvalue	 corresponds	 a	 single	 real	 eigenfunction,	 up	 to	 a	 constant
multiple.	 Finally,	 eigenfunctions	 corresponding	 to	 distinct	 eigenvalues	 are
orthogonal	on	[a,	b].



Proof
For	the	proof	of	existence	and	ordering	of	the	eigenvalues	we	refer	to	the	refer
ences	(e.g.,	see	Birkhoff	and	Rota,	1989).	The	remaining	parts	follow	from	the
self-adjointness	of	L	and	the	proofs	of	the	results	in	Theorem	5.7.
In	general,	a	set	of	boundary	conditions	for	which

is	called	symmetric.	Symmetric	boundary	conditions	guarantee	that	the	operator
is	self-adjoint	and	has	eigenvalues	with	independent,	orthogonal	eigenfunctions.

Example	5.14
(Sign	of	eigenvalues)	Another	 issue	concerns	 the	sign	of	 the	eigenvalues.	The
following	 argument,	 called	 an	 energy	 argument,	 is	 useful	 to	 show	 that	 the
eigenvalues	are	of	one	sign,	without	resorting	to	a	case	argument.	We	consider	a
Schrodinger	 equation	 with	 Dirichlet	 boundary	 conditions.	 Other	 SLPs	 can	 be
treated	similarly.	As	an	illustration	we	show	that	the	regular	SLP

(2.6)	
(2.7)	

where	q	>	0	on	[a,	b],	has	only	positive	eigenvalues.	Multiplying	the	differential
equation	(2.6)	by	y	and	integrating	gives

The	first	integral	can	be	integrated	by	parts	to	obtain

Under	 Dirichlet	 boundary	 conditions	 (2.7),	 the	 boundary	 terms	 in	 the	 last
equation	are	zero.	Hence

Because	q	 is	positive,	 the	second	integral	on	 the	 left	side	 is	positive.	Thus,	 the
eigenvalues	λ	for	(2.6)–(2.7)	must	be	positive.

Example	5.15
(Periodic	boundary	conditions)	Now	we	consider	a	SLP	differential	equation



on	the	interval	[−π,	π]	with	periodic	boundary	conditions:
(2.8)	

(2.9)	
These	 types	 of	 problems	 are	 useful	 in	 Chapter	 6,	 where	 we	 examine	 partial
differential	 equations	 with	 periodic	 boundary	 conditions.	 Moreover,	 periodic
boundary	 conditions	 are	 symmetric.	We	 can	 either	 use	 a	 case	 argument	 or	 an
energy	argument	to	show	that	the	eigenvalues	are	nonnegative.	We	leave	this	as
an	exercise.	The	energy	argument	does	not	eliminate	λ	=	0.	But	it	is	easy	to	see
from	the	problem	that	λ	=	0	is	an	eigenvalue	with	a	constant	eigenfunction;	so	λ0
=	0,	y0(x)	=	1	is	an	eigenpair.	Now	assume	λ	=	k2	>	0.	The	differential	equation
(2.8)	has	general	solution

for	arbitrary	constants	a	and	b.	The	first	boundary	condition	in	(2.9)	forces

or

This	boundary	condition	can	be	satisfied	if	k	=	±n,	or

With	 these	 values	 the	 second	 boundary	 condition	 is	 satisfied	 automatically.
Hence	 the	 eigenvalues	 are	 λn	 =	 n2,	 n	 =	 1,	 2,	 3,…,	 and	 with	 each	 eigenvalue
corresponds	to	two	independent	eigenfunctions,	cos	nx	and	sin	nx.	These,	along
with	1,	form	an	orthonormal	set.	At	this	point	we	can	check	orthogonality.	Using
trigonometic	identities	we	can	show,	for	example,	that

Thus	the	functions	1,	cos	nx,	sin	nx	form	an	orthogonal	set	of	eigenfunctions	for
a	periodic	SLP.	Observe	that	the	operator	L	defined	in	(2.8)–(2.9)	is	self-adjoint.
Later,	we	see	that	these	functions	form	the	basis	of	classical	Fourier	series.



5.2.2	Eigenfunction	Expansions	and
Bases
In	 the	 last	 section	 we	 proved	 a	 key	 result	 for	 regular	 SLPs	 regarding	 the
existence	 of	 eigenvalues	 and	 orthogonal	 eigenfunctions.	 Now	 we	 take	 up	 the
basis	 concept.	 Having	 a	 set	 of	 orthonormal	 eigenfunctions	 for	 a	 regular	 SLP
suggests	 the	 possibility	 of	 expanding	 a	 given	 function	 in	 terms	 of	 those
functions.	We	recall	the	finite	dimensional	case	stated	in	Theorem	5.7.	If	A	is	a
self-adjoint	 matrix,	 there	 are	 n	 real	 eigenvalues	 and	 a	 set	 of	 n	 orthonormal
eigenvectors,	say,	v1,	v2,…	vn,	and	the	eigenvectors	form	a	basis	for	 the	space;
that	 is,	 every	 vector	 x	 can	 be	 expanded	 as	 a	 linear	 combination	 of	 those
eigenvectors,	or

and	 the	coefficients,	or	coordinates,	cn	 are	 the	projections	of	 the	vector	x	onto
the	coordinate	directions,	or

If	the	basis	vn	were	only	an	independent	set,	and	not	orthogonal,	then	it	would	be
very	difficult	to	compute	the	coefficients	in	the	representation	of	x!
We	seek	an	analogous	result	for	regular	SLPs.	To	illustrate	the	point	we	revisit

an	example.

Remark	5.16
In	Example	5.5	we	solved	the	eigenvalue	problem

and	found	orthogonal	eigenfunctions	sin	nx,	n	=	1,	2,….	Which	functions	 f	can
be	expanded	in	the	sine	series

for	some	set	of	coefficients	cn,	and	how	can	we	compute	the	coefficients	cn?	This
expansion	is	not	a	finite	sum,	so	the	answer	to	this	question	must	come	to	terms
with	the	notion	of	convergence	of	the	series.	As	stated	previously,	 the	L2	norm
defines	a	distance	measure,	and	that	will	be	used	to	define	convergence.
We	now	cut	to	the	chase	and	state	the	basis	theorem	for	regular	SLPs.	We	give



at	this	point	only	an	informal	proof	and	a	few	examples,	with	the	more	analytic
result	coming	later.

Theorem	5.17
Let	ϕn(x),	n	 =	 1,	 2,,…,	 be	 the	 set	 of	 orthonormal	 eigenfunctions	 for	 a	 regular
Sturm–Liouville	problem.	Then	every	square-integrable	function	f	on	[a,	b]	can
be	expanded	as

(2.10)	
where	the	convergence	is	in	L2	norm.	This	means,	in	terms	of	the	partial	sums	of
the	series,

that	||f	−	sN||	→	0	as	N	→	0,	or

The	coefficients	are	given	by
(2.11)	
The	 series	 (2.10)	 is	 called	 the	 (generalized)	 Fourier	 series	 for	 f,	 and	 the

coefficients	(2.11)	are	called	the	Fourier	coefficients,	and	we	interpret	them	as
projection	coefficients	of	f	onto	the	subspace	generated	by	the	eigenfunction	ϕn.
Convergence	 in	L2	 is	often	called	mean-square	convergence,	 or	convergence
in	the	mean.

Proof
Assume	the	series	(2.10)	converges	in	the	mean.	Multiplying	(2.10)	by	ϕm(x)	and
integrating	gives

where	we	formally	pulled	the	integral	under	the	sum.	(This	can	be	shown	to	be	a



valid	operation).	By	orthogonality,	the	sum	collapses	to	a	single	term,	occurring
when	n	=	m.	Thus,

But	 this	 is	 true	 for	 all	m.	 Thus,	 in	 terms	 of	 the	 inner	 product,	 this	 gives	 the
Fourier	 coefficients	 (2.11).	 Note	 that	 orthogonality	 was	 essential	 in	 this
argument.

Remark	5.18
If	the	orthogonal	set	yn(x)	is	used	in	the	expansion	instead	of	the	orthonormal	set
ϕn	(x),	that	is,	if

then	 the	 same	argument	as	 in	 the	proof	 shows	 that	 the	Fourier	coefficients	are
given	by

(2.12)	
Usually,	 for	 theoretical	calculations	 it	 is	easier	 to	work	with	 the	orthonormal

set;	 for	 practical	 examples	 we	 work	 with	 the	 orthogonal	 set	 because	 we	 can
avoid	the	complicated	normalizing	constants.

Example	5.19
Expand	the	function	f(x)	=	x,	0	<	x	<	π,	in	terms	of	the	orthogonal	eigenfunctions
sin	nx	determined	in	Example	5.5.	The	Fourier	coefficients	are,	from	(2.12),

Now,

and,	using	integration	by	parts,

Therefore	the	generalized	Fourier	series	for	f(x)	=	x	is



We	are	guaranteed	that	this	series	converges	in	the	mean-square	sense.	Observe
that	the	series	cannot	be	differentiated	term-by-term;	the	derived	series	does	not
even	converge,	much	less	to	1.
Convergence.	Consider	an	orthogonal	expansion

(2.13)	
When	we	write	 a	 series	 like	 (2.13),	 a	 natural	 question	 is,	 “What	 is	 meant	 by
convergence	 of	 the	 infinite	 series?”	 There	 are	many	 answers	 to	 this	 question,
depending	 on	 how	we	measure	 the	 error	 of	 an	N-term	 approximation	 SN(x)	
∑Nn=1	cnfn(x)	 to	 f(x).	On	one	hand,	by	 the	pointwise	error	EN(x)	we	mean	 the
function

Therefore,	for	a	fixed	number	N	(giving	the	number	of	terms),	EN(x)	is	a	function
whose	value	gives	the	error	at	each	point	x.	On	the	other	hand,	we	can	define	an
integrated	error;	the	number	eN	defined	by

is	called	 the	mean-square	error	 in	 the	approximation.	Note	 that	eN	 is	 just	 the
square	of	the	pointwise	error,	integrated	over	the	interval	[a,	b].	Thus,	the	mean-
square	 error	 is	 a	 type	 of	 average	 over	 all	 the	 pointwise	 errors.	 Each	 error
expressions	leads	to	a	definition	of	convergence.
If	 for	each	 fixed	x	 in	 [a,	b]	we	have	 limN→∞	EN(x)	=	0,	 then	we	say	 that	 the

infinite	series	(2.13)	converges	pointwise	to	f	on	the	interval	[a,	b];	in	this	case,
for	each	fixed	x	the	series	is	a	numerical	series	that	converges	to	the	numerical
value	f(x),	at	that	x;	pointwise	convergence	means	that	the	error	goes	to	zero	at
each	 point.	We	 say	 that	 the	 infinite	 series	 (2.13)	 converges	 to	 f	 in	 the	mean-
square	sense	if

Mean-square	convergence	is	convergence	in	L2[a,	b],	or	||sN	−	f||	→	0	as	N	→	∞,
and	it	requires	that	the	integrated	pointwise	error-squared	go	to	zero	as	more	and



more	terms	are	taken.
There	 is	 a	 stronger	 type	 of	 convergence,	 called	 uniform	 convergence.	 The

series	(2.13)	converges	uniformly	to	f(x)	on	[a,	b]	if	for	any	given	tolerance	ε	>
0,	we	can	find	a	number	N	 (representing	the	number	of	terms)	such	that	n	>	N
implies	 |En(x)|	<	ε	 for	all	x	 in	 [a,	b].	That	 is,	 the	error	can	be	made	uniformly
small	over	the	entire	interval	by	choosing	the	number	of	terms	large	enough.	For
uniform	convergence,	N	(the	number	of	terms)	depends	only	on	the	tolerance	ε
and	not	on	where	in	the	interval	the	error	is	taken.	Uniform	convergence	can	be
expressed	practically	as

To	 prove	 uniform	 convergence	 of	 the	 series	 on	 the	 right	 side	 of	 (2.13)	 it	 is
sufficient	to	show2	there	is	a	numerical	sequence	Mn	such	that	∑	Mn	converges
and	|cnfn(x)|	<	Mn	for	all	x	 	[a,	b].

Remark	5.20
One	 can	 show	 that	 pointwise	 convergence	 does	 not	 imply	 mean-square
convergence,	and	conversely.	However,	uniform	convergence	implies	both	mean-
square	and	pointwise	convergence.
A	novice	may	not	appreciate	the	subtle	differences	in	convergence	and	wonder

why	we	have	defined	three	types	(actually,	there	are	others).	Suffice	it	to	say	that
the	error	may	not	go	to	zero	in	a	pointwise	or	uniform	manner,	but	that	does	not
mean	the	approximation	is	not	useful;	a	weaker	form	of	convergence,	like	mean-
square	 convergence,	 may	 be	 all	 that	 is	 required.	 By	 the	 way,	 the	 definitions
above	 are	 valid	 whether	 or	 not	 the	 functions	 fn(x)	 are	 orthogonal.	 However,
mean-square	convergence	and	 the	orthogonality	of	 the	 fn	make	computation	of
the	coefficients	in	the	series	easier.

EXERCISES
1.	Show	that	the	SLP

has	 eigenvalues	 λn	 =	 n2π2/l2	 and	 corresponding	 eigenfunctions	 yn(x)	 =
sin(nπx/l),	n	=	1,	2,…



2.	Show	that	the	SLP

with	mixed	Dirichlet	and	Neumann	boundary	conditions	has	eigenvalues

and	corresponding	eigenfunctions

for	n	=	0,	1,	2,….
3.	 Find	 the	 eigenvalues	 and	 eigenfunctions	 for	 the	 problem	with	 periodic
boundary	conditions:

4.	Consider	the	SLP

Is	λ	=	0	an	eigenvalue?	Are	there	any	negative	eigenvalues?	Show	that	there
are	infinitely	many	positive	eigenvalues	by	finding	an	equation	whose	roots
are	 those	 eigenvalues,	 and	 show	graphically	 that	 there	 are	 infinitely	many
roots.
5.	Show	that	the	SLP

has	 exactly	 one	 negative	 eigenvalue.	 Is	 zero	 an	 eigenvalue?	 How	 many
positive	eigenvalues	are	there?
6.	For	the	SLP

show	that	λ	=	0	is	an	eigenvalue	if	and	only	if	a	+	b	=	−l.
7.	Use	an	energy	argument	to	show	that	the	eigenvalues	for	the	problem



must	be	nonnegative.	Find	the	eigenvalues	and	eigenfunctions.
8.	Find	eigenvalues	and	eigenfunctions	for	the	problem

9.	What,	 if	anything,	can	be	deduced	about	 the	sign	of	 the	eigenvalues	 for
the	problem

What	 are	 the	 eigenvalues	 and	 eigenfunctions?	 (Use	 a	 computer	 algebra
system	to	investigate	this	problem.)
10.	Consider	the	regular	problem

where	 q(x)	 >	 0	 on	 [0,	 l].	 Show	 that	 if	 λ	 and	 y	 are	 an	 eigenvalue	 and
eigenfunction	pair,	then

Is	λ	>	0?	Can	y(x)	=	constant	be	an	eigenfunction?
11.	Prove	the	Cauchy-Schwartz	inequality	|(f,	g)|≤	Vert	f||	||g||	using	 the	fact
that	Q(t)	=	(f	 +	 tg,	 f	 +	 tg)	 ≥	 0	 for	 any	 real	 number	 t.	 Expand	out	 to	 get	 a
polynomial	in	t.



5.2.3	Best	Approximation	and	Hilbert
Spaces
The	 last	 section	 outlined	 a	 recipe	 for	 expanding	 an	 L2	 function	 f	 in	 a	 basis
consisting	 of	 the	 orthonormal	 eigenfunctions	 of	 a	 regular	 Sturm–Liouville
problem.	 In	 the	 next	 chapter	 we	 examine	 underpinnings	 of	 the	 origin	 and
applications	of	SLP	in	the	subject	of	partial	differential	equations;	in	this	chapter
we	examine	its	utility	in	solving	integral	equations.
To	dig	deeper	 into	 the	mathematical	foundations	of	orthogonal	expansions	 in

function	spaces	we	require	some	definitions.	A	vector	space	on	which	there	is	a
norm	 is	 called	 a	normed	 linear	 space,	 and	 a	 vector	 space	 on	 which	 there	 is
defined	an	inner	product	is	an	inner	product	space.	An	inner	product	space	is	a
normed	linear	space	under	the	natural	norm	associated	with	the	inner	product.	A
normed	linear	space	may	not	be	an	inner	product	space.	We	have	seen	examples
of	both.
In	a	normed	linear	space	X,	with	norm	||·||,	a	sequence	yn	is	said	to	converge	to

y	 	X	 if	 ||yn	 −	y||	→	0	 as	n	→	+∞.	But	we	 can	make	 the	 following	definition
without	knowledge	of	the	limit.

Definition	5.21
A	sequence	yn	in	X	is	a	Cauchy	sequence	if	for	every	ε	>	0	there	in	an	integer	N,
independent	of	ε,	such	 that	 ||yn	−	ym||	<	ε	 for	all	m,	n	>	N.	 In	other	words,	 the
terms	of	the	sequence	get	as	close	as	we	desire	far	out	in	the	sequence.
Must	convergent	sequences	be	Cauchy	sequences?	Yes.	Must	Cauchy	sequences
converge	to	a	limit?	Maybe	surprisingly,	no.	For	example,

is	a	sequence	of	rational	numbers,	and	it	is	a	Cauchy	sequence.	However	it	does
not	converge	to	a	rational	number.	(It	in	fact	converges	to	the	number	e,	which	is
not	rational.)	Thus	the	rational	numbers	are	deficient	in	some	way.	This	leads	to
the	following	definition.

Definition	5.22



A	normed	linear	space	is	complete	if	every	Cauchy	sequence	in	X	has	a	limit	in
X.	A	complete	normed	linear	space	is	called	a	Banach	space.	An	inner	product
space	that	is	complete	in	its	natural	norm	is	called	a	Hilbert	space.
Thus,	the	rational	numbers	are	not	complete.	They	are	useful	for	calculations,	by
hand	or	on	computers,	but	are	not	good	if	we	are	interested	in	convergence.	So,
what	we	do	is	to	complete	 the	set	of	rational	numbers	by	adding	in	all	possible
limits	of	Cauchy	sequences.	We	get	the	real	numbers	when	this	is	done,	and	then
we	can	do,	for	example,	calculus.	This	construction	of	completion,	by	the	way,	is
not	trivial.
These	 concepts	 may	 be	 familiar	 to	 students	 in	 physics,	 where	 in	 the

foundations	 of	 quantum	 mechanics	 the	 wave	 functions	 are	 assumed,
axiomatically,	to	belong	to	a	Hilbert	space.

Example	5.23
Consider	the	normed	linear	space	of	continuous	functions	with	the	L2	norm.	It	is
an	inner	product	space	with

But	it	is	not	a	Banach	space	or	Hilbert	space.	Let	[a,	b]	=	[0,	1]	and	consider	the
sequence	of	functions

We	leave	it	to	the	reader	to	sketch	plots	of	fn	and	fm	for	different	values	m	and	n
and	then	compute	the	L2	norm

showing	that	the	sequence	is	Cauchy.	Yet	the	limit	is	f(x)	=	0	for	x	<	 	f(x)	=	1	for
x	>	 ,	which	is	not	continuous.
This	 example	 invites	 us	 to	 append	 to	 this	 normed	 linear	 space	 the	 set	 of	 all
possible	limits	of	Cauchy	sequences.	But	this	leads	to	a	serious	issue.	The	limits
of	such	sequences	can	be	very	bizarre	and	the	integral	of	those	functions	is	not
defined	if	we	use	the	classical	Riemann	integral	from	calculus.	H.	Lebesgue	in
the	early	1900s	remedied	this	problem	by	defining	a	new,	more	general,	integral,
called	 the	Lebesgue	 integral,	 for	which	all	 these	 limiting	functions	of	Cauchy



sequences	are	defined.	With	this	redefinition	of	the	L2	norm	in	C[a,	b]	the	space
is	complete	and	therefore	both	a	Banach	space	and	a	Hilbert	space.
Using	 the	 Lebesgue	 integral	 we	 can	 rigorously	 treat	 the	 convergence	 of

Fourier	series.	We	approach	this	task	by	asking	about	the	best	approximation	in	a
Hilbert	 space	 of	 a	 function	 by	 a	 finite	 sum	 of	 orthonormal	 functions.
Specifically,	if	f(x)	is	in	L2	and	ϕ1,…,	ϕN	is	an	orthonormal	set,	what	is	the	best
approximation	f	by	a	linear	combination	of	the	(ϕn?

Theorem	5.24
If	 f	 	L2[a,	 b],	 ϕ1,	 ϕ2,…,	 ϕN	 is	 an	 orthonormal	 set	 in	L2[a,	 b],	 and	 cn	 are	 the
Fourier	coefficients	given	by

then

(2.14)	
for	any	set	of	coefficients	an.

Proof
The	demonstration	of	(2.14)	is	straightforward	using	the	definition	of	norm	and
properties	of	the	inner	product.	We	have

Adding	and	subtracting	 ,	gives



The	second	term	on	the	right	is	nonnegative,	so	(2.14)	holds.
In	the	last	line	of	the	preceding	proof	we	used	the	fact	that

(2.15)	
which	the	reader	should	verify.	This	equality	is	actually	Pythagoras’	theorem:	the
square	of	the	length	of	f	is	the	sum	of	the	squares	of	the	lengths	of	the	projection
and	 the	error.	 It	 leads	 to	another	 interesting	 inequality.	Because	 the	 left	 side	 is
nonnegative,	we	have

We	record	a	simple,	but	important,	conclusion	that	follows	from	this	inequality.
Because	it	holds	for	each	N,	we	have:

Theorem	5.25
(Bessel’s	inequality)	If	f	 	L2	and	ϕ1,	ϕ2,	ϕ3,	···	is	an	orthonormal	set	in	L2,	and
if	cn	=	(f,	ϕn),	then

Bessel’s	 inequality	 shows	 the	 series	 of	 squared	Fourier	 coefficients	 converges,
and	 thus	cn	→	0	as	n	→	∞.	Therefore	 the	Fourier	coefficients	get	 smaller	and
smaller.	 But,	 in	 addition,	 using	 completeness,	 it	 shows	 that	 the	 infinite	 series	

	converges	in	L2.

Theorem	5.26
Under	the	assumptions	of	Theorem	5.25,	the	Fourier	series



converges	to	a	function	in	L2.

Proof
Let

be	a	partial	sum	of	the	series.	We	know	∑|cn|2	converges	and	so	its	partial	sums
form	a	Cauchy	sequence	of	real	numbers	and	we	have

Thus	the	partial	sums	Sn	form	a	Cauchy	sequence	in	L2,	and,	by	completeness,
the	series	∑cnϕn	converges	to	some	function	h	 	L2.
The	question	is:	does	 the	limit	h	of	 the	Fourier	series	for	 f	equal	f?	The	next

example	shows	this	is	a	valid	question.

Example	5.27
Let	f(x)	=	cos	x	on	[0,	π]	and	 	sin	nx	be	an	orthonormal	set.	Clearly

for	all	n.	So	the	Fourier	series	converges	to	zero,	not	cos	x.
This	leads	to	the	important	definition:

Definition	5.28
A	set	ϕn,	n	=	1,	2,…,	is	a	complete	orthonormal	set	if

for	all	f	 	L2.
This	 definition	 should	 not	 be	 confused	 with	 the	 earlier	 definition	 of

completeness	of	a	normed	linear	space.	 In	summary,	 the	question	of	whether	a



Fourier	 series	converges	 to	 the	given	 function	comes	down	 to	proving	 that	 the
orthonormal	system	is	complete.	For	specific	orthonormal	systems,	we	leave	this
exercise	 to	more	 advanced	 treatments.	Many	 of	 the	 proofs	 rely	 on	 one	 of	 the
conditions	given	in	the	following	theorem.

Theorem	5.29
The	following	are	equivalent:

(1)	An	orthonormal	system	ϕn,	n	=	1,2,…	is	complete.

(2)	For	every	f	 	L2,

(2.16)	
(3)	If	(f,	ϕn)	=	0	for	all	n,	then	f	=	0.

Proof
We	prove	Parseval’s	condition	only.	It	follows	from

In	the	limiit	as	N	→	∞	the	left	side	goes	to	zero	by	completeness.
Pointwise	 convergence	 results	 and	 stronger	 uniform	 convergence	 results	 are

more	 difficult	 to	 obtain,	 and	 they	 usually	 require	 continuity	 and	 smoothness
assumptions	on	the	function	f.	In	the	next	section	we	discuss	convergence	results
for	the	classical	Fourier	system	{1,	cos(nπx/l),	sin(nπx/l)},	which,	by	the	way,	is
a	complete	orthonormal	system.
Finally,	we	mention	the	modal	interpretation	of	the	generalized	Fourier	series.

Thinking	of	f	as	a	signal	and	the	orthonormal	set	 fn	as	the	fundamental	modes,
the	Fourier	coefficient	cn	determines	 the	contribution	of	 the	nth	mode,	and	 the
generalized	 Fourier	 series	 is	 the	 decomposition	 of	 the	 signal	 into	 fundamental
modes.	 The	 sequence	 of	 squared	 coefficients,	 |c1|2,	 |c2|2,	 |c3|2,…,	 is	 called	 the
energy	spectrum,	and	|cn|2	 is	called	 the	energy	of	 the	nth	mode;	by	Parseval’s
equality,	the	total	energy	in	a	signal	is	||f||2.

EXERCISES
1.	 Verify	 that	 the	 set	 of	 functions	 cos(nπx/l),	 n	 =	 0,	 1,	 2…,	 form	 an



orthogonal	set	on	the	interval	[0,	l].	If

converges	in	the	mean-square	sense	on	[0,	l],	what	are	the	formulae	for	the
cn?	This	series	is	called	the	Fourier	cosine	series	on	[0,	l].	Find	the	Fourier
cosine	series	for	f(x)	=	1	−	x	on	[0,	1].
2.	Let	f	be	defined	and	integrable	on	[0,	l].	The	orthogonal	expansion

is	called	the	Fourier	sine	series	for	f	on	[0,	1].	Find	the	Fourier	sine	series
for	f(x)	=	cos	x	on	[0,	π/2].	What	is	the	Fourier	sine	series	of	f(x)	=	sin	x	on
[0,	π]?
3.	(Gram–Schmidt	orthogonalization)	A	result	 from	linear	algebra	 is	 that
any	 set	 of	 linearly	 independent	 vectors	 may	 be	 turned	 into	 a	 set	 of
orthogonal	 vectors	 by	 the	Gram–Schmidt	 orthogonalization	 process.	 The
same	 process	 works	 for	 functions	 in	 L2	 [a,	 b].	 Let	 f1,	 f2,	 f3,…	 be	 an
independent	set	of	functions	in	L2	and	define	the	set	gn	by

Show	that	gn	is	an	orthogonal	set.

4.	 (Lengendre	 polynomials)	 The	 functions	 1,	 x,	 x2,	 x3	 are	 independent
functions	on	the	interval	[−1,	1].	Use	the	Gram–Schmidt	method	to	generate
a	sequence	of	four	orthogonal	polynomials	P0(x),…,	P3(x)	on	[−1,	1].	Find
an	approximation	of	ex	on	[−1,	1]	of	the	form

that	 is	 best	 in	 the	mean-square	 sense,	 and	 plot	 ex	 and	 the	 approximation.
Compute	the	pointwise	error,	the	maximum	pointwise	error	over	[−1,	1],	and
the	mean-square	error.
5.	(Haar	wavelets)	Let	ϕ	be	a	function	defined	by	ϕ(x)	=	1	for	x	 	[0,	1),	and
ϕ(x)	=	0	otherwise.	Let	 (x)	=	ϕ(2x)	−	ϕ(2x	−	1).	Then	the	Haar	wavelets	are
the	functions

for	m,	n	=	0,	±1,	±2,….	Sketch	a	graph	of	 (x),	and	then	sketch	a	graph	of	



mn(x)	 for	m,	n	 =	 0,	 ±1,	 ±2.	Generally,	what	 is	 the	 graph	 of	 mn(x)?	 If	 f	 is
square	integrable	and

find	coefficients	cmn.
6.	 (Hermite	 polynomials)	 The	 Schrodinger	 equation	 on	 the	 real	 line	 for	 a
simple	 harmonic	 oscillator	 with	 potential	 energy	 1/2Kx2,	K	 >	 0,	 can	 be
written	in	scaled	coordinates	as
(2.17)	

where	E	is	the	energy	level.	Here,

a)	Let	y(x)	=	w(x)e−x2/2	and	show	that	w	satisfies

which	is	Hermite’s	differential	equation.
b)	Assume	a	power	series	solution	of	the	form	w(x)	=	∑∞

0	akxk	and	derive
the	recursion	relation

c)	If	E	=	2n	+	1,	where	n	is	a	nonnegative	integer,	show	that	solutions	are
nth	degree	polynomials	w(x)	=	Hn(x).	 (Hermite	polynomials)	Show	that,
appropriately	normalized,	the	first	few	Hermite	polynomials	are

d)	Plot	the	resulting	solutions	y0(x),…,	y3(x).	(For	other	values	of	energy

E	the	power	series	for	w	is	an	infinite	series	and	behaves	like	ex
2
;	thus	the

normalization	 condition	 cannot	 hold	 and	 those	 energy	 levels	 are	 not
eigenvalues.)



5.3	Classical	Fourier	Series
We	 introduced	 the	 idea	 of	 representing	 a	 given	 function	 f(x)	 in	 terms	 of	 an
infinite	 series	 of	 orthogonal	 functions	 arising	 from	 a	 regular	 Sturm–Liouville
problem.	Now	we	focus	on	a	special	set	of	orthogonal	functions	given	by	sines
and	 cosines.	One	 can	 think	 of	 these	 as	 the	 orthogonal	 set	 of	 functions	 arising
from	 a	 SLP	with	 periodic	 boundary	 conditions	 (Example	 5.15).	 The	 resulting
orthogonal	 series	 is	 called	 a	 classical	Fourier	 series.	 It	 is	 a	 special	 case	of	 the
orthogonal	 series	 discussed	 in	 the	 previous	 sections,	 but	 Fourier	 series	 have	 a
long	history	of	applications	to	signal	processing,	remote	sensing,	and	other	areas
of	 modern	 engineering	 and	 physics.	 Although	 first	 investigated	 by	 Euler	 and
Bernoulli	in	the	mid-1700s,	it	was	refined	by	Joseph	Fourier	in	the	early	1800s
to	 solve	 partial	 differential	 equations	 in	 heat	 transfer.	 Euler,	 Bernoulli,	 and
Fourier	 all	 had	 a	 vague	 notion	 of	 convergence	 (and	 even	 the	 definition	 of	 a
function!),	and	few	of	their	contemporaries	could	hardly	imagine	representing	a
discontinuous	 function	 by	 sums	 of	 continuous	 ones.	 Questions	 about
convergence	 of	 Fourier	 series	 spawned	 much	 of	 the	 development	 and
underpinnings	of	classical	analysis	and	modern	analysis	in	the	1800s	and	1900s.
For	 that	 reason	Fourier	 analysis	 is	one	of	 the	monuments	of	mathematics,	 and
the	material	in	this	section	could	be	expanded	to	volumes;	and	it	has.
Here	we	do	not	focus	on	solving	BVPs	and	SLPs.	Rather,	we	are	motivated	by

the	approximation	of	time-periodic	signals	for	all	times	t.	The	question	is	how	to
resolve	 such	 a	 signal,	 e.g.,	 think	 of	 a	 musical	 signal,	 into	 its	 fundamental
frequencies	 and	 overtones.	 As	 a	 result,	 we	 abandon	 our	 use	 of	 x	 as	 an
independent	variable	and	we	use	t.
We	work	on	an	arbitrary	symmetric	interval	(−l,	l)	about	 the	origin.	If	 f	 is	an

integrable	function	on	(−l,	l),	then	its	Fourier	series	is	the	trigonometric	series

(3.1)	
where	the	Fourier	coefficients	an	and	bn	are	given	by	the	formulas



Here,	 the	 ~	 sign	 only	means	 that	 the	 right	 side	 is	 the	 Fourier	 series	 for	 f	 and
means	nothing	regarding	convergence	of	the	series	to	f.	The	set	of	functions

(3.2)	
is	orthogonal	on	the	interval	(−l,	l).	It	is	shown	in	more	advanced	texts	that	the
set	 of	 functions	 (3.2)	 is	 complete,	 and	 therefore	 the	 Fourier	 series	 (3.1)
converges	in	the	mean-square	sense	to	f	when	f	 	L2(−l,	l).	As	an	aside,	 it	does
not	matter	in	our	discussion	if	we	include	the	endpoints	of	the	interval	(−l,	l);	the
values	of	the	integrals	defining	the	coefficients	give	the	same	value	whether	or
not	 an	endpoint	 is	 included.	However,	we	are	 interested	 in	 the	convergence	of
the	series	at	the	points.
The	 next	 examples	 give	 interesting	 observations	 regarding	 the	 behavior	 of

Fourier	series.

Example	5.30
Let	f(x)	=	t	on	−l	<	t	<	l.	The	Fourier	coefficients	are	easily	computed	to	be

Therefore	the	Fourier	series	for	f	is

We	note	that	series	is	2l	periodic	and	is	the	same	as	the	Fourier	sine	series	of	f(t)
=	t	on	the	interval	(0,	l).	Therefore,	the	Fourier	sine	series	on	(0,	l)	converges	to
the	 odd	 extension	 of	 f(t)	 =	 t	 to	 the	 entire	 interval	 (−l,	 l).	 At	 t	 =	 ±l	 the	 series
converges	 to	zero	and	 thus	does	not	converge	 to	 f(t)	at	 these	 two	points.	Next,
the	derived	series,	obtained	by	differentiating	term-by-term,	does	not	converge	at
all,	much	 less	 to	 the	derivative	 f′(t)	=	1.	So	 the	 series	 cannot	 be	differentiated
term-by-term.	However,	the	integrated	series	does	converge.

Example	5.31
Because	the	Fourier	series	for	f(t)	is	2l	periodic,	it	is	valid	on	the	entire	real	line	
.	Whatever	behavior	we	observe	on	(−l,	l)	will	repeat	itself	on	every	interval	(l,

3l),	 (3l,	 5l),…,	 (−3l,	 −l),	 (−5l,	 −3l),….	 Therefore,	 the	 Fourier	 series	 is	 the



Fourier	series	of	the	extension	of	f(t)	on	(−l,	l)	to	a	2l	periodic	function3	on	all	of
.	 Of	 course,	 because	 of	 our	 use	 of	 an	 open	 interval	 (−l,	 l),	 the	 periodic

extension	 of	 f	 remains	 undefined	 at	 odd	 multiples	 of	 l;	 however,	 the	 Fourier
series	 may	 be	 valid	 at	 those	 missing	 points.	 To	 illustrate,	 consider	 the	 odd
function	f(t)	=	t,	−1	<	t	<	l′	in	the	last	example.	The	2l	periodic	extension	of	f	to
all	of	 	is	shown	in	Fig.	5.2.

Figure	5.2	The	2l	periodic	extension	of	f(t)	=	t,	-l	<	t	<	l.

It	is	clear	that	the	Fourier	series	simplifies	considerably	if	f	is	an	even,	f(−t)	=
f(t),	or	an	odd,	 f(−t)	=	−f(t),	 function;	 for	 example,	 the	 function	 sin	 	 is	 odd
and	 cos	 	 is	 an	 even	 function.	 Moreover,	 an	 even	 function	 times	 an	 odd
function	is	odd.	Therefore,	if	f	is	an	even	function,	then	the	product	f(x)	sin	
is	an	odd	function;	so	all	of	the	coefficients	bn	are	zero	because	an	odd	function
integrated	over	 a	 symmetric	 interval	 about	 the	origin	 is	 zero.	Hence,	 if	 f	 is	 an
even	function,	then	its	Fourier	series	reduces	to	a	cosine	series	of	the	form

Similarly,	if	f	is	an	odd	function,	then	the	coefficients	an	vanish,	and	the	Fourier
series	reduces	to	a	sine	series

Reiterating	some	of	 the	comments	 in	 the	last	example,	a	Fourier	series	(3.1),
although	computed	only	on	the	interval	[−l,	l],	is	a	2l-periodic	function	because
the	sines	and	cosines	are	2l-periodic.	Thus,	the	series	repeats	its	values	in	every
interval	of	length	2l.	Therefore,	if	f	is	defined	on	all	of	 	and	is	2l-periodic,	we
can	represent	it	by	its	Fourier	series	on	all	of	 .	Relevant	to	signal	processing,	if
f	 is	 some	 given	 signal	 or	 data	 set	 2l-periodic	 in	 time	 (say	 a	 signal	 from	 an



electrical	circuit	or	an	electrocardiogram),	then	we	could	digitize	the	signal	and
save	 it	 by	 storing	 the	 Fourier	 coefficients,	 or	 some	 finite	 subset	 of	 them.
Knowledge	of	 the	coefficients	allows	us	 reproduce	 the	signal	via	 (3.1)	and	 the
Fourier	coefficients.	Of	course,	 the	music	 industry	has	made	great	advances	 in
applying	these	ideas.
In	the	Fourier	series	(3.1)	the	nth	harmonic	is

Each	harmonic	in	the	series	has	a	higher	frequency,	and	thus	more	oscillations,
than	the	preceding	harmonic.	The	energy	spectrum	of	the	series	is	the	sequence
of	numbers	ω2n	defined	by

These	energies	are	the	squares	of	the	amplitudes	of	the	various	harmonics.	One
can	show	that	Parseval’s	inequality	takes	the	form

It	 is	 often	 simpler	 in	 calculations	 to	 work	 with	 the	 complex	 form	 of	 Fourier
series.	Using	the	Euler	relation	eiθ	=	cos	θ	+	i	sin	θ,	we	can	show	that	(3.1)	can
be	written	equivalently	as

(3.3)	
for	coefficients	cn,	where	f	is	defined	on	(−l,	l).	This	is	the	complex	form	of	the
Fourier	series	for	f.	Clearly,	for	m	≠	n,

so	the	functions	einπt/l	are	orthogonal	on	(l,	l).	If	m	=	n,	then	(einπt/l,	e−inπt/l)	=	2l,
and	the	norm	is	 .	Hence,	the	set

is	an	orthonormal	set	on	−l	≤	t	≤	l.	The	Fourier	coefficients	are	given	by



(3.4)	
Recall	also	that	the	function	eiθ	is	2πi	periodic.

Example	5.32
Let	 f(t)	 =	 et	 for	 −π	 <	 t	 <	 π.	 Then	 the	 Fourier	 coefficients	 are,	 by	 direct
integration,

Hence

We	leave	it	to	the	reader	to	obtain	the	real	Fourier	series	of	f(t)	=	et.

Example	5.33
Fourier	series	can	be	used	 to	solve	various	kinds	of	equations.	 In	 this	example
we	find	the	solution	to	the	differential-difference	equation

Assume	the	complex	form

Formally	 differentiating	 term-by-term	 and	 substituting	 the	 results	 into	 the	 left
side	of	the	given	equation	yields

where	 we	 used	 .	 Expanding	 the	 right	 side	 of	 the	 equation,	 sin	
,	and	then	equating	the	terms,	we	get

and	otherwise	cn	=	0,	n	≠	−1,	1.	We	can	solve	for	c−1	and	c1	to	get	c−1	=	−(2i	+
1)/10,	c1	=	(2i	−	1)/10.	Then	the	solution	is

This	is	easily	checked	for	validity.
In	Section	5.3	we	introduced	the	ideas	of	pointwise,	uniform,	and	mean-square



convergence.	We	have	noted	that	if	f	 is	square	integrable	on	(−l,	l),	 then	mean-
square	 convergence	 is	 automatic.	 Pointwise	 convergence	 requires	 additional
assumptions	about	the	smoothness	of	f.	It	is	remarkable,	for	example,	that	there
exists	 a	 continuous	 function	 whose	 Fourier	 series	 diverges	 at	 infinitely	 many
points	in	the	interval.	The	case	when	the	graph	of	f	is	made	up	of	finitely	many
continuous,	 smooth	 (a	 continuous	 derivative)	 segments	will	 cover	most	 of	 the
interesting	 functions	 encountered	 in	 science	 and	 engineering.	 A	 function	 f	 is
piecewise	 continuous	 on	 [a,	 b]	 if	 it	 is	 continuous	 except	 possibly	 at	 a	 finite
number	 of	 points	 in	 [a,	 b]	 where	 it	 has	 simple	 jump	 discontinuities;	 f	 has	 a
simple	jump	discontinuity	at	x	=	c	 if	both	one-sided	limits	of	 f(x)	exist	and	are
finite	at	c.	The	function	may	or	may	not	be	defined	at	a	jump	discontinuity.	We
say	f	is	piecewise	smooth	on	[a,	b]	if	both	f	and	f’	are	piecewise	continuous	on
[a,	b],	and	we	say	f	is	piecewise	smooth	on	(−∞,	∞)	if	it	is	piecewise	smooth	on
each	 bounded	 subinterval	 [a,	 b]	 of	 the	 real	 line.	 Then	 the	 basic	 pointwise
convergence	theorem	can	be	stated	as	follows.

Theorem	5.34
If	 f	 is	 piecewise	 smooth	 on	 [−l,	 l]	 and	 otherwise	 2l-periodic,	 then	 its	 Fourier
series	(3.1)	converges	pointwise	for	all	x0	 	 	to	the	value	f(x0)	if	f	is	continuous
at	x0,	and	to	the	mean	value	of	its	left	and	right	limits	at	x0,	namely,	to	 (f(x0−)	+
f(x0+)),	if	f	is	discontinuous	at	x0.
Stronger	 convergence	 results,	 like	 uniform	 convergence,	 require	 additional

smoothness	conditions	on	f.	For	example,	if	f	and	f′	are	continuous	on	[−l,	l]	with
f(−l)	=	f(l)	and	f′(−l)	=	f′(l),	then	the	Fourier	series	converges	uniformly	to	f.

EXERCISES
1.	Consider	a	triangular	wave	given	analytically	by:	f(t)	=	t	+	1	if	−1	<	t	≤	0;
f(t)	=	1	−	t	if	0	<	x	≤	1;	and	otherwise	2-periodic.	Compute	its	Fourier	series,
and	plot	f	and	two-term,	three-term,	and	four-term	Fourier	approximations.
2.	 Find	 the	 Fourier	 series	 for	 f(t)	 =	 t2	 on	 [−π,	 π].	 Sketch	 a	 graph	 of	 the
function	defined	on	 	to	which	the	Fourier	series	converges	pointwise.	Use
the	Fourier	series	to	show

Graph	the	frequency	spectrum.



3.	By	considering	f(x)	=	x2	on	(−π,	π),	show	that

4.	Find	the	Fourier	series	for	f(t)	=	l	|sin	t|	for	t	 	(−π,	π).
5.	On	the	interval	(0,	4)	let	f(x)	=	0,	x	 	(0,	2);	f(x)	=	1,	x	 	[2,	4).

a)	Sketch	the	odd	extension	of	f	to	an	8π	periodic	function	on	 .
b)	Sketch	the	even	extension	of	f	to	an	8π	periodic	function	on	 .
c)	To	what	value(s)	will	the	Fourier	series	converge	at	the	points	x	=	nπ,	n
=	0,	±1,	±2,…,	in	(a)	and	in	(b)?
d)	Find	the	Fourier	series	in	(b).

6.	Consider	the	signal	defined	by	f(t)	=	t	+	1	for	−2π	<	t	≤	0	and	f(t)	=	t	for	0
<	 t	 ≤	 2π,	 and	 otherwise	 4π-periodic.	 Plot	 the	 signal,	 and	 find	 its	 Fourier
series.	 Plot	 the	 frequency	 spectrum.	To	what	 value	 does	 the	Fourier	 series
converge	at	t	=	0,	t	=	2π,	and	t	=	π?	Plot	the	sum	of	the	first	four	harmonics
and	compare	it	to	f.
7.	In	Example	5.32	find	the	Fourier	series	in	terms	of	sines	and	cosines.
8.	Find	the	Fourier	series	for	f(t)	=	e−|t|,	|t|	<	π,	with	otherwise	f(t	+	2π)	=	f(t).
9.	Show	that	the	Fourier	series	for	f(x)	=	cos	at	on	(−π,	π),	where	a	is	not	an
integer,	is

Show

10.	What	is	the	sum	of	the	Fourier	series	for	f(t)	=	(t	+	1)	cost,	−π	<	t	<	π,	at	t
=	3π?
11.	Let	f(t)	=	− 	on	−π	<	t	≤	0	and	f(t)	=	 	on	0	≤	t	≤	π.	Show	that	the	Fourier
series	for	f	is

If	 sN(t)	 denotes	 the	 sum	 of	 the	 first	N	 terms,	 sketch	 graphs	 of	 s1(t),	 s3(t),
s7(t),	 and	 s10(t)	 and	 compare	 with	 f(t).	 Observe	 that	 the	 approximations
overshoot	f(t)	in	a	neighborhood	of	t	=	0,	and	the	overshoot	is	not	improved



regardless	 of	 how	 many	 terms	 are	 taken	 in	 the	 approximation.	 This
overshoot	behavior	of	Fourier	series	near	a	discontinuity	is	called	the	Gibbs’
phenomenon.
12.	Use	Fourier	series	to	solve	to	find	a	solution	y	=	y(t)	of	period	2	of	the
differential-difference	equation

13.	Find	a	4π	periodic	solution	on	 	of	the	differential	equation

where	F(t)	=	1,	|t|	<	π,	and	F(t)	=	0,	π	<	|t|	<	2π.



5.4	Integral	Equations
An	integral	equation	is	an	equation	where	the	unknown	function	occurs	under	an
integral	 sign.	 Integral	 equations	 arise	 in	 the	 analysis	 of	 differential	 equations,
and,	in	fact,	many	initial	and	boundary	value	problems	for	differential	equations
may	be	reformulated	as	integral	equations,	and	vice-versa.	But	integral	equations
naturally	arise	in	modeling	as	well.	The	two	types	of	linear	equations	we	discuss
are	the	Fredholm	equation

(4.1)	
and	the	Volterra	equation

(4.2)	
Here	u	 is	 the	 unknown	 function,	 f	 is	 a	 given	 continuous	 function,	 and	 λ	 is	 a
parameter.	The	given	function	k	is	called	the	kernel,	and	we	assume	that	k	is	a
continuous	 function	 on	 the	 square	a	 ≤	x	 ≤	b,	 a	 ≤	 y	 ≤	b.	 The	 interval	 [a,	b]	 is
assumed	 to	 be	 finite.	Because	Volterra	 equations	have	 an	 intimate	 relationship
with	initial	value	problems,	we	often	replace	the	variables	x	and	y	by	t	and	s.	The
difference	 between	 the	 Fredholm	 and	 Volterra	 equations	 is	 the	 variable	 upper
limit	of	 integration	 in	 the	Volterra	equation.	By	a	 solution	of	 (4.1)	or	 (4.2)	we
mean	 a	 continuous	 function	u	 =	u(x)	 defined	 on	 the	 interval	 [a,	b]	 that,	 when
substituted	into	the	equation,	reduces	the	equation	to	an	identity	on	the	interval.
If	 f	 	 0,	 then	 the	 equation	 is	 called	 homogeneous;	 otherwise	 it	 is
nonhomogeneous.	 If	λ	=	0,	 then	 the	unknown	appears	only	under	 the	 integral
sign	and	the	equation	is	said	to	be	of	the	first	kind;	otherwise	it	is	of	the	second
kind.	If	k(x,	y)	=	k(y,	x)	then	the	kernel	is	said	to	be	symmetric.	Although	(4.1)
and	 (4.2)	 are	 similar,	 they	 require	 different	 methods	 of	 analysis.	 Most	 of	 the
discussion	 deals	 with	 continuous	 solutions	 to	 integral	 equations;	 however,	 a
more	complete	theory	can	be	developed	for	square	integrable	functions.
We	can	streamline	the	discussion	by	introducing	integral	operator	notation.	For

example,	if	we	define	the	Fredholm	operator	K	by

(4.3)	
then	(4.1)	can	be	written	simply	as



(4.4)	
where	we	have,	as	 is	common	practice,	 suppressed	 the	 independent	variable	x.
We	think	of	K	as	operating	on	a	function	u	 to	produce	another	function	K	u.	 If
the	 kernel	 k	 is	 continuous,	 then	 K	 maps	 continuous	 functions	 to	 continuous
functions.	Symbolically,	K	:	C[a,	b]	→	C[a,	b].	Ultimately,	we	want	to	determine
the	solution	(if	any),	which	could	be	written	symbolically	in	the	form

If	this	were	true,	then	(K	−	λI)−1	would	be	the	inverse	of	K	−	λI,	and	we	would
have	succeeded	in	defining	the	inverse	of	an	integral	operator.
In	 the	 same	way	 that	we	 consider	 eigenvalue	 problems	 for	matrices	 and	 for

differential	 equations	 (Sturm–Liouville	 problems),	we	 can	 consider	 eigenvalue
problems	 for	 integral	 equations.	 A	 number	 λ	 is	 called	 an	 eigenvalue	 for	 the
integral	operator	K	if	there	exists	a	nontrivial	solution	u	to	the	integral	equation
(4.5)	

The	set	of	eigenvalues	form	the	spectrum	of	K,	and	the	(geometric)	multiplicity
of	 an	 eigenvalue	 is	 the	 dimension	 of	 the	 function	 space	 spanned	 by	 its
corresponding	 eigenfunctions.	 Much	 of	 the	 theory	 of	 integral	 equations	 deals
with	 solvability	 questions	 for	 the	 Fredholm	 equation	 (4.4)	 (or	 the	 Volterra
equation)	and	the	solution	to	the	eigenvalue	problem	(4.5).



5.4.1	Volterra	Equations
Volterra	integral	equations	arise	naturally	in	many	settings	and	we	begin	with	an
example.

Example	5.35
(Inventory	control	problem)	A	shop	manager	determines	that	a	percentage	k(t)
of	goods	 remains	unsold	at	 time	 t	 after	 she	purchased	 the	goods.	At	what	 rate
should	 she	 purchase	 goods	 so	 that	 the	 stock	 remains	 constant?	 Typical	 of
inventory	problems,	as	well	as	population	problems,	we	assume	that	this	process
is	continuous.	Let	u(t)	be	the	rate	(goods	per	unit	time)	at	which	goods	are	to	be
purchased,	 and	 let	 a	 be	 the	 amount	 of	 goods	 initially	 purchased.	 In	 the	 time
interval	 [τ,	 τ	 +	Δτ]	 she	will	 buy	 an	 amount	u(τ)	Δτ,	 and	 at	 time	 t	 the	 portion
remaining	unsold	is	k(t	−	τ)u(τ)	Δτ.	Therefore	the	amount	of	goods	in	the	shop
unsold	at	time	t	is

The	first	term	represents	the	amount	of	the	initial	purchase	left	unsold	at	time	t.
Hence,	this	is	the	total	amount	of	goods	in	the	shop	left	unsold	at	time	t,	and	so
the	shop	manager	should	require	that

So	 the	 solution	 to	 the	 shop	 manager’s	 problem	 satisfies	 a	 nonhomogeneous
Volterra	integral	equation.	For	example,	if	k(t)	=	e−bt,	then	we	can	rearrange	the
problem	as

Differentiating	with	respect	to	t	gives	the	solution	u(t)	=	ab.

Example	5.36
(Demography)	 We	 set	 up	 an	 integral	 equation	 governing	 the	 number	 of
newborns	in	a	population	where	the	mortality	and	fecundity	rates	are	known.	Let
u(a,	t)	be	the	population	density	of	females	of	age	a	at	time	t.	Thus,	u(a,	t)	da	is
approximately	the	number	of	females	between	the	ages	of	a	and	a	+	da	at	time	t.



Further,	let	f(a)	denote	the	fecundity	rate	of	females	at	age	a,	measured	in	births
per	female	per	time.	Then	f(a)u(a,	t)	da	is	the	rate	of	births	at	time	t	contributed
by	 females	between	 the	ages	a	and	a	 +	da.	 Integrating	over	 all	 ages	 gives	 the
total	number	of	births	per	unit	time	at	time	t,	or

There	 is	no	difficulty	 in	using	∞	as	 the	upper	 limit	on	 the	 integral	because	 the
fecundity	will	be	zero	after	some	age	when	females	cease	reproduction.	Now	we
separate	ages	into	the	two	cases	a	<	t	and	a	>	 t.	For	a	<	 t,	 females	of	age	a	at
time	t	were	born	at	time	t	−	a.	So	u(a,	t)	da	=	B(t	−	a)s(a)	da,	where	s(a)	 is	 the
survivorship,	or	the	fraction	that	survive	from	birth	to	age	a.	For	a	>	t,	 females
of	age	a	were	present	at	time	t	=	0	having	age	a	−	t.	If	u0(a)	is	the	age	density	of
females	at	time	zero,	then	u(a,	t)	da	=	u0(a	−	t)s(t)	da	for	a	>	t.	Consequently,	the
birthrate	must	satisfy	the	Volterra	equation

The	 second	 integral	 is	 a	known	 function	of	 time,	 say	ϕ(t);	 thus	 the	birthrate	B
satisfies	the	Volterra	equation

which	 is	 called	 the	 renewal	 equation.	 The	 renewal	 equation	 occurs	 often	 in
applied	mathematics,	especially	probability	theory.
Some	integral	equations,	like	the	one	obtained	in	the	preceding	examples,	have

kernels	 of	 a	 special	 type	 that	 permit	 a	 direct	 solution	 by	 Laplace	 transform
methods.	The	Volterra	integral	equation

(4.6)	
is	said	to	be	of	convolution	type	because	the	integral	is	the	convolution	k	*	u	of
k	and	u.	We	recall	that	the	Laplace	transform	of	a	convolution	is	the	product	of
the	 Laplace	 transforms,	 that	 is,	 .	 Therefore,	 taking	 the
Laplace	transform	of	both	sides	of	(4.6)	gives

Solving	for	 	gives



Thus,	the	solution	u	is	the	inverse	transform	of	the	right	side.

Example	5.37
Consider	the	integral	equation

Here	 f(t)	 =	 t	 and	 k(t)	 =	 t,	 both	 with	 transform	 1/s2.	 Then,	 taking	 the	 Laplace
transform	of	the	equation	gives

or

Therefore

Initial	value	problems	for	ordinary	differential	equations	can	be	reformulated
as	a	Volterra	integral	equation.	Consider
(4.7)	

and	assume	that	f	is	a	continuous	function.	If	u	=	u(t)	is	a	solution	of	(4.7),	then
for	all	t	we	have

Replacing	t	by	s	and	integrating	from	t0	to	t	gives

or

(4.8)	
where	in	the	last	step	the	fundamental	theorem	of	calculus	was	applied.	Equation
(4.8)	 is	 a	 Volterra	 integral	 equation	 for	 u,	 and	 it	 is	 entirely	 equivalent	 to	 the
initial	value	problem	(4.7).	To	recover	(4.7)	from	(4.8),	we	can	differentiate	(4.8)
with	respect	to	x.	The	initial	condition	is	automatically	contained	in	the	integral
form	 (4.8).	 One	 procedure	 for	 solving	 a	 Volterra	 equation,	 which	 sometimes
works,	 is	 to	 recast	 it	 into	 an	 initial	 value	 problem	 and	 solve	 the	 differential



problem.
To	reformulate	differential	equations	as	integral	equations,	we	can	continually

integrate	the	equation	until	all	the	derivatives	are	removed.	The	following	lemma
contains	 a	 formula	 for	 a	 repeated	 integral	 that	 is	 useful	 in	 carrying	 out	 this
procedure	for	second-order	equations.

Lemma	5.38
Let	f	be	a	continuous	function	for	x	≥	a.	Then

Proof
Let	F(s)	=	ƒsa	ƒ(y)	dy.	Then,	using	integration	by	parts,

which	is	the	result.
The	 next	 example	 shows	 how	 a	 second-order	 initial	 value	 problem	 can	 be

transformed	into	an	integral	equation.

Example	5.39
Consider	the	second-order	initial	value	problem:
(4.9)	

Solving	for	u″	and	integrating	from	a	to	t	gives

If	the	first	integral	is	integrated	by	parts	the	result	is



Integrating	again	gives

Lemma	5.38	finally	implies

which	is	a	Volterra	equation	is	of	the	form

Remark	5.40
(Leibniz	 rule)	 The	 reverse	 process,	 transforming	 an	 integral	 equation	 into	 a
differential	equation,	requires	the	Leibniz	rule	for	differentiating	an	integral	with
respect	 to	 a	 variable	 appearing	 in	 the	 upper	 limit	 of	 the	 integral	 and	 in	 the
integrand:
(4.10)	

(see	Exercise	1).
Iteration.	It	is	common	practice	in	applied	science	to	apply	iterative	procedures
to	 determine	 approximate	 solutions	 to	 various	 kinds	 of	 problems	 for	 which
analytic	solutions	cannot	be	found.	The	integral	equation	(4.8),	and	therefore	the
initial	value	problem	(4.7),	can	be	solved	approximately	by	fixed-point	iteration.
Beginning	 with	 an	 initial	 approximation	 ϕ0	 (t)	 we	 generate	 a	 sequence	 of
successive	approximations	ϕ1(t),	ϕ2(t),…,	via

This	 method	 is	 called	 Picard’s	 method,	 and	 it	 can	 be	 shown	 under	 certain
assumptions	that	the	sequence	ϕn(t)	converges	to	the	unique	solution	of	(4.8).
For	the	linear	Volterra	equation	of	the	form



a	similar	type	of	iteration	can	be	defined.	Let	us	write	this	equation	in	operator
form	as
(4.11)	

where	K	is	the	Volterra	integral	operator

(4.12)	
By	making	a	heuristic	calculation	we	can	guess	what	the	solution	representation
is.	First	we	write	the	integral	equation	as

Then,	formally	inverting	the	operator,

This	 result	 is	 the	 content	 of	 the	 next	 theorem.	Therefore,	 letting	u0	 =	u0(t)	 be
given,	we	may	define	a	sequence	of	successive	approximations	un(t)	by

(4.13)	
We	have	the	following	result	on	convergence	of	this	process.

Theorem	5.41
If	u0,	 f,	k	 are	 continuous,	 then	 the	 sequence	un(t)	 defined	 by	 (4.13)	 converges
uniformly	to	the	unique	solution	of	(4.11)	on	[a,	b]	given	by

(4.14)	
where	Kj	denotes	the	composition	operator	K(K(…(K)…)),	j	times.

Remark	5.42
The	representation	(4.14)	of	 the	solution	 to	 (4.11)	 is	called	 the	Neuman	series
for	u,	or	the	Born	series	in	physics.	It	represents	the	inverse	operator	(I	−	λK).

Proof
To	prove	the	theorem,	note	that	after	repeated	iteration	we	can	write



(4.15)	
To	examine	the	convergence	of	(4.15)	we	must	look	at	the	remainder	term	λn+1

Kn+1	u0	as	n	→	∞.	Denoting	M	=	max|k|	and	C	=	max|u0|,	we	have

Next

Continuing	with	an	induction	argument	we	obtain

This	bound	is	independent	of	t	and	it	approaches	zero	as	n	→	∞.	Consequently	|
λn+1Kn+1u0|	→	0	uniformly	on	[a,	b],	and	the	unique	solution	of	(4.11)	 is	given
by	(4.14).
Examples	 are	 left	 to	 the	 exercises.	 We	 point	 out,	 however,	 one	 important

consequence	of	the	Theorem	5.41,	namely	that	the	equation	Ku	=	μu	 (set	 f	=	0
and	μ	=	1/λ)	has	only	the	trivial	solution.	Therefore,	there	can	be	no	eigenvalues
for	a	Volterra	operator	(4.12).

Corollary	5.43
The	Volterra	operator	(4.12)	has	no	eigenvalues.
This	result	is	consistent	with	our	comment	that	Volterra	equations	come	from

initial	value	problems,	and	linear	initial	value	problems	for	differential	equations
have	no	eigenvalues.	The	conclusion	is	in	sharp	contrast	to	Fredholm	equations,
which	 arise	 from	 boundary	 value	 problems.	 We	 already	 know	 that	 boundary
value	problems	(e.g.,	Sturm–Liouville	problems)	have	a	 rich	spectral	structure,
and	we	expect	the	same	from	Fredholm	operators.



5.4.2	Fredholm	Equations	with
Degenerate	Kernels
Generally,	 integral	 equations	 are	 problems	 in	 infinite-dimensional	 spaces.
However,	 a	 special	 class	 of	 Fredholm	 equations	 reduces,	 or	 degenerates,	 to	 a
finite-dimensional	 problem.	 To	 this	 class	 belongs	 Fredholm	 integral	 equations
whose	kernel	k(x,	y)	is	a	finite	sum	of	products	of	functions	of	x	and	y.	These	are
essentially	 finite-dimensional	problems,	or	problems	 leading	 to	a	 linear	system
of	algebraic	equations.
Linear	Algebra.	To	understand	 the	mathematical	 issues	 for	 integral	equations,
we	 retreat	 to	 a	 familiar	 problem	 in	 linear	 algebra,	 the	 algebraic	 eigenvalue
problem:	Given	an	n	×	n	matrix	A,	 determine	 numbers	 λ	 for	which	 the	matrix
equation
(4.16)	

has	a	nontrivial	solution	u	 	 n.	The	values	of	λ	for	which	a	solution	u	exists	are
the	 eigenvalues,	 and	 the	 corresponding	 solutions	 u	 are	 the	 associated
eigenvectors.	Eigenvalues	may	be	real	or	complex	numbers.
There	are	many	reasons	the	algebraic	eigenvalue	problem	is	important,	but	we

focus	our	thinking	on	a	specific	notion,	namely	using	the	eigenstructure	of	A	 to
address	the	nonhomogeneous	solvability	problem.	We	know	from	matrix	theory
that	there	are	n	eigenvalues,	not	necessarily	distinct.	Suppose,	for	our	discussion,
that	 the	 matrix	 A	 is	 a	 real,	 symmetric	 matrix	 (A	 =	 AT).	 Then	 A	 has	 n	 real
eigenvalues	λ1,…,	λn,	and	a	full	set	of	n	orthonormal	eigenvectors	ei,	i	=	1,	2,…,
n.	Therefore,	 the	eigenvectors	 from	an	orthonormal	basis	 for	 the	space	 n	and
each	vector	u	in	 n	can	be	written	uniquely	as	a	linear	combination	of	the	ei,	or

(4.17)	
The	ci	are	the	coordinates	of	u	in	this	basis	and	are	given	by	ci	=	u	·	ei	=	(u,	ei),
which	are	the	projections	of	u	onto	the	ith	eigenvector.
The	point	we	make	is	that	knowledge	of	the	eigenvalues	and	eigenvectors	can

be	 used	 to	 solve	 other	 algebraic	 problems.	 Take,	 for	 example,	 the
nonhomogeneous	linear	system
(4.18)	



where	f	is	a	given	vector,	and	μ	is	a	given	constant.	If	a	solution	u	exists,	it	must
have	 the	 form	 (4.17)	 for	 some	 choice	 of	 the	 constants	 ci,	 which	 are	 to	 be
determined.	 Further,	 because	 f	 is	 a	 given	 vector,	 it	 has	 a	 known	 expansion	 in
terms	of	the	eigenvectors,

where	the	coefficients	 fi	=	(f,	ei)	are	known.	Substituting	these	two	expressions
for	u	and	f	into	(4.18)	gives

Combining	terms,

But	Aei	=	λiei,	because	λi	and	ei	form	an	eigen-pair.	Consequently,

Equating	coefficients	of	the	independent	vectors	ei	then	gives

Solving	for	the	unknown	coefficients	ci	gives

Therefore,	 if	μ	 is	not	an	eigenvalue,	 then	 there	 is	a	unique	solution	 to	 (4.18)
given	by

The	 right	 side	 represents	 (A	 −	 μI)−1f,	 and	 so	 we	 have	 inverted	 the	 finite-
dimensional	operator	A	−	μI.
If	μ	is	an	eigenvalue,	say	μ	=	λJ,	then

and	 cJλJ	 =	 μcJ	 +	 fJ.	 If	 fJ	 =	 (f,	 eJ)	 ≠	 0,	 that	 is,	 f	 is	 not	 orthogonal	 to	 the	 Jth
eigenspace,	then	(4.18)	cannot	have	a	solution.	On	the	other	hand,	if	fJ	=	0,	then



cJ	can	be	any	arbitrary	constant	and	(4.18)	has	 infinitely	many	solutions	of	 the
form

We	 have	 proved	 the	 following	 important	 result	 about	 the	 solution	 structure	 of
(4.18).

Theorem	5.44
(Fredholm	Alterative	theorem)	Consider	 the	system	(4.18),	where	A	 is	a	 real
symmetric	matrix.

(a)	If	μ	is	not	an	eigenvalue	of	A,	then	(4.18)	has	a	unique	solution.
(b)	If	μ	=	λJ	is	an	eigenvalue	of	A,	then	either	there	is	no	solution,	or	there
are	infinitely	many	solutions.	In	other	words,	in	this	case	there	are	solutions
if,	and	only	if,	f	is	orthogonal	to	the	the	eigenspace	corresponding	to	λJ.
In	summary,	knowledge	of	the	eigen-structure	of	a	matrix	A	makes	the	solution

of	other	problems	straightforward.	This	same	idea,	based	on	expansions	in	terms
of	 eigenfunctions,	 remains	 applicable	 to	 other	 operators,	 such	 as	 integral
operators	and	differential	operators.	Knowledge	of	 the	eigen-structure	makes	 it
possible	to	invert	such	operators.
Separable	kernels.	Let	us	now	consider	the	integral	equation	of	the	form
(4.19)	

where	λ	 is	a	parameter,	 f	 is	a	given	continuous	 function,	and	K	 is	 the	operator
given	by	(4.3)	with	kernel

(4.20)	
where	the	αj	and	βj	are	real-valued	continuous	functions.	A	kernel	of	this	form	is
called	separable,	or	degenerate.

Example	5.45
The	Fredholm	integral	operator

has	a	separable	kernel	with



Without	loss	of	generality,	we	can	always	assume	that	the	αj	are	independent,
and	the	βj	are	independent.	When	we	write	out	equation	(4.19),	after	substituting
the	kernel,	we	obtain

The	inner	product	notation	is	convenient	for	the	remaining	discussion.	We	notice
that	this	last	equation	is	just

(4.21)	
where	the	unknown	constants	cj	are	defined	by	the	inner	products

(4.22)	
If	we	multiply	(4.21)	by	βi(x)	and	integrate	(this	is	the	same	as	taking	the	inner
product),	we	obtain

These	equations	represent	n	 linear,	algebraic	equations	 in	 the	unknowns	c1,	c2,
…,	cn.	The	system	can	be	written	concisely	in	matrix	format	by	introducing	the
unknown	column	vector	c	=	 (c1,…,	cn)T,	 the	 column	vector	F	 =	 ((f,	β1),…,	 (f,
βn))T,	and	the	coefficient	matrix	A	with	entries	(βi,	αj).	Thus	we	have	reduced	the
solution	of	the	integral	equation	(4.19)	to	the	solution	of	the	linear	system
(4.23)	

Determining	c	gives	the	cj,	and	therefore	(4.21)	can	be	used	(provided	λ	≠	0)	to
determine	the	solution	u(x)	of	the	separable	integral	equation	(4.19).
Notice	that	there	are	several	cases	to	be	considered,	depending	upon	whether	λ

is	an	eigenvalue	or	not,	and	whether	λ	=	0.	The	problem	Ku	−	λu	=	 f	contains
both	the	eigenvalue	problem	Ku	=	λu	and	the	solvability	problem	Ku	=	f.
(1)	The	case	λ	≠	=	0.	First	consider	equation	(4.19)	for	λ	≠	0.	In	this	case

(4.24)	
where	the	cj	are	obtained	from	(4.23).	If	λ	is	not	an	eigenvalue	of	the	matrix	A,



then	(4.23)	has	a	unique	solution	c;	then	the	solution	of	Ku	−	λu	=	f	 is	given	by
(4.24).	 If	 is	an	eigenvalue	of	A,	 then	(4.23)	 either	has	no	 solution	or	 infinitely
many	 solutions,	 depending	 on	 whether	 F	 is	 orthogonal	 to	 the	 eigenspace
generated	by	λ.
If	f	=	0,	then	(4.19)	reduces	to	the	eigenvalue	problem	Ku	=	λu	 for	K;	 so	 the

nonzero	eigenvalues	of	 the	matrix	A	coincide	with	 the	eigenvalues	of	K.	There
are	 finitely	many	 such	 eigenvalues,	 and	 the	 corresponding	 eigenfunctions	u(x)
are	 defined	 by	 (4.21)	 with	 f	 =	 0,	 where	 the	 cj	 are	 the	 components	 of	 the
corresponding	 eigenvectors	 of	 A.	 We	 can	 summarize	 our	 conclusions	 in	 the
following	alternative	theorem.

Theorem	5.46
Consider	 the	 Fredholm	 integral	 equation	 (4.19),	 where	 the	 kernel	 is	 given	 by
(4.20)	and	λ	≠	0.	Let	A	be	the	matrix	A	 	((βi,	αj)).	If	λ	is	not	an	eigenvalue	of	A,
then	(4.19)	has	a	unique	solution	given	by	(4.24);	if	λ	is	an	eigenvalue	of	A,	then
(4.19)	 either	 has	 no	 solution	 or	 infinitely	 many	 solutions.	 In	 particular,	 the
eigenvalue	problem	Ku	=	λu	has	finitely	many	eigenvalues	and	eigenfunctions.
(2)	The	case	λ	=	0.	Next	consider	 the	case	λ	=	0.	First,	 if	 f	=	0,	 then	 (4.21)

becomes

which	implies	cj	=	(u,	βj)	=	0	for	all	j,	or	u	is	orthogonal	to	all	the	βj.	There	are
infinitely	many	independent	functions	u	 that	satisfy	this	condition.	Suffice	it	 to
say	 that	 the	 n	 functions	 βj	 span	 a	 finite-dimensional	 space,	 whereas	 u	 lies
generally	 in	an	 infinite	dimensional	space,	 the	square	 integrable	functions.	The
space	 of	 functions	 orthogonal	 to	 the	 span	 of	 β1,…,	 βn	 is	 infinite	 dimensional.
Thus,	there	are	infinitely	many	nontrivial	solutions	to	the	equation	Ku	=	0.	This
means,	of	course,	 that	zero	is	an	eigenvalue	of	K	with	infinite	multiplicity;	 that
is,	the	dimension	of	the	eigenspace	corresponding	to	λ	=	0	is	infinite.
If	λ	=	0	and	f	≠	0,	then	(4.21)	becomes

Now	it	is	clear	that	no	solution	can	exist	if	f	is	not	a	linear	combination	of	the	αj.



If	f	is	a	linear	combination	of	the	αj,	say	 ,	then	we	must
have	 cj	 =	 (u,	 βj)	 =	 fj	 for	 all	 j.	 Again,	 there	 are	 infinitely	 many	 solutions.	We
summarize	the	discussion	in	the	following	alternative	theorem.

Theorem	5.47
Consider	 the	 equation	Ku	 =	 f	 with	 separable	 kernel	 (4.20).	 If	 f	 is	 not	 a	 linear
combination	of	the	αj	then	there	is	no	solution;	if	f	is	a	linear	combination	of	the
αj,	 then	 there	 are	 infinitely	 many	 solutions.	 In	 particular,	 there	 are	 infinitely
many	eigenfunctions	corresponding	to	a	zero	eigenvalue.
In	summary,	the	preceding	discussion	implies	the	following	theorem	regarding

the	spectrum	of	a	Fredholm	operator	with	a	separable	kernel.

Theorem	5.48
The	integral	operator	K	with	separable	kernel	(4.20)	has	 finitely	many	nonzero
eigenvalues	 of	 finite	 multiplicity,	 and	 zero	 is	 an	 eigenvalue	 of	 infinite
multiplicity.

Example	5.49
Find	the	nonzero	eigenvalues	of	the	operator

Here	the	kernel	is	degenerate	with

The	matrix	A	is	given	by

and	 	 gives	 the	 eigenvalues	 .	 An
eigenvector	 corresponding	 to	 λ	 =	 1/2	 is	 c	 =	 (3,	 1)T	 and	 an	 eigenvector
corresponding	 to	 λ	 =	 − 	 is	 (1,	 1)T.	 By	 formula	 (4.21),	 with	 f	 =	 0,	 the
eigenfunctions	are

But	eigenfunctions	are	unique	only	up	to	a	constant	multiple,	and	therefore	the
eigenfunctions	corresponding	to	λ	=	 	and	λ	=	− 	are	u(x)	=	a(1	−	x)	and	u(x)	=



b(1	−	3x),	respectively,	where	a	and	b	are	arbitrary	constants.	Next	consider	the
nonhomogeneous	equation

(4.25)	
From	the	alternative	theorem,	if	λ	≠	±1/2,	then	(4.25)	has	a	unique	solution.



5.4.3	Symmetric	Kernels
Many	 problems	 in	 the	 physical	 sciences	 lead	 naturally	 to	 Fredholm	 equations
with	continuous,	symmetric	kernels.	First	we	consider	the	eigenvalue	problem
(4.26)	

where	K	is	the	integral	operator	given	by	(4.3)	and	the	kernel	is	real,	symmetric,
and	continuous	on	the	square	a	≤	x,	y	≤	b.	That	is,	k(x,	y)	=	k(y,	x).	We	need	the
following	lemma.

Lemma	5.50
If	k	is	a	real,	continuous,	symmetric	kernel,	then	the	integral	operator	K	defined
by	(4.3)	has	the	symmetry	property

for	all	continuous	functions	u,	v.

Proof
The	proof	is	a	straightforward	calculation	using	the	symmetry	of	k	definition	of
and	interchanging	order	of	integration.	We	have

Integral	 operators	 that	 have	 the	 properties	 assumed	 in	 the	 lemma	 are	 called
symmetric	 operators.	 Such	 operators,	 as	 we	 have	 noted	 in	 the	 case	 of
symmetric	 matrices	 and	 Sturm–Liouville	 operators,	 have	 an	 extremely	 nice
spectral	structure.	First	we	prove	the	following	lemma.

Lemma	5.51
Let	 K	 be	 the	 integral	 operator	 defined	 by	 (4.3)	 with	 a	 real,	 symmetric,
continuous	 kernel.	 Then	 the	 eigenvalues,	 if	 they	 exist,	 are	 real,	 and
eigenfunctions	corresponding	to	distinct	eigenvalues	are	orthogonal.



Proof
First	observe	that	(Ku,	u)	is	real	for	all	u.	This	follows	from

If	a	number	equals	its	complex	conjugate,	then	it	must	be	real.	Now	let	λ,	u	be	an
eigenpair;	that	is,	Ku	=	λu.	Then	(Ku,	u)	=	(λu,	u)	=	λ(u,	u).	Since	(Ku,	u)	and	(u,
u)	are	real,	λ	must	be	real.	Finally,	let	Ku	=	λu	and	Kv	=	vv,	where	λ	≠	v.	Then	(u,
v)	=	0	follows	from

which	completes	the	proof.
Just	as	for	Sturm–Liouville	problems,	the	question	of	existence	of	eigenvalues

is	more	difficult	and	beyond	the	scope	of	this	text;	we	refer	the	reader	to	other
sources	for	a	proof	(e.g.,	see	Stakgold,	1998).
We	already	know	the	spectral	structure	of	Fredholm	operators	with	degenerate

kernels;	 there	 are	 finitely	many	nonzero	 eigenvalues	 of	 finite	multiplicity,	 and
zero	 is	 an	eigenvalue	of	 infinite	multiplicity.	Now	we	 formulate	a	 theorem	for
nonseparable	kernels;	the	result	is	the	Hilbert–Schmidt	theorem.4

Theorem	5.52
Consider	the	integral	operator	K	defined	by

where	 the	kernel	k	 is	 real,	 continuous,	 symmetric,	 and	not	degenerate.	Then	K
has	infinitely	many	eigenvalues	λ1,	λ2,…,	each	with	finite	multiplicity,	and	they
can	be	ordered	as

with	lim	λn	=	0.	Moreover,	any	square	integrable	function	f	can	be	expanded	in
terms	 of	 the	 set	 of	 orthonormal	 eigenfunctions	 ϕk	 (x)	 associated	 with	 the
eigenvalues	as

where	the	series	converges	to	f	in	L2	[a,	b],	and	the	coefficients	are	given	by

(4.27)	



Having	eigenfunctions	opens	the	possibility	of	solving	integral	equations	using
eigenfunction	expansions.	Consider	the	integral	equation
(4.28)	

where	 the	 kernel	 of	 K	 is	 real,	 continuous,	 and	 symmetric,	 and	 f	 is	 a	 given
continuous	function.	First	we	expand	f	and	u	in	terms	of	the	eigenfunctions	of	K
as

where	the	fk	are	known	and	given	by	(4.27),	and	where	the	uk	are	unknown	and
to	be	determined.	Substituting	these	expansions	into	(4.28)	gives

But

Therefore,	equating	the	coefficients	of	ϕk	yields

(4.29)	
Therefore,	if	μ	is	not	an	eigenvalue,	we	have	the	unique	solution	representation
of	(4.28)	given	by

From	the	definition	of	the	inner	product,	we	can	write	this	formula	as

The	right	side	is	a	representation	of	(K	−	μI)−1,	 the	inverse	operator	of	K	−	μI,
acting	upon	f.	(In	this	discussion	we	have	ignored	questions	of	convergence,	but
the	calculations	can	be	made	rigorous.)
If	μ	=	λm	for	some	fixed	m,	then	in	order	to	have	a	solution	we	must	have	fm	=

(f,	ϕm)	=	0,	or	f	orthogonal	to	ϕm.	In	this	case,	then,	um	is	arbitrary	and	we	obtain
infinitely	many	solutions	of	(4.28)	given	by



where	c	is	an	arbitrary	constant.
Numerical	 solution.	 When	 there	 is	 a	 unique	 solution,	 a	 Fredholm	 integral
equation	 of	 the	 form	 (4.28)	 can	 be	 resolved	 numerically	 by	 discretizing	 the
domain	 and	 approximating	 the	 integral	 by	 a	 quadrature	 formula	 (e.g.,	 the
trapezoid	rule).	To	this	end,	let	xi	=	a	+	(i	−	1)h	for	i	=	1,	2,…,	N,	where	h	=	(b	−
a)/(N	−	1)	is	the	step	size,	and	there	are	N	−	1	subintervals;	note	that	a	=	x1	and	b
=	xN.	Then,	evaluating	the	integral	equation	at	the	xi	gives

Now	recall	the	trapezoid	rule:

Replacing	the	integral	in	the	integral	equation	by	its	trapezoidal	approximation,
and	introducing	the	notation	ui	for	the	approximation	to	u(xi),	we	obtain

(4.30)	

for	i	=	1,	2,…,	N.	This	is	a	system	of	N	linear	equations	for	the	N	unknowns	u1,
u2,…,	 uN,	 and	 it	 can	 be	 solved	 easily	 by	 matrix	 methods	 using	 a	 computer
algebra	system.

EXERCISES
1.	Prove	Leibniz	rule	(4.10)	Hint:	Call	the	integral	I(x,	a,	b),	where	a	and	b
depend	on	x,	and	differentiate,	using	the	chain	rule.
2.	Let

a)	Find	the	eigenvalues	and	an	orthonormal	set	of	eigenvectors,	and	then



determine	the	solvability	of	the	following	systems.
b)	Au	=	5u	+	(1,	− ,	0)T.
c)	Au	=	u	+	(1/2,	−1,	0)T.
d)	Au	=	5u	+	(5,	2,	0)T.

3.	Let

and	consider	the	system	(A	−	4I)u	=	b.	Find	conditions	on	the	vector	b	 for
which	this	system	has	a	solution.
4.	Discuss	 the	 solvability	 of	 the	 following	 integral	 equations,	 and	 solve	 if
possible.

a)	u(x)	=	f(x)	+	λ	 .

b)	u(x)	=	b	+	λ	 .

c)	u(x)	=	f(x)	+	 .
5.	Find	the	eigenvalues	and	orthonormal	eigenfunctions	associated	with	the
following	integral	operators:

a)	 Ku	 =	 	 where	 	 cos	 nx,
where	kn	is	a	strictly	decreasing	sequence	of	positive	numbers.	Note	that
the	set	{1,	cos	nx,	sin	nx}	forms	an	orthogonal	set	on	the	interval.
b)	Ku	=	ƒ10	min(x,	y)u(y)	dy.
c)	Ku	=	 	where	k(x,	y)	=	y(π	−	x)	if	x	>	y,	and	k(x,	y)	=
x(π	−	y)	if	x	<	y.
d)	Ku	=	 	sin	x	cos	2y	u(y)	dy.

6.	Find	the	expansion	of	the	function

in	terms	of	the	eigenfunctions	of	the	operator	K	in	Exercise	5(c).
7.	Formulate	the	integral	equation

as	an	initial	value	problem.



8.	Let	K	be	the	operator	in	Exercise	4(c).	Solve	the	following	problems,	or
state	why	there	is	no	solution.

a)	Ku	−	2u	=	0.
b)	Ku	−	π/9	u	=	x(π	−	x).
c)	Ku	−	2u	=	x(π	−	x).
d)	Ku	−	π/9u	=	cos	3x.

9.	Find	the	first	three	nonzero	terms	of	the	Neumann	series	for	the	solution
to	the	integral	equation

10.	Solve	the	integral	equation	 .
11.	Reformulate	the	initial	value	problem

as	a	Volterra	integral	equation.
12.	Solve	the	integral	equation

where	f	is	continuous	and	λ	≠	0.	Hint:	as	an	artifice,	assume	f’	exists	and	then
write	the	solution	only	in	terms	of	f.
13.	Consider	the	operator	 ,	where	k(x)	is	a
continuous,	even,	periodic	function	with	Fourier	expansion

Find	the	eigenvalues	and	eigenfunctions	of	K.
14.	Determine	if	the	integral	operator

has	eigenvalues.
15.	Solve	the	integral	equation

using	eigenfunction	expansions,	where	k(x,	y)	=	x(1	−	y)	if	x	<	y,	and	k(x,	y)



=	 y(1	 −	 x)	 if	 x	 >	 y.	 Hint:	 Transform	 the	 problem	 into	 a	 Sturm–Liouville
problem.
16.	Replace	 sin	 xy	 by	 the	 first	 two	 terms	 in	 its	 power	 series	 expansion	 to
obtain	an	approximate	solution	to

17.	Investigate	the	solvability	of

18.	Solve	the	integral	equation

considering	all	cases.
19.	Solve	the	nonlinear	integral	equation	u(x)	=	λ	ƒ10	yu(y)2	dy.
20.	Solve	the	integral	equation

considering	all	cases.
21.	For	the	following	integral	equation,	find	a	condition	on	μ	for	which	the
equation	has	a	solution,	and	find	the	solution.

22.	For	which	value(s)	of	λ	is	there	a	unique	solution	to	the	integral	equation

23.	Reformulate	the	boundary	value	problem

as	a	Fredholm	integral	equation.
24.	Reformulate	the	initial	value	problem

as	 a	Volterra	 integral	 equation	 of	 the	 form	u	 +	Ku	 =	 f,	 and	 find	 f	 and	 the
kernel	of	K.



25.	Find	all	solutions	to	the	integral	equation

that	correspond	to	negative	values	of	μ.
26.	Find	the	eigenvalues	and	eigenfunctions	of	the	integral	operator

27.	Solve	the	Hammerstein	integral	equation

where	λ	is	a	real	parameter	and	β	is	a	continuous	function.
28.	Consider	the	differential-integral	equation

Treating	 λ	 as	 a	 bifurcation	parameter,	 determine	how	 the	 amplitude	of	 the
solution	depends	on	λ	and	sketch	a	bifurcation	diagram	of	the	amplitude	vs.
λ.
29.	(This	exercise	requires	perturbation	methods	from	Chapter	3.)	Consider
the	differential-integral	equation

where	ε	 is	a	small,	positive	parameter,	which	models	a	population	u	=	u(t)
undergoing	 logistics	 growth	 and	 the	 cumulative	 effect	 of	 a	 toxin	 on	 the
population.	 Find	 a	 uniformly	 valid	 approximation	 for	 t	 >	 0.	 [See	 K.	 G.
TeBeest,	1997.	SIAM	Review,	39(3),	484–493.]
30.	Consider	the	differential–integral	operator

Prove	 that	 eigenvalues	 of	 K,	 provided	 they	 exist,	 are	 positive.	 Find	 the
eigenfunctions	corresponding	to	the	eigenvalue	λ	=	4π2.
31.	Use	(4.30)	to	numerically	solve	the	integral	equation





5.5	Green’s	Functions
What	 is	 a	 Green’s	 function?5	 Mathematically,	 it	 is	 the	 kernel	 of	 an	 integral
operator	that	represents	the	inverse	of	a	differential	operator;	physically,	it	is	the
response	of	a	system	when	a	unit	point	source	is	applied	to	the	system.
For	 example,	 it	 is	 the	 electric	 field	 induced	 by	 a	 single	 point	 charge.	 In	 this
section	we	show	how	these	two	apparently	different	interpretations	are	actually
the	same.



5.5.1	Inverses	of	Differential	Operators
To	 fix	 the	 notion	 we	 consider	 a	 regular,	 nonhomogeneous	 Sturm–Liouville
problem	(SLP),	which	we	write	in	the	form

(5.1)	

(5.2)	

(5.3)	
where	p,	p’,	q,	and	f	are	continuous	on	[a,	b],	and	p	>	0.	So	 that	 the	boundary
conditions	 do	 not	 disappear,	we	 assume	 that	 not	 both	 α1	 and	α2	 are	 zero,	 and
similarly	 for	 β1	 and	β2.	 For	 conciseness	we	 represent	 this	 problem	 in	operator
notation
(5.4)	

where	we	consider	the	differential	operator	L	as	acting	functions	in	C2	[a,	b]	that
satisfy	 the	 boundary	 conditions	 (5.2)–(5.3).	 Thus,	 L	 contains	 the	 boundary
conditions	in	its	definition.
Recall	the	procedure	in	matrix	theory	when	we	have	a	matrix	equation	Lu	=	f,

where	u	and	f	are	vectors	and	L	 is	a	square,	 invertible	matrix.	We	immediately
have	the	solution	u	=	L−1	f,	where	L−1	is	the	inverse	matrix.	The	inverse	matrix
exists	if	λ	=	0	is	not	an	eigenvalue	of	L,	or	when	det	L	≠	0.	We	want	to	perform	a
similar	calculation	with	the	differential	equation	(5.4)	and	write	the	solution

where	L−1	 is	 the	 inverse	operator	of	L.	Because	L	 is	a	differential	operator,	we
expect	that	the	inverse	operator	to	be	an	integral	operator	of	the	form

(5.5)	
with	 kernel	 g.	 Again	 drawing	 inferences	 from	 matrix	 theory,	 we	 expect	 the
inverse	to	exist	when	λ	=	0	is	not	an	eigenvalue	of	L,	that	is,	when	there	are	no
nontrivial	 solutions	 to	 the	 differential	 equation	 equation	 Lu	 =	 0.	 If	 there	 are
nontrivial	solutions	to	Lu	=	0,	then	L	is	not	a	one-to-one	transformation	(u	=	0	is
always	a	solution)	and	so	L−1	does	not	exist.
If	the	inverse	L−1	of	the	differential	operator	L	exists,	then	the	kernel	function

g(x,	 ξ)	 in	 (5.5)	 is	 called	 the	Green’s	 function	 associated	with	L	 (recall	 that	L



contains	 in	 its	 definition	 the	 boundary	 conditions).	 This	 is	 the	 mathematical
characterization	of	a	Green’s	 function.	Physically,	 as	we	observe	 subsequently,
the	Green’s	function	g(x,	ξ)	is	the	solution	to	(5.4)	when	f	is	a	unit	point	source
acting	at	 the	point	 ξ	 thus,	 it	 is	 the	 response	of	 the	 system	at	x	 to	 a	 unit,	 point
source	at	ξ.
The	approach	here	is	to	first	present	the	methodology	and	a	heuristic	physical

motivation.	Then	 the	mathematical	 result	unfolds	with	a	precise	 representation
of	the	Green’s	function.

Example	5.53
(Inversion)	 In	 this	 example	 we	 compute	 the	 inverse	 operator	 directly	 using
integration.	Consider	the	boundary	value	problem

(5.6)	
Here	 Lu	 =	 −u″	 is	 the	 differential	 operator,	 and	 it	 includes	 the	 boundary
conditions	 as	 part	 of	 its	 definition.	 We	 can	 invert	 L	 by	 direct	 integration.
Integrating	from	0	to	x	gives

Integrating	again,

where	we	used	the	left	boundary	condition	and	Lemma	5.38.	Applying	the	right
boundary	condition	gives

Therefore,

Now	we	break	up	the	last	integral	from	0	to	x	and	x	to	1,	and	then	combine	the
two	integrals	from	0	to	x	to	get

We	can	combine	the	two	integrals	by	defining	the	function	g(x,	ξ)	by



Then,

The	function	g(x,	ξ)	is	the	kernel	of	the	inverse	differential	operator	L	and	is	the
Green’s	function	for	L.	Using	the	Heaviside	function,	the	Green’s	function	can
be	written

The	 reader	 should	 verify	 that	 u(x)	 is	 indeed	 the	 solution	 to	 the	 differential.
[Break	 up	 the	 integral	 into	 two	 integrals	 over	 [0,	 x]	 and	 [x,	 1],	 and	 then
differentiate	using	Leibniz	 rule.]	The	Green’s	 function	 is	 shown	 in	Fig.	5.3.	 In
g(x,	ξ)	we	are	regarding	x	as	the	variable	and	ξ	as	a	parameter.

Figure	5.3	Green’s	fucntion	for	(5.6)

It	 is	 important	 to	 note	 the	 properties	 of	 the	 Green’s	 function	 in	 the	 last
example:	(a)	It	satisfies	the	differential	equation	for	all	x	≠	ξ.	(b)	It	satisfies	both
boundary	conditions.	(c)	It	is	continuous	for	all	x,	and	in	particular,	at	x	=	ξ.	(d)
The	derivative	of	g(x,	ξ)	has	a	simple	jump	discontinuity	at	x	=	ξ.	We	shall	see
later	that	these	properties	are	shared	by	all	Green’s	functions	for	Sturm-Liouville
operators.



5.5.2	Physical	Interpretation
Next	 we	 investigate	 the	 physical	 interpretation	 of	 the	 Green’s	 function.	 Our
discussion	is	heuristic	and	intuitive,	but	it	is	made	precise	in	the	next	section	on
distributions.	To	fix	the	context	we	consider	the	steady-state	heat	flow	problem
that	we	derived	in	Section	5.1.	Refer	to	Fig.	5.1.	We	briefly	repeat	the	derivation
because	 it	 is	 relevant	 here.	We	 have	 a	 cylindrical	 bar	 of	 length	 L	 and	 cross-
sectional	area	A,	and	u	=	u(x)	denote	the	temperature	at	cross	section	x.	Further,
ϕ	=	ϕ(x)	denotes	the	energy	flux	across	the	face	at	x,	measured	in	energy/(area	·
time),	 and	 f(x)	 is	 a	 given,	 distributed	 heat	 source	 over	 the	 length	 of	 the	 bar,
measured	 in	 energy/(volume	 ·	 time).	 If	 x	 and	 x	 +	 dx	 denote	 two	 arbitrary
locations	in	the	bar,	then	conservation	of	energy	yields

or,	rearranging,

Taking	 the	 limit	 as	 dx	→	 0	 gives	 ϕ’(x)	 =	 f(x).	 Fourier’s	 heat	 conduction	 law
states	that

where	K	is	the	thermal	conductivity	of	the	bar,	a	physical	constant.	Then

which	is	the	steady-state	heat	equation.	For	simplicity,	we	assume	that	the	ends
of	 a	 bar	 of	 unit	 length	 are	 held	 at	 zero	 degrees,	 and	K	 =	 1.	 Then	 the	 steady
temperature	 distribution	 u	 =	 u(x)	 along	 the	 length	 of	 the	 bar	 satisfies	 the
boundary	value	problem

(5.7)	
which	is	the	same	as	(5.6).
Next	 imagine	 that	 f	=	δ(x,	 ξ)	 is	an	 idealized	heat	 source	of	unit	 strength	 that

acts	 only	 at	 a	 single	 point	 x	 =	 ξ	 in	 (0,	 1)6.	 Thus,	 it	 is	 assumed	 to	 have	 the
properties

and



Moreover,	we	assume	that

for	all	ε	>	0	and	all	nice	functions	θ(ξ).
A	 little	 reflection	 reveals	 that	 there	 is	 no	ordinary	 function	δ	with	 these	 two

properties;	 a	 function	 that	 is	 zero	 everywhere	 but	 one	 point	 must	 have	 zero
integral.	Further,	there	is	no	integrable	function	δ(x,	ξ)	that	‘sifts	out’	the	value	of
a	function	θ(x)	when	integrated.	Nevertheless,	this	δ	symbol	has	been	used	since
the	inception	of	quantum	mechanics	in	the	late	1920s	(it	was	introduced	by	the
mathematician-physicist	P.	Dirac7;	in	spite	of	not	having	a	rigorous	definition	of
the	symbol	until	 the	early	1950s,	when	the	mathematician	L.	Schwartz8	gave	a
precise	characterization	of	point	sources,	both	physicists	and	engineers	used	the
“δ	function”	with	great	success.	In	the	next	section	we	give	a	careful	definition
of	the	delta	function,	but	for	the	present	we	continue	with	an	intuitive	discussion.
The	differential	equation	for	steady	heat	flow	becomes,	symbolically,

(5.8)	
Thus,	for	x	≠	ξ	we	have	−u”	=	0,	which	has	solutions	of	the	form	u	=	Ax	+	B.	To
satisfy	the	boundary	conditions	we	take

We	summarize	the	calculation	we	made	in	the	last	example.	To	determine	the
two	constants	A	and	B	we	use	the	fact	that	the	temperature	should	be	continuous
at	x	=	ξ,	giving	the	relation	Aξ	=	B(1	−	ξ).	To	obtain	another	condition	on	A	and
B	we	integrate	the	symbolic	differential	equation	(5.8)	over	an	interval	[ξ	−	ε,	ξ	+
ε]	containing	ξ	to	get

The	 right	 side	 is	 unity	 because	 of	 the	 unit	 heat	 source	 assumption;	 the
fundamental	theorem	of	calculus	is	then	applied	to	the	left	side	to	obtain

Taking	the	limit	as	ε	→	0	and	multiplying	by	−1	yields



This	condition	is	a	jump	condition	on	the	derivative	at	the	point	x	=	ξ;	because
the	 flux	 is	 ϕ(x)	 =	 −Ku’(x),	 it	 requires	 a	 jump	 in	 the	 flux.	 This	 last	 condition
forces	 −	 B	 −	 A	 =	 −1.	 Therefore,	 solving	 the	 two	 equations	 for	 A	 and	 B
simultaneously	gives

Therefore	the	steady-state	temperature	in	the	bar,	caused	by	a	point	source	at	x	=
ξ	is

or

This	is	precisely	the	Green’s	function	for	the	operator	L	=	−d2/dx2	with	boundary
conditions	u(0)	=	u(1)	 =	 0	 that	we	 calculated	 in	 Example	 5.53.	Consequently,
this	gives	a	physical	interpretation	for	the	Green’s	function;	it	is	the	response	of
a	system	(in	this	case	the	steady	temperature	response)	caused	by	a	point	source
(in	this	case	a	unit	heat	source).
The	 method	 above	 is	 characteristic	 of	 calculations	 of	 Green’s	 function.	We

solve	the	homogeneous	differential	equation	(with	no	source)	for	x	<	ξ	and	for	x
>	ξ.	We	apply	the	two	appropriate	boundary	conditions	at	the	endpoints	and	then
require	 continuity	 at	 x	 =	 ξ.	 Finally	 we	 obtain	 the	 jump	 condition	 on	 the
derivative	by	integrating	the	point	source	differential	equation	over	an	interval	[ξ
−	 ε,	 ξ	 +	 ε]	 containing	 the	 singular	 point	 ξ,	 using	 the	 properties	 of	 the	 delta
function.	These	four	conditions	determine	the	Green’s	function.
This	idea	is	fundamental	in	applied	mathematics.	The	Green’s	function	g(x,	ξ)

is	the	solution	to	the	symbolic	boundary	value	problem

(5.9)	

(5.10)	
where	 δ	 represents	 a	 point	 source	 at	 x	 =	 ξ	 of	 unit	 strength.	 Furthermore,	 the
solution	Lu	=	f	to	the	boundary	value	problem	(5.7)	can	therefore	be	regarded	as
a	superposition	of	point	sources	of	magnitude	f(ξ)	over	the	entire	interval	a	<	ξ	<
b.

Example	5.54
Consider	 the	differential	operator	L	=	−d2/dx2	on	0	<	x	<	1	with	 the	boundary
conditions	u′(0)	 =	u′(1)	 =	 0	 being	 part	 of	 the	 definition	 of	L.	 In	 this	 case	 the
Green’s	 function	 does	 not	 exist	 because	 the	 equation	 Lu	 =	 0	 has	 nontrivial



solutions	 (any	 constant	 function	 will	 satisfy	 the	 differential	 equation	 and	 the
boundary	 conditions);	 stated	 differently,	 λ	=	 0	 is	 an	 eigenvalue.	Physically	we
can	 also	 see	 why	 the	 Green’s	 function	 does	 not	 exist.	 This	 problem	 can	 be
interpreted	 in	 the	 context	 of	 steady-state	 heat	 flow.	 The	 zero-flux	 boundary
conditions	 imply	 that	 both	 ends	 of	 the	 bar	 are	 insulated,	 and	 so	 heat	 cannot
escape	from	the	bar.	Thus	it	is	impossible	to	impose	a	point	source,	which	would
inject	heat	 energy	at	 a	 constant,	 unit	 rate,	 and	have	 the	 system	 respond	with	 a
time-independent	 temperature	 distribution;	 energy	 would	 build	 up	 in	 the	 bar,
precluding	a	steady	state.
In	 this	 heuristic	 discussion	 we	 noted	 that	 δ	 is	 not	 an	 ordinary	 function.

Furthermore,	the	Green’s	function	g	is	not	differentiable	at	x	=	ξ,	so	it	remains	to
determine	 the	meaning	 of	 applying	 a	 differential	 operator	 to	 g	 as	 in	 formulas
(5.9)–(5.10).	Our	goal	in	the	next	section	is	to	put	these	notions	on	firm	ground.

Example	5.55
(Causal	Green’s	function)	The	causal	Green’s	function	is	the	Green’s	function
for	an	initial	value	problem.	Consider	the	problem

(5.11)	
We	assume	p,	p′,	and	q	are	continuous	for	 t	≥	0	and	p	>	0.	The	causal	Green’s
function,	also	called	the	impulse	response	function,	is	the	solution	to	(5.11)	when
f	 is	a	unit	 impulse	applied	at	 time	τ,	or,	 in	terms	of	the	delta	function	notation,
when	f	=	δ(t,	τ).	Thus,	symbolically,	Lg(t,	τ)	=	δ(t,	τ),	where	g	denotes	the	causal
Green’s	 function.	 We	 give	 a	 physical	 argument	 to	 determine	 g.	 Because	 the
initial	data	is	zero,	the	response	of	the	system	is	zero	up	until	time	τ;	therefore,
g(t,	 τ)	 =	 0	 for	 t	 <	 τ.	 For	 t	 >	 τ	 require	Lg(t,	 τ)	 =	 0,	 and	we	 demand	 that	g	be
continuous	at	t	=	τ,	or

At	t	=	τ,	the	time	when	the	impulse	is	given,	we	require	that	g	have	a	jump	in	its
derivative	of	magnitude

This	 jump	 condition	 is	 derived	 in	 the	 same	way	 that	 the	 jump	 condition	 was
obtained	earlier,	namely,	by	integrating	Lg	=	δ(t,	τ)	over	an	interval	(τ	−	ε,	τ	+	ε).
The	 continuity	 condition	 and	 the	 jump	 condition,	 along	 with	 the	 fact	 that	 g
satisfies	the	homogeneous	differential	equation,	are	enough	to	determine	g(x,	τ)
for	t	>	τ.



Finally,	we	present	the	general	result.

Theorem	5.56
Consider	the	SLP	(5.1)–(5.3),	and	assume	that	λ	=	0	is	not	an	eigenvalue	of	L.
Then	L−1	exists	and	is	given	by	(5.5)	with

(5.12)	
Here,	 u1	 =	u1(x)	 and	u2	 =	 u2(x)	 are	 two	 linearly	 independent	 solutions	 of	 the
homogeneous	differential	equation	Lu	=	−(pu′)’	+	qu	=	0	with	B1u1(a)	=	0	and
B2u2(b)	=	0,	and	W(x)	=	u1u′2	−	u′1u2	is	the	Wronskian	of	u1	and	u2.	Finally,	the
solution	to	the	nonhomogeneous	problem	Lu	=	f	is	given	by

(5.13)	
Clearly,	the	Green’s	function	can	be	expressed	as	a	single	equation	in	terms	of

the	Heaviside	unit	step	function	H(x)	by
(5.14)	

In	 general,	 the	 basic	 properties	 of	 the	 Green’s	 function	 are	 straightforward
calculations	from	the	expression	(5.12).

(a)	g(x,	ξ)	satisfies	the	differential	equation	Lg(x,	ξ)	=	0	for	x	≠	ξ.
(b)	g(x,	ξ)	satisfies	the	boundary	conditions	(5.2)	and	(5.3).
(c)	g(x,	ξ)	is	a	continuous	function	of	x	on	[a,	b],	in	particular,	at	x	=	ξ.
(d)	 g(x,	 ξ)	 is	 not	 differentiable	 at	 x	 =	 ξ;	 rather,	 there	 is	 a	 jump	 in	 the
derivative	at	x	=	ξ	given	by

Here,	prime	denotes	differentiation	with	respect	to	x.	Thus	g	is	a	continuous
curve	with	a	corner	at	x	=	ξ.
Now	we	return	to	the	SLP	problem	(5.1)–(5.3)	and	ask	what	can	be	said	if	λ	=

0	is	an	eigenvalue,	that	is,	if	the	homogeneous	problem	has	a	nontrivial	solution.
In	this	case	there	may	not	be	a	solution,	and	if	there	is	a	solution,	it	is	not	unique.



The	following	theorem	gives	a	partial	result.

Theorem	5.57
Consider	the	Sturm–Liouville	problem

and	assume	there	exists	a	nontrivial	solution	ϕ	of	the	homogeneous	problem	Lϕ
=	0.	Then,	if	the	SLP	has	a	solution,	then	f	is	orthogonal	to	ϕ,	or

Proof
Assume	a	solution	u	exists.	Then

The	 first	 integral	 may	 be	 integrated	 by	 parts	 twice	 to	 remove	 the	 derivatives
from	u	 and	 put	 them	 on	 ϕ.	 Performing	 this	 calculation	 gives,	 after	 collecting
terms,

because	Lϕ	 =	 0.	 Both	 ϕ	 and	 u	 satisfy	 the	 boundary	 conditions,	 so	 one	 easily
shows	that	 .



5.5.3	Green’s	Function	via
Eigenfunctions
In	this	section	we	show	that	the	eigenvalues	and	eigenvalues	of	a	regular	Sturm–
Liouville	 operator	 L	 determine	 the	 Green’s	 function,	 or	 the	 solution	 to	 the
nonhomogeneous	problem	Lu	=	f.	This	is	not	surprising	because	we	have	already
seen	 that	 solutions	 to	 a	 nonhomogeneous	 problem	 in	 matrix	 theory	 and	 in
integral	equation	can	be	determined	from	the	eigenstructure	of	the	operator.
As	usual,	we	study	the	more	general	problem
(5.15)	

where	L	 is	 the	 regular	 Sturm–Liouville	 operator,	which	 includes	 the	 boundary
conditions	(5.3),	 and	 f	 is	 continuous.	We	 know	 from	Section	 5.2	 that	 the	 SLP
problem
(5.16)	

has	 infinitely	many	eigenvalues	and	corresponding	orthonormal	eigenfunctions
λn	and	ϕn(x),n	=	1,2,…,	respectively.	Moreover,	the	eigenfunctions	form	a	basis
for	 the	 square-integrable	 functions	 on	 (a,	 b).	 Therefore	 we	 assume	 that	 the
solution	u	of	(5.15)	is	given	in	terms	of	the	eigenfunctions	as

(5.17)	
where	 the	 coefficients	 cn	 are	 to	 be	 determined.	 Further,	 we	 write	 the	 given
function	f	in	terms	of	the	eigenfunctions	as

Next	 we	multiply	 (5.15)	 by	 ϕn	 and	 integrate	 to	 obtain,	 using	 inner	 product
notation,

Because	L	is	a	symmetric	operator,

and	therefore



Hence

There	 are	 two	 cases.	 If	 μ,	 is	 not	 an	 eigenvalue,	 then	 the	 cn	 are	 determined
uniquely	by

(5.18)	
Therefore	we	have	 a	 unique	 solution	 to	 (5.15).	 If	 μ	 =	 0,	 and	 if	 zero	 is	 not	 an
eigenvalue	of	L,	then	the	solution	collapses	into	the	inverse	operator	and	Green’s
function	as	follows:

Consequently,	we	have	inverted	the	operator	L	and	so	we	must	have

which	gives	the	Green’s	function	in	terms	of	the	eigenvalues	and	eigenfunctions
of	the	operator	L.	This	expansion	for	g	is	called	the	bilinear	expansion.
Now	case	two:	μ	is	an	eigenvalue;	that	is,	μ	=	λJ	for	some	index	J.	Then,	using

(5.18),	we	observe	that	cJ	·	0	=	fJ.	Thus,	if	fJ	≠	0,	there	is	no	solution	to	(5.15).
On	 the	other	hand,	 if	 fJ	=	0,	 then	cJ	 is	 arbitrary,	 and	 there	 are	 infinitely	many
solutions	to	(5.15)	of	the	form

The	key	result	is	the	differential	equation	version	of	the	Fredholm	alternative:
If	 μ	 is	 not	 an	 eigenvalue	 of	 the	 operator	 L	 in	 (5.15),	 then	 there	 is	 a	 unique



solution	(and	a	Green’s	function	if	λ	≠	0).	If	μ	=	λJ	 is	an	eigenvalue	of	L,	 then
there	exists	a	solution	if,	and	only	if,	f	is	othogonal	to	the	eigenspace	spanned	by
ϕJ.

Example	5.58
Consider	the	operator	L	=	−d2/dx2	with	Dirichlet	boundary	conditions	u(0)	=	u(π)
=	0.	The	eigenvalues	and	eigenfucntions	are

Therefore	the	Green’s	function	is

EXERCISES
1.	A	function	y	=	f(x)	has	a	second	derivative	f”(x)	that	is	continuous	at	all
points	except	x	=	ξ,	where	it	has	a	simple	jump	discontinuity	(finite	left	and
right	derivatives	at	ξ).	Explain	carefully	why	f’(x)	is	continuous	at	ξ.
2.	 Consider	 the	 steady-state	 heat	 conduction	 equation	 with	 a	 piecewise
continuous	conductivity	K(x):

where	K(x)	=	K1(x)	for	1	≤	ξ,	K(x)	=	K2(x),	for	ξ	<	x	≤	1,	where	ξ	is	a	fixed
value	in	(0,	1).	What	are	the	conditions	on	the	temperature	u	and	flux	ϕ	at	ξ?
Hint:	Integrate	over	a	small	interval	about	ξ.
3.	Using	direct	integration,	show	that	the	boundary	value	problem

has	a	solution	only	if	f	is	orthogonal	to	the	constant	function	1.	Find	u(x)	in
this	case.
4.	Discuss	the	solvability	of	the	boundary	value	problem

5.	Determine	if	there	is	a	Green’s	function	associated	with	the	operator	Lu	=
u”	+	4u,	0	<	x	<	π	with	u(0)	=	u(π)	=	0.	Find	the	solution	to	 the	boundary
value	problem



6.	Consider	the	boundary	value	problem

Find	Green’s	function	or	explain	why	there	isn’t	one.
7.	Consider	the	boundary	value	problem

Find	Green’s	function	or	explain	why	there	isn’t	one.
8.	Use	the	method	of	Green’s	function	to	solve	the	problem

(Note:	This	differential	equation	is	a	steady-state	heat	equation	in	a	bar	with
variable	thermal	conductivity	K(x).)
9.	Consider	a	spring–mass	system	governed	by	the	initial	value	problem

where	u	=	u(t)	 is	 the	displacement	 from	equilibrium,	 f	 is	 an	 applied	 force,
and	m	and	k	are	the	mass	and	spring	constants,	respectively.

a)	Show	that	the	causal	Green’s	function	is

b)	Find	the	solution	to	the	initial	value	problem	and	write	it	in	the	form

10.	By	finding	Green’s	function	in	two	different	ways,	evaluate	the	sum

11.	Find	 the	 inverse	of	 the	differential	operator	Lu	=	−(x2u′)’	on	1	<	x	 <	e
subject	to	u(1)	=	u(e)	=	0.
12.	 Consider	 a	 symbolic	 eigenvalue	 problem	 with	 a	 ‘delta	 function’
coefficient	aδ(x,	0),	a	>	0,	at	the	origin:

subject	 to	the	boundary	conditions	u(x)	→	0	as	 |x|	→	∞.	Find	 the	negative
eigenvalues	and	eigenfunctions.	Hint:	To	obtain	a	jump	condition,	integrate
the	 equation	 about	 a	 small	 interval	 surrounding	 x	 =	 0	 and	 then	 use	 the
properties	of	the	delta	function.
13.	Consider	the	eigenvalue	problem	for	the	Schrodinger	equation



where	the	potential	V	is	given	by	V(x)	=	0,	x	<	1,	and	V(x)	=	V0	>	0,	x	>	1.
Find	 the	 eigenvalues	 in	 the	 range	 0	 <	 λ	 <	 V0	 and	 the	 associated	 wave
functions.	Sketch	a	generic	wave	function	and	associated	probability	density.
Hints:	At	discontinuities	require	continuity	of	y	and	y′	(Why?);	determine	the
eigenvalues	graphically.



5.6	Distributions
In	the	last	section	we	showed,	in	an	intuitive	manner,	that	the	Green’s	function
satisfies	 a	 differential	 equation	 with	 a	 unit	 point	 source.	 Because	 the	 Green’s
function	is	not	a	smooth	function,	it	leads	us	to	the	question	of	what	it	means	to
differentiate	such	a	function.	Also,	we	have	not	pinned	down	the	properties	of	a
point	 source	 (a	 delta	 function)	 in	 a	 precise	 way.	 If	 a	 point	 source	 is	 not	 a
function,	 then	what	 is	 it?	The	goal	of	 this	section	 is	 to	answer	 these	questions.
New	notation,	terminology,	and	concepts	are	required.



5.6.1	Test	Functions
Let	K	be	a	set	of	real	numbers.	A	real	number	c	is	said	to	be	a	limit	point	of	set
K	if	every	open	interval	containing	c,	no	matter	how	small,	contains	at	least	one
point	of	K.	If	K	is	a	set,	then	the	closure	of	K,	denoted	by	 ,	is	the	set	K	along
with	all	its	limit	points.	A	set	is	called	closed	if	it	contains	all	of	its	limit	points.
For	example,	the	closure	of	the	half-open	interval	(a,	b]	is	the	closed	interval	[a,
b].	A	useful	 set	 in	characterizing	properties	of	a	 function	ϕ	 is	 the	set	of	points
where	it	takes	on	nonzero	values.	The	closure	of	this	set	is	called	the	support	of
the	function;	precisely,	we	define	supp	 .	So,	the	support	of	a
function	 is	 the	set	of	points	where	 it	 is	nonzero,	along	with	 the	 limit	points	of
that	set.
Now	we	introduce	an	important	class	of	functions	that	plays	a	crucial	role	in

our	discussion.	In	the	following,	(a,	b)	denotes	an	open	interval,	which	may	be
infinite.	By	the	set	C∞0(a,	b)	we	mean	the	set	of	all	continuous	functions	on	(a,
b)	whose	derivatives	of	all	order	exist	and	are	continuous	on	(a,	b),	and	which
have	 their	 support	 contained	 in	 a	 closed,	 bounded	 subset	 of	 (a,	 b).	 These
functions	are	 called	 test	 functions.	An	 example	of	 a	 test	 function	on	 	 is	 the
bell-shaped	curve	(see	Fig.	5.4).

Figure	5.4	Plot	of	the	test	function	(6.1).

(6.1)	
Therefore,	a	test	function	in	a	very	smooth	function	on	(a,	b)	with	no	corners	or
kinks	 in	 its	 graph	 or	 in	 any	 of	 its	 derivatives;	 its	 support	 must	 be	 entirely
contained	 in	 (a,	b)	 and,	 in	 fact,	must	 lie	 in	 a	 closed,	 bounded	 interval	 strictly
contained	in	(a,	b);	if	a	and	b	are	finite,	then	a	test	function	must	be	zero	at	a	and
b.
Finally,	a	function	f	is	said	to	be	locally	integrable	on	(a,	b)	if



for	 all	 subintervals	 [c,	 d]	 of	 (a,	 b).	 Recall	 from	 calculus	 that	 an	 integrable
function	need	not	be	differentiable,	or	even	continuous.
As	we	know,	a	function	with	a	corner	(such	as	Green’s	function	or	the	function

|x|),	 does	 not	 have	 a	 derivative	 (tangent	 line)	 at	 that	 corner.	 However,	 it	 is
possible	to	generalize	the	notion	of	derivative	so	that	 it	makes	sense	to	discuss
the	 concept	 in	 a	 broader	 context.	 First	 we	 introduce	 the	 idea	 of	 a	 weak
derivative.	Let	u	=	u(x)	be	a	continuously	differentiable	function	on	(a,	b)	and	let
f	=	f(x)	be	its	derivative.	That	is,

Multiplying	both	sides	by	a	test	function	ϕ	 	C∞0	(a,	b)	and	integrating	from	a	to
b	gives

Integrating	the	left	side	by	parts	and	using	the	fact	that	ϕ(a)	=	ϕ(b)	=	0	gives

(6.2)	
Now	 observe	 that	 equation	 (6.2)	 does	 not	 require	 u	 to	 be	 differentiable,	 just
integrable.	The	integration	by	parts	removed	the	derivative	from	u	and	put	it	on
ϕ,	 which	 has	 derivatives	 of	 all	 order.	 We	 can	 take	 (6.2)	 as	 the	 basis	 of	 a
definition	 for	 a	 derivative	 of	 an	 integrable	 function.	 If	 u	 and	 f	 are	 locally
integrable	functions,	we	say	that	 f	 is	 the	weak	derivative	of	u	on	(a,	b)	 if	 (6.2)
holds	for	all	ϕ	 	C∞0	(a,	b).	Clearly,	if	u	is	continuously	differentiable,	then	it	has
a	weak	derivative	(the	ordinary	one);	but	a	function	can	have	a	weak	derivative
without	having	an	ordinary	derivative.	In	fact,	this	idea	can	be	extended	so	as	not
to	require	even	local	integrability	of	u	or	f.

Example	5.59
On	the	interval	(a,	b)	=	(−1,	1)	let	u(x)	=	|x|	and	f(x)	=	H(x)	−	H(−x),	where	H	is
the	Heaviside	function.	The	function	u	is	not	differentiable	at	x	=	0	in	the	usual
sense.	Yet	u′	=	f	in	the	weak	sense	on	(−1,	1)	because,	from	(6.2),



This	is	easily	checked.	The	left	side	is

where	we	have	integrated	by	parts	and	used	the	fact	that	ϕ	vanishes	at	x	=	−1,	1.
The	right	side	is

and	therefore	(6.2)	holds	and	(d/dx)|x|	=	H(x)	−	H(−x)	in	a	weak	sense.

Example	5.60
Again	 take	(a,	b)	=	 (−1,	1)	and	 let	u(x)	=	H(x).	What	 is	u′	 in	 the	weak	sense?
Suppose	u’	=	f	weakly.	Then,	by	definition	(6.2),	we	should	have

The	left	side	simplifies	to

So	we	require	that

(6.3)	
But,	as	the	following	calculation	shows,	there	is	no	locally	integrable	function	f
for	 which	 (6.3)	 holds	 for	 all	 ϕ	 in	C∞0(−1,	 1).	 Take	 the	 test	 function	 ϕa(x)	 =
exp(−a2/(a2	−	x2))	for	|x|	<	a	<	1,	and	ϕa(x)	=	0	otherwise.	Then

The	right	side	goes	to	zero	as	a	→	0	(because	f	is	locally	integrable),	and	so	we
obtain	the	contradiction	e−1	≤	0.	Therefore	the	weak	derivative	of	the	Heaviside
function	cannot	be	a	locally	integrable	function.	Intuitively,	the	derivative	should
be	 zero	 everywhere	 except	 at	 x	 =	 0,	 where	 there	 is	 a	 unit	 jump	 in	H;	 so	 the
derivative	should	be	localized	at	the	point	x	=	0,	similar	to	a	point	source.	In	fact,
as	we	shall	show,	the	derivative	of	the	Heaviside	function	is	the	“delta	function,”
in	a	sense	to	be	defined.



5.6.2	Distributions
The	 last	 example	 showed	 that	 the	 concept	 of	 a	 weak	 derivative	 needs	 to	 be
generalized	 further	 if	we	 are	 to	 define	 the	 derivative	 of	 any	 locally	 integrable
function.	To	accomplish	this	task	we	need	to	expand	our	idea	of	function	and	not
think	 of	 the	 values	 of	 a	 function	 at	 points	 in	 its	 domain,	 but	 rather	 think	 of	 a
function	 in	 terms	of	 its	action	on	other	objects.	For	example,	suppose	u	=	u(x)
represents	the	distributed	temperature	at	locations	x	in	a	bar.	This	is	an	idealized
concept,	because	when	we	measure	temperature	at	a	point	x,	for	example,	we	use
a	thermometer	that	has	finite	extent;	it	is	not	just	localized	at	x.	So,	 in	fact,	we
are	really	measuring	the	average	temperature	 (x)	of	 the	points	near	x,	or	more
precisely,	a	weighted	average

over	 some	 interval	 containing	 x.	We	 cannot	measure	 the	 exact,	 idealized	u(x),
just	the	average.	The	weight	function	θ(x,	ξ)	is	characterized	by	properties	of	the
thermometer	placed	at	x.	So	sometimes	it	is	better	to	think	of	a	function	in	terms
of	its	integrated	values	rather	than	its	point	values.	In	fact,	often	we	have	to	give
up	 our	 idea	 of	 requiring	 our	 functions	 to	 have	 values	 or	 local	 properties.	 To
extend	the	idea	further,	a	‘delta	function’	δ(x,	ξ)	is	just	an	idealized	thermometer
that	measures	the	temperature	exactly;	that	is,

This	 idea	 leads	 us	 to	 define	 the	 notion	 of	 a	 distribution,	 or	 generalized
function.	A	distribution	is	a	mapping	(transformation)	that	associates	with	each
test	 function	 ϕ	 in	C∞0(a,	 b)	 a	 real	 number.	 (Think	 of	 the	 ϕ	 as	 a	 temperature
profile.)	We	met	 the	 idea	 of	mapping	 a	 function	 space	 to	 	 in	 Chapter	 4	 on
calculus	of	variations,	where	we	considered	functionals.	A	distribution	is	just	a
continuous	linear	functional	on	the	set	of	test	functions.	If	we	denote	the	set	of
distributions	by	D’,	then	f	 	D’	implies	f:	C∞0(a,	b)	→	 .	We	denote	the	image
of	ϕ	 	C∞0(a,	b)	 under	 f	 by	 (f,	 ϕ)	 rather	 than	 the	 usual	 function	 notation	 f(ϕ).
Linearity	 implies	 (f,	 αϕ)	 =	 α(f,	 ϕ)	 and	 (f,	 ϕ1	 +	 ϕ2)	 =	 (f,	 ϕ1)	 +	 (f,	 ϕ2).9	 The
requirement	that	f	is	continuous	is	a	slightly	more	technical	concept,	namely	that
of	 convergence	 in	C∞0(a,	 b).	 We	 say	 that	 a	 sequence	 ϕn	 of	 test	 functions	 in



C∞0(a,	b)	converges	to	zero	in	C∞0(a,	b)	(and	we	write	ϕn	→	0	in	C∞0(a,	b)),	 if
there	is	a	single,	closed	bounded	interval	K	in	(a,	b)	containing	 the	supports	of
all	 the	 ϕn,	 and	 on	 that	 interval	 K	 the	 sequence	 ϕn	 and	 the	 sequence	 of	 the
derivatives	ϕ(m)n	converge	uniformly	to	zero	on	K	as	n	→	∞.	Then	we	say	that	f
is	continuous	if	(f,	ϕn)	→	0	for	all	sequences	ϕn	→	0	in	C∞0(a,	b).

Example	5.61
With	each	locally	integrable	function	u	on	(a,	b)	there	is	a	natural	distribution	u
defined	by

(6.4)	
Note	 that	 we	 speak	 of	 the	 distribution	 u	 and	 use	 the	 same	 symbol	 as	 for	 the
function.	 One	 can	 verify	 that	 u	 defined	 by	 (6.4)	 satisfies	 the	 linearity	 and
continuity	 properties	 for	 a	 distribution.	 Therefore,	 every	 locally	 integrable
function	is	a	distribution	via	(6.4).

Example	5.62
The	distribution	δξ,	ξ	 	(a,	b),	defined	by

(6.5)	
is	called	the	Dirac	or	delta	distribution	with	pole	at	ξ.	It	is	easily	checked	that
δξ	 is	 linear	 and	 continuous,	 and	 thus	 defines	 a	 distribution.	 The	 Dirac
distribution	 δξ	 acts	 by	 sifting	 out	 the	 value	 of	 δ	 at	 ξ.	 Note	 that	 we	 cannot
represent	(6.5)	by	an	integral

because	of	the	argument	following	equation	(6.3);	there	we	showed	that	there	is
no	 locally	 integrable	 function	with	 this	 property.	A	distribution,	 like	 the	Dirac
distribution,	that	cannot	be	represented	as	(6.4)	is	called	a	singular	distribution.
The	customary	notation	used	in	distribution	theory	is	confusing.	Even	when	f

is	a	singular	distribution	and	no	locally	integrable	function	f	exists	for	which	(f,
ϕ)	=	ƒba	f(x)ϕ(x)	dx,	we	still	write	 the	 integral,	even	 though	 it	makes	no	sense.
The	 integral	 expression	 here	 is	 only	 symbolic	 notation	 for	 the	mathematically
correct	expression	(f,	ϕ).	Further,	even	though	it	is	impermissible	to	speak	of	the



values	of	a	distribution	f	at	points	x,	we	still	on	occasion	write	f(x)	to	denote	the
distribution.	 For	 example,	 the	 Dirac	 distribution	 δ0	 with	 pole	 at	 zero	 is	 often
written	δ(x),	and	also	δξ	is	written	δξ(x)	or	δ(x	−	ξ).

Example	5.63
Consider	u(x)	=	H(x),	the	Heaviside	function.	We	found	earlier,	in	order	for	u’	=	f
to	exist	in	a	weak	sense,	it	is	necessary	that

(6.6)	
for	 all	 test	 functions	 ϕ.	 There	 is	 no	 integrable	 function	 f	 that	 satisfies	 this
equation.	However,	 if	 f	 is	 the	Dirac	 distribution	 f	 =	 δ0	with	 pole	 at	 zero,	 then
according	 to	 (6.5),	 equation	 (6.6)	 is	 satisfied	 if	 we	 interpret	 the	 integral
symbolically.	Thus,	in	a	distributional	sense,	H′	=	δ0,	or	H′(x)	=	δ(x).
Now	let	us	take	a	more	formal	approach	and	underpin	the	issues	we	raised.	For

conciseness,	we	use	D	 	C∞0(a,	b)	 to	denote	the	set	of	 test	functions	on	(a,	b),
and	D′	 to	 denote	 the	 set	 of	 distributions	 (continuous	 linear	 functionals)	 on	D.
The	 interval	 (a,	 b)	 can	 be	 (−∞,	 ∞)	 or	 (0,	 ∞).	 Equality	 of	 two	 distributions	 is
defined	by	 requiring	 the	 two	distributions	 have	 the	 same	 action	on	 all	 the	 test
functions;	we	say	that	two	distributions	f1	and	f2	are	equal	if	(f1,	ϕ)	=	(f2,	ϕ)	for
all	ϕ	 	D,	and	we	write	f1	=	f2	in	D′.
It	is	possible	to	do	algebra	and	calculus	in	the	set	D′	of	distributions	just	as	we

do	with	ordinary	 functions.	 It	 is	easy	 to	see	 that	D′	 is	a	 linear	 space	under	 the
definition	(f1	+	f2,	ϕ)	=	(f1,	ϕ)	+	(f2,	ϕ)	of	addition,	and	(cf,	ϕ)	=	c(f,	ϕ),	c	 	 ,	of
scalar	 multiplication.	 To	 define	 rules	 for	 distributions	 we	 use	 the	 guiding
principle	 that	 any	general	 definition	 should	be	 consistent	with	what	 is	 true	 for
locally	 integrable	 functions,	 since	 locally	 integrable	 functions	are	distributions.
For	example,	let	α	=	α(x)	be	an	infinitely	differentiable	function	(i.e.,	α	 	C∞(a,
b)),	and	suppose	we	wish	to	define	the	multiplication	αf,	where	f	 	D′.	 If	 f	 is	a
locally	integrable	function,	then

(6.7)	
Observe	that	αϕ	 	D.	Therefore	we	make	the	definition



for	any	 f	 	D′;	 we	 have	 then	 defined	 the	 distribution	 αf	 by	 its	 action	 on	 test
functions	through	the	action	of	f.
We	can	also	define	the	derivative	of	a	distribution	f.	Again,	assume	f	and	f’	are

locally	integrable.	Using	the	same	argument	that	led	to	(6.2),	namely	integration
by	parts	and	the	fact	that	test	functions	have	support	in	the	interval	(a,	b),	we	are
led	to

Therefore,	if	f	 	D′	we	define	the	derivative	f’	 	D′	by

f′	 is	 called	 the	distributional	derivative	 of	 f.	 In	 the	 same	way	 (integrating	by
parts	n	times),	we	define	the	nth	distributional	derivative	f(n)	of	a	distribution	f	by

It	is	routine	to	verify	that	these	definitions	do	indeed	satisfy	the	requirements	of
a	distribution	(linearity	and	continuity).	Thus,	we	have	the	interesting	fact	that	a
distribution	has	derivatives	of	all	orders.

Example	5.64
Calculate	the	derivative	of	the	Dirac	distribution	δξ.	By	definition,

Example	5.65
A	function	like	 f(x)	=	1/x	 is	not	 locally	integrable.	If	we	try	to	define	a	regular
distribution	by

then	it	is	invalid	because	the	integral	does	not	exist	in	any	interval	containing	the
origin.	 We	 can	 avoid	 this	 difficulty	 if	 we	 define	 the	 distribution	 using	 the
principal	value	of	the	integral.	That	is,	define



One	can	check	that	these	integrals	exist.	So	we	define

which	 is	 a	 distribution.	 Note	 that	 it	 is	 linear	 and	 continuous	 because	
.

Other	properties	of	distributions	are	useful	as	well.	For	example,	if	c	 	 	and
f(x)	 	D′( ),	then	we	can	define	the	translated	distribution	f(x	−	c)	 	D′( )	by

(See	Exercise	5.)	For	example,	if	f(x)	=	δ(x),	the	Dirac	distribution	with	pole	at
zero,	 then	δ(x	−	c)	 is	defined	by	(δ(x	−	c),	ϕ(x))	=	(δ(x),	ϕ(x	 +	c))	=	ϕ(c).	 But
also,	(δc(x),	ϕ(x))	=	ϕ(c).	Therefore	δ(x	−	c)	has	the	same	action	on	test	functions
as	δc(x)	and	so

Thus	we	have	yet	another	way	to	write	the	delta	distribution	with	pole	at	c.	The
sifting	property	of	the	delta	“function”	is	often	written,	as	we	have	already	done,
symbolically	as

In	summary,	a	distribution	 is	a	generalization	of	 the	 idea	of	a	 function.	Rather
than	 defined	 at	 points	 with	 local	 properties	 as	 functions	 are,	 distributions	 are
global	objects	defined	in	terms	of	their	integrated	values,	or	their	action	on	test
functions.
In	Chapter	6	we	show	how	Laplace	transforms	of	distributions	can	be	defined.



5.6.3	Distribution	Solutions	to
Differential	Equations
We	are	now	poised	to	define	what	is	meant	by	a	weak	solution	and	a	distribution
solution	to	a	differential	equation.	Consider	the	differential	operator	L	defined	by

(6.8)	
where	α,	β,	and	γ	are	C∞	functions	on	(a,	b).	By	a	classical	solution,	or	genuine
solution,	to	the	differential	equation
(6.9)	

where	 f	 is	continuous,	we	mean	a	 twice,	continuously	differential	 function	u	 =
u(x)	that	satisfies	the	differential	equation	identically	for	all	x.	In	other	words,	a
genuine	 solution	 has	 enough	 derivatives	 so	 that	 it	makes	 sense	 to	 substitute	 it
into	 the	differential	equation	 to	check,	pointwise,	 if	 it	 is	 indeed	a	solution.	We
can	 also	 interpret	 (6.9)	 in	 a	 distributional	 sense.	 That	 is,	 if	 u	 and	 f	 are
distributions,	then	Lu	is	a	distribution;	if	Lu	=	f,	as	distributions,	then	we	say	u	is
a	distribution	solution	of	(6.9).	Recall,	for	Lu	=	f	as	distributions,	that	we	mean
(Lu,	ϕ)	=	(f,	ϕ)	for	all	 test	functions	ϕ	 	D.	Clearly,	 if	u	 is	a	classical	solution,
then	it	is	a	distribution	solution,	but	the	converse	is	not	true.
There	is	still	more	terminology.	A	fundamental	solution	associated	with	L	is	a

distribution	solution	to

where	the	right	side	of	(6.9)	is	a	Dirac	distribution.	A	fundamental	solution	must
satisfy	only	a	differential	 equation	 in	a	distributional	 sense,	 and	 it	need	not	be
unique.
To	elaborate,	let	u	be	a	distribution.	Then	Lu	is	a	distribution	and	it	is	defined

by	the	action

where	L*	is	the	formal	adjoint	operator	defined	by

It	follows	that	if	u	is	a	distribution	solution	to	Lu	=	f,	then



(6.10)	
If	both	u	and	f	are	locally	integrable,	then	(6.10)	can	be	written

(6.11)	
and	we	say	u	is	a	weak	solution	of	(6.9)	if	(6.11)	holds.	Note	that	(6.11)	does	not
require	u	to	have	derivatives	in	the	ordinary	sense.	A	weak	solution	is	a	special
case	 of	 a	 distribution	 solution;	 a	 weak	 solution	 is	 a	 function	 solution	 whose
(weak)	derivatives	are	functions,	and	(6.11)	holds.	Obviously,	a	classical	solution
is	a	weak	solution,	but	the	converse	is	not	true.
In	passing,	we	call	an	operator	L	formally	self-adjoint	if	L*	=	L.	Specifically,

a	 Sturm–Liouville	 operator	 Lu	 =	 −(pu′)’	 +	 qu	 (regardless	 of	 boundary
conditions)	 is	formally	self-adjoint,	as	 integration	by	parts	shows	(see	Exercise
9).	In	other	words,

where	B(u,	v)	denotes	the	boundary	conditions.	Given	boundary	conditions	on	u,
the	 boundary	 conditions	 on	 v	 that	 force	 B(u,	 v)	 =	 0	 are	 called	 the	 adjoint
boundary	conditions.	If	L	=	L*	and	the	adjoint	boundary	coincide	with	those	of
L,	then	L	is	said	to	be	self-adjoint.
What	we	accomplished	in	the	preceding	discussion	is	significant.	We	replaced

the	 usual	 question	 “Does	 this	 problem	 have	 any	 function	 solutions?”	with	 the
question	“Does	this	problem	have	any	distribution	solutions	or	weak	solutions?”
Thus,	we	 are	 not	 discarding	physically	meaningful	 solutions	because	of	minor
technicalities,	 for	 example,	 not	 having	 a	 derivative	 at	 some	 point.	 Now	 the
symbolic	differential	equation	for	the	Green’s	function,

as	discussed	in	Section	5.4,	is	meaningful.	It	is	to	be	interpreted	as	an	equation
for	distributions	and	actually	means

or,	equivalently,



Example	5.66
We	verify	that	the	function

is	the	Green’s	function	associated	with	the	operator	L	=	−d2/dx2	on	(0,	1)	subject
to	 the	 boundary	 conditions	 u(0)	 =	 u(1)	 =	 0.	 That	 is,	 we	 show	 g	 satisfies	 the
problem

(6.12)	

(6.13)	
in	a	distributional	sense.	We	must	show

(6.14)	
for	all	ϕ	 	D(0,	1).	To	this	end,

Now	we	integrate	the	two	integrals	by	parts	to	get

and

Upon	 substitution	 we	 obtain	 (6.14).	 So,	 interpreted	 properly,	 the	 Green’s
function	is	the	solution	to	the	boundary	value	problem	(6.12)–(6.13)	with	a	point
source.

EXERCISES
1.	Does	(u,	ϕ)	=	ϕ(0)2	define	a	distribution	in	D′( )?
2.	Is	the	function	ϕ(x)	=	x(1	−	x)	on	(0,	1)	a	test	function?	Why	or	why	not?
3.	Is	f(x)	=	1/x	locally	integrable	on	(0,	1)?
4.	Let	ϕ	 	D( )	be	a	test	function.	For	which	of	the	following	does	 n	→	0
in	D( )?



(a)	
(b)	 .
(c)	 .
5.	Prove	the	following	statements:
(a)	 .
(b)	 ,	where	 .

6.	Show	that	 	is	a	fundamental	solution	for	the	operator
L	=	d2/dx2	on	 .
7.	Let	c	 ≠	0	be	 a	 constant	 and	 f(x)	 a	distribution	 in	D′( ).	 Show	 that	 it	 is
appropriate	to	define	the	distributions	f(x	−	c)	and	f(cx)	by

and

8.	Find	 .
9.	 Compute	 the	 distributional	 derivative	 of	 H(x)	 cos	 x,	 where	 H	 is	 the
Heaviside	function.	Does	the	derivative	exist	in	a	weak	sense?
10.	 Show	 that	 the	Sturm–Liouville	 operator	Lu	 	−(pu′)′	 +	 qu	 is	 formally
self-adjoint.
11.	Find	a	fundamental	solution	associated	with	the	operator	L	defined	by	Lu
=	−x2u″	−	xu’	+	u,	0	<	x	<	1,	such	that	u(x,	ξ)	=	x	for	0	<	x	<	ξ.
12.	In	D′( )	compute	 .
13.	 Find	 the	 adjoint	 of	 the	 derivative	 operator	 L	 =	 −d/dx	 on	 x	 >	 0.	 Is	 L
formally	self-adjoint?
14.	Consider	the	operator	L	=	d2/dx2	−	x2	on	0	<	x	<	1.	(a)	Find	the	formal
adjoint	of	L?	Is	L	formally	self-adjoint?	(b)	Suppose	the	boundary	conditions
accompanying	L	are	u(0)	=	u′(1)	=	0.	Find	the	adjoint	boundary	conditions.
Is	L	self-adjoint?
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1	The	trigonometric	identities	sin	A	sin	B	=	 (cos(A	−	B)	−	cos(A	+	B))	and	sin
A	cos	B	=	 (sin(A	+	B)	+	sin(A	−	B)),	 along	with	others,	 are	useful	 in	 these
calculations.



2	 This	 result	 is	 the	 Weierstrass	 M-test	 for	 uniform	 convergence;	 e.g.,	 see
Spivak	(2008),	p	507.

3	A	function	f	is	P-periodic,	or	periodic	of	period	P,	if	it	repeats	itself	in	every
interval	of	length	P;	that	is,	f(x	+	P)	=	f(x)	for	all	x.

4	David	Hilbert	(1862–1943)	was	one	of	the	great	mathematicians	in	the	early
20th	 century.	 His	 formalist	 approach	 to	 problems	 became	 a	 key	 idea	 in
studying	abstract	concepts	in	functional	analysis.	Hilbert	spaces	are	now	core
structures	in	mathematics	and	science,	especially	quantum	theory.

5George	Green,	1793–1841.

6	The	unit	source	function	δ(x,	ξ)	is	also	denoted	by	δξ(x)	or	δ(x	−	ξ).

7	 Paul	 Dirac	 (1902–1984)	 won	 the	 Nobel	 Prize	 in	 physics	 in	 1933	 for	 his
ground	breaking	work	in	quantum	mechanics.

8	Laurent	Schwartz	(1915–2002).

9In	physics,	the	notation	for	the	action	of	a	distribution	f	on	a	test	function	ϕ	is
<	f	|	ϕ	>;	this	is	the	bracket	notation;	<	f	|	denotes	the	‘bra’,	or	the	functional,
and	|	ϕ	>	denotes	the	‘ket’,	or	the	function	(or,	vector).



Chapter	6

Partial	Differential	Equations

Partial	 differential	 equations	 is	 one	 of	 the	 most	 fundamental	 areas	 in	 applied
analysis,	and	it	is	hard	to	imagine	any	area	of	science	and	engineering	where	the
impact	 of	 this	 subject	 is	 not	 felt.	 Partial	 differential	 equation	 models,	 for
example,	 form	 the	 basis	 of	 electrodynamics	 (Maxwell’s	 equations),	 quantum
mechanics	 (the	 Schrödinger	 equation),	 continuum	 mechanics	 (equations
governing	 fluid,	 solid,	 and	 gas	 dynamics;	 acoustics),	 and	 reaction–diffusion
systems	in	biological	and	chemical	sciences,	only	to	mention	a	few.	The	goal	in
this	 and	 the	 next	 chapter	 are	 to	 introduce	 some	 important	 models	 and	 key
techniques	that	expose	the	solution	structure	of	such	equations.



6.1	Basic	Concepts
Ordinary	differential	equations	describe	how	systems	evolve	in	time.	Yet	many
systems,	perhaps	most,	evolve	in	both	space	and	time,	giving	rise	to	two	or	more
independent	 variables.	 For	 example,	 the	 temperature	 u	 in	 a	 slender,	 laterally
insulated,	metal	 bar	 of	 length	 l,	 subject	 to	 prescribed	 temperatures	 at	 its	 ends,
depends	upon	the	location	x	in	the	bar	and	upon	the	time	t.	That	is,	u	=	u(x,	 t).
Later	we	show,	using	conservation	of	energy,	that	the	temperature	u	must	satisfy
a	partial	differential	equation

where	k	>	0	 is	a	numerical	constant	characterizing	the	thermal	properies	of	 the
material	composing	the	bar;	the	equation	holds	for	t	>	0	and	0	<	x	<	l.	It	is	called
the	heat	equation,	and	it	is	the	basic	equation	of	heat	transfer.
Consider	 another	 example	 from	population	 dynamics.	 Imagine,	 for	 example,

toxic	 bacteria	 distributed	 throughout	 a	 canal	 of	 length	L.	 If	 we	 ignore	 spatial
variation	 then	 we	may	model	 the	 total	 population	 u	 =	u(t)	 of	 bacteria	 by	 the
usual	logistic	equation

where	r	 is	 the	growth	rate	and	K	 is	 the	carrying	capacity.	Here,	 the	population
depends	only	on	time	t	and	we	have	an	ordinary	differential	equation.	However,
in	 a	 nonhomogeneous	 environment	 the	 parameters	 r	 and	K	 may	 depend	 upon
geographical	 location	x.	Even	 if	 the	environment	 is	homogeneous,	 the	bacteria
may	 be	 distributed	 nonuniformly	 in	 the	 canal,	 and	 they	may	move	 from	 high
population	densities	to	low	densities	(this	is	called	diffusion),	giving	changes	in
spatial	 dependence.	 If	 we	 wish	 to	 consider	 how	 the	 spatial	 distribution	 of
bacteria	 changes	 in	 time,	 then	we	must	 include	 a	 spatial	 independent	 variable
and	 write	 u	 =	 u(x,	 t),	 where	 now	 u	 is	 interpreted	 as	 a	 population	 density,	 or
population	per	unit	length;	that	is,	u(x,	t)Δx	represents	approximately	the	number
of	bacteria	between	x	and	x	+	Δx.	If	we	include	diffusion	of	the	bacteria	then	the
model	modifies	to

where	 D	 is	 the	 diffusion	 constant.	 This	 is	 Fisher’s	 equation,1	 one	 of	 the



fundamental	equations	in	structured	population	dynamics.
It	 is	 common,	 as	 in	 ordinary	 differential	 equations,	 to	 drop	 the	 independent

variables	 in	 the	notation	 and	 just	write,	 for	 example,	 the	heat	 equation	 as	ut	−
kuxx	=	0,	the	dependence	of	u	on	x	and	t	being	understood.	In	the	next	section	we
derive	these	model	equations.
In	general,	a	second-order	partial	differential	equation	 in	 two	 independent

variables	is	an	equation	of	the	form

(1.1)	
where	 (x,	 t)	 lies	 in	 some	 domain	 D	 in	 2.	 By	 a	 solution	 we	 mean	 a	 twice
continuously	 differentiable	 function	 u	 =	u(x,	 t)	 on	D,	 which	 when	 substituted
into	(1.1),	 reduces	 it	 to	 an	 identity	 for	 (x,	 t)	 in	D.	We	 assume	 that	u	 is	 twice
continuously	differentiable	so	 that	 it	makes	sense	 to	calculate	 the	second-order
derivatives	and	substitute	them	into	(1.1).	A	solution	of	(1.1)	may	be	represented
graphically	as	a	smooth	surface	 in	 three-dimensional	xtu	space	lying	above	the
domain	D.	We	 regard	 x	 as	 a	 position	 or	 spatial	 coordinate	 and	 t	 as	 time.	 The
domain	D	 in	 2	 where	 the	 problem	 is	 defined	 is	 referred	 to	 as	 a	 space-time
domain,	 and	 problems	 that	 include	 time	 as	 an	 independent	 variable	 are	 called
evolution	 problems.	 Such	 problems	 model	 how	 a	 system	 evolves	 in	 time,
particularly	 those	 that	govern	diffusion	processes	and	wave	propagation.	When
two	spatial	coordinates,	say	x	and	y,	are	the	independent	variables	we	refer	to	the
problem	 as	 an	 equilibrium	 or	 steady-state	 problem;	 time	 is	 not	 involved.	 A
large	 portion	 of	 the	 literature	 on	 theoretical	 partial	 differential	 equations	 deals
with	questions	of	regularity	of	solutions.	That	is,	given	an	equation	and	auxiliary
conditions,	 how	 smooth	 are	 the	 solutions?	We	 do	 not	 address	 many	 of	 these
issues	here,	but	we	refer	to	an	advanced	text	(see	References	and	Notes).
A	 partial	 differential	 equation	 of	 type	 (1.1)	 has	 infinitely	 many	 solutions.

Similar	 to	 the	 general	 solution	 of	 an	 ordinary	 differential	 equation,	 which
depends	 on	 arbitrary	 constants,	 the	 general	 solution	 of	 a	 partial	 differential
equation	depends	on	arbitrary	functions.

Example	6.1
Consider	the	simple	partial	differential	equation

Integrating	with	respect	to	x	gives



where	 f	 is	 an	 arbitrary	 function.	 Integrating	with	 respect	 to	 t	 gives	 the	general
solution

where	h	 is	an	arbitrary	function	and	g(t)	=	ƒ	 f(t)dt	 is	also	an	arbitrary	function.
Thus	 the	general	 solution	depends	on	 two	 arbitrary	 functions;	 any	 choice	of	g
and	h	yields	a	solution	provided	they	are	suitably	differentiable.
A	general	first-order	partial	differential	equation	has	the	form

where	H	is	a	given	function.	These	equations	are	examined	in	detail	in	Chapter
7.	Here	we	give	only	an	example.

Example	6.2
Notice	that	the	second-order	equation

reduces	immediately	to	the	first-order	equation

by	making	the	substitution	v	=	ux.	The	v	equation	 looks	much	 like	an	ordinary
differential	 equation	because	 there	 is	 only	 a	 t	 derivative.	Let’s	multiply	by	 the
integrating	factor	e2t	as	we	would	do	for	an	ODE.	The	left	side	becomes

When	we	integrate	both	sides	with	respect	to	t,	we	obtain

where	the	‘constant’	of	integration	is	a	function	C	=	C(x)	of	the	other	variable	x,
as	 indicated.	 Then	 v(x,	 t)	 =	 C(x)e−2t.	 Therefore,	 ux	 =	 C(x)e−2t,	 and	 we	 can
integrate	with	respect	to	x	to	obtain	the	general	solution	of	the	original	equation,

where	 	and	B	are	arbitrary	functions	(an	integral	of	an	arbitrary	function	is	an
arbitrary	 function).	 Any	 PDE	 that	 has	 only	 partial	 derivatives	 with	 respect	 to
only	one	of	 the	variables	 can	be	 treated	 like	 an	ODE	 in	 that	variable	with	 the
other	variable	as	a	parameter.
For	 ordinary	 differential	 equations,	 initial	 or	 boundary	 conditions	 fix	 values

for	 the	 arbitrary	 constants	 of	 integration	 and	 thus	 often	 pick	 out	 a	 unique



solution.	Similarly,	partial	differential	equations	have	auxiliary	conditions.	They
are	usually	accompanied	by	initial	or	boundary	conditions	that	select	out	one	of
its	many	solutions.	A	condition	given	at	t	=	0	along	some	segment	of	the	x	axis	is
called	 an	 initial	condition.	 A	 condition	 given	 along	 any	 other	 curve	 in	 the	 xt
plane	 is	 called	 a	 boundary	 condition.	 Initial	 or	 boundary	 conditions	 involve
specifying	values	of	u,	 its	derivatives,	or	combinations	of	both	along	the	given
curves	in	the	xt	plane.

Example	6.3
Heat	flow	in	a	bar	of	length	l	is	governed	by	the	heat	equation

where	k	 is	 a	 physical	 constant	 and	u	 =	u(x,	 t)	 is	 the	 temperature	 in	 the	 bar	 at
location	x	at	time	t.	An	auxiliary	condition	of	the	form

is	an	initial	condition	because	it	 is	given	at	 t	=	0.	We	regard	 f(x)	as	 the	 initial
temperature	distribution	in	the	bar.	Conditions	of	the	form

are	 boundary	 conditions,	 and	 h(t)	 and	 g(t)	 represent	 specified	 temperatures
imposed	at	the	boundaries	x	=	0	and	x	=	l	for	t	>	0,	respectively.	These	functions
are	 depicted	 in	 Fig.	 6.1.	 Graphically,	 the	 surface	 u	 =	 u(x,	 t)	 representing	 the
solution	 has	 f,	 g,	 and	 h	 as	 its	 boundaries.	 We	 can	 visualize	 the	 solution	 by
sketching	 the	 solution	 surface	 or	 by	 plotting	 several	 time	 snapshots,	 or	 spatial
profiles	frozen	in	time.	Figure	6.1	shows	a	graph	of	one	profile	u(x,	t0)	for	some
fixed	t0.	It	is	a	cross	section	of	the	solution	surface.	Often	a	sequence	of	profiles
u(x,	 t1),	u(x,	 t2),…,	 for	 t1	 <	 t2	 <	…,	 are	 plotted	 on	 the	 same	 set	 of	xu	 axes	 to
indicate	how	the	temperature	profiles	change	in	time.

Figure	6.1	A	solution	surface	u	=	u(x,	t)	representing	the	temperature	at	(x,	t)
and	a	time	snapshot	u	=	u(x,	t0)	at	time	t	=	t0.	The	functions	h	and	g	define	the
boundary	conditions,	and	f	specifies	the	initial	condition.	We	think	of	the	heat
equation	as	propagating	the	initial	temperature	profile	into	the	region	at	future
times.



The	 general	 solution	 of	 a	 partial	 differential	 equation	 is	 usually	 difficult	 or
impossible	to	find.	Therefore,	for	partial	differential	equations,	we	seldom	solve
a	boundary	value	problem	by	determining	the	general	solution	and	then	finding
the	 arbitrary	 functions	 from	 the	 initial	 and	 boundary	 data.	 This	 is	 in	 sharp
contrast	 to	 ordinary	 differential	 equations	where	 the	 general	 solution	 is	 found
and	the	arbitrary	constants	are	evaluated	from	the	initial	or	boundary	conditions.
Generalizations	of	the	partial	differential	equation	(1.1)	can	be	made	in	various
directions—higher-order	derivatives,	several	 independent	variables,	and	several
unknown	functions	(governed	by	several	equations).	Later	we	observe	that	there
are	fundamentally	three	types	of	partial	differential	equations,	those	that	govern
diffusion	processes,	 those	 that	 govern	wave	propagation,	 and	 those	 that	model
equilibrium	 phenomena.	 These	 types	 are	 termed	 parabolic,	 hyperbolic,	 and
elliptic	equations,	respectively.	Mixed	types	also	occur.



6.1.1	Linearity	and	Superposition
The	 separation	 of	 partial	 differential	 equations	 into	 the	 classes	 of	 linear	 and
nonlinear	equations	is	a	significant	one.	Linear	equations	have	a	linear	algebraic
structure	 to	 their	 solution	 set;	 that	 is,	 the	 sum	 of	 two	 solutions	 of	 a	 linear
homogeneous	equation	is	again	a	solution,	as	is	a	constant	multiple	of	a	solution.
These	 facts,	 termed	 the	 superposition	 principle,	 often	 aid	 in	 constructing
solutions.	 Superposition	 for	 linear	 equations	 often	 allows	 one	 to	 construct
solutions	 that	 can	 meet	 diverse	 boundary	 or	 initial	 requirements.	 This
observation	 is	 the	 basis	 of	 the	 Fourier	 method,	 or	 method	 of	 eigenfunction
expansions,	for	linear	equations.	Linear	equations	are	also	amenable	to	transform
methods	 for	 finding	 solutions,	 for	 example,	 Laplace	 transforms	 and	 Fourier
transforms.	On	the	other	hand,	none	of	these	principles	or	methods	are	valid	for
nonlinear	 equations.	 In	 summary,	 there	 is	 a	profound	difference	between	 these
two	 classes	 of	 problems.	 (See	Logan	 (2008),	 for	 example,	 for	 an	 introductory
treatment	of	nonlinear	partial	differential	equations.)
To	 formulate	 these	 concepts	 more	 precisely,	 we	 can	 regard	 the	 partial

differential	 equation	 (1.1)	 as	 defining	 a	 differential	 operator	 L	 acting	 on	 the
unknown	function	u(x,	t)	and	we	write	(1.1)	as

Or,	suppressing	the	independent	variables,

(1.2)	
In	(1.2)	all	terms	involving	u	are	put	on	the	left	in	the	term	Lu,	and	f	 is	a	given
function	 of	 x	 and	 t,	 often	 called	 the	 source	 term.	 If	 f	 =	 0	 on	D,	 then	 (1.2)	 is
homogeneous;	 if	 f	 is	not	 identically	zero,	 then	 (1.2)	 is	nonhomogeneous.	The
heat	 equation	 ut	 −	 kuxx	 =	 0	 can	 be	 written	 Lu	 =	 0,	 where	 L	 is	 the	 partial
differential	 operator	 ∂/∂t	 −	k∂2/∂x2,	 and	 it	 is	 clearly	 homogeneous.	The	 partial
differential	equation	uut	+	2txu	−	sin	tx	=	0	can	be	written	Lu	=	sin	tx,	where	L	is
the	 differential	 operator	 defined	 by	 Lu	 =	 uut	 +	 2txu.	 This	 equation	 is
nonhomogeneous.	The	definition	of	linearity	depends	on	the	operator	L	in	(1.2).
We	say	that	(1.2)	is	a	linear	equation	if	L	has	the	properties

(i)	L(u	+	w)	=	Lu	+	Lw,
(ii)	L(cu)	=	cLu,

where	u	and	w	are	functions	and	c	 is	a	constant.	If	(1.2)	 is	not	 linear,	 then	it	 is



nonlinear.

Example	6.4
The	heat	equation	is	linear	because

and

Example	6.5
The	differential	equation	uut	+	2txu	−	sin	tx	=	0	is	nonlinear	because

yet

Note	 that	 the	 nonhomogeneous	 term	 sin	 tx	 does	 not	 affect	 linearity	 or
nonlinearity.
It	is	clear	that	Lu	=	f	is	linear	if	Lu	is	first-degree	in	u	and	its	derivatives;	that

is,	 no	 products	 involving	 u	 and	 its	 derivatives	 occur.	 Hence	 the	most	 general
linear	equation	of	second	order	is	of	the	form
(1.3)	

where	the	functions	a,	b,	c,	d,	e,	g,	and	f	are	given	continuous	functions	of	(x,	t)
on	D.	If	any	of	the	coefficients	a,…,	g,	or	f	depend	on	u,	we	say	that	the	equation
is	quasi-linear.	Referring	to	an	earlier	remark,	(1.3)	is	hyperbolic	 (wave-like),
parabolic	 (diffusion-like),	 or	 elliptic	 (equilibrium	 type)	 on	 a	 domain	D	 if	 the
discriminant	b(x,	 t)2	−	4a(x,	 t)c(x,	 t)	 is	positive,	zero,	or	negative,	 respectively,
on	that	domain.	For	example,	 the	heat	equation	ut	−	kuxx	=	0	has	b2	−	4ac	=	0
and	is	parabolic	on	all	of	 2.	Two	other	well-known	equations	of	mathematical
physics,	the	wave	equation	utt	−	c2uxx	=	0	and	Laplace’s	equation	uxx	+	uyy	=	0,



are	hyperbolic	and	elliptic,	respectively.
If	Lu	=	0	 is	a	 linear	homogeneous	equation	and	u1	and	u2	 are	 two	 solutions,

then	it	obviously	follows	that	u1	+	u2	 is	a	solution	because	L(u1	+	u2)	=	Lu1	+
Lu2	=	0	+	0	=	0.	Also	cu1	is	a	solution	because	L(cu1)	=	cLu1	=	c·0	=	0.	A	simple
induction	argument	shows	that	if	u1,…,	un	are	solutions	of	Lu	=	0	and	c1,…,	cn
are	constants,	then	the	finite	sum,	or	linear	combination,	c1u1	+	···	+	cnun	is	also
a	 solution;	 this	 is	 the	 superposition	 principle	 for	 linear	 equations.	 If	 certain
convergence	 properties	 hold,	 the	 superposition	 principle	 can	 be	 extended	 to
infinite	sums	c1u1	+	c2u2	+	···.
Another	 form	of	a	 superposition	principle	 is	a	continuous	version	of	 the	one

just	cited.	In	this	case	let	u(x,	t;	ξ)	be	a	family	of	solutions	on	D,	where	ξ	is	a	real
parameter	ranging	over	some	interval	I.	That	is,	suppose	u(x,	t;	ξ)	is	a	solution	of
Lu	=	0	for	each	ξ	 	I.	Then	we	formally	superimpose	these	solutions	by	forming

where	c(ξ)	is	a	function	representing	a	continuum	of	coefficients,	the	analog	of
c1,	c2,…,	cn.	If	we	can	write

then	u(x,	t)	is	also	a	solution.	This	sequence	of	steps,	and	hence	the	superposition
principle,	depends	on	the	validity	of	pulling	the	differential	operator	L	inside	the
integral	sign.	For	such	a	principle	to	hold,	these	formal	steps	would	need	careful
analytical	verification.

Example	6.6
Consider	the	heat	equation
(1.4)	

It	is	straightforward	to	verify	that



is	a	solution	of	(1.4)	for	any	ξ	 	I	=	 .	This	solution	is	called	the	fundamental
solution	 of	 the	heat	 equation.	We	can	 formally	 superimpose	 these	 solutions	 to
obtain

where	c(ξ)	is	some	function	representing	the	coefficients.	It	can	be	shown	that	if
c(ξ)	is	continuous	and	bounded,	then	differentiation	under	the	integral	sign	can
be	 justified	 and	 u(x,	 t)	 is	 therefore	 a	 solution.	 The	 fundamental	 solution	 is
recognized	 as	 a	 normal	 probability	 density	 function	 (bell-shaped	 curve)	 with
mean	 ξ	 and	 variance	 2kt.	 Therefore,	 as	 time	 increases	 the	 spatial	 profiles,	 or
temperature	distributions,	spread.	We	should	not	be	surprised	that	a	probability
density	is	related	to	solutions	to	the	heat	equation	because	heat	transfer	involves
the	 random	 collisions	 of	 the	 particles	making	 up	 the	medium.	We	 discuss	 the
connection	between	diffusion	and	randomness	in	a	later	section.

Example	6.7
This	 example	 shows	 how	we	 can	 use	 superposition	 to	 construct	 solutions	 that
satisfy	auxiliary	conditions.	The	pure	initial	value	problem	for	the	heat	equation,

is	called	the	Cauchy	problem.	If	f	is	bounded	and	continuous,	then	the	solution
is	given	by	the	integral	representation

Later	 we	 derive	 this	 formula	 by	 the	 Fourier	 transform	 method.	 But	 we	 can
observe	formally	that	the	solution	is	valid	by	the	superposition	principle	and	the
fact	 that	 u(x,	 0)	 =	 f(x).	 This	 latter	 fact	 comes	 from	 making	 the	 change	 of
variables	r	=	(x	−	ξ)/√4kt	and	rewriting	the	solution	as

Taking	the	limit	as	t	→	0+	and	formally	pulling	the	limit	under	the	integral	gives	



EXERCISES
1.	Use	software	to	sketch	the	solution	surface	and	temperature	time	profiles
of	the	fundamental	solution	of	the	heat	equation	(1.4)

for	 different	 times	 t.	What	 is	 the	 behavior	 of	 the	 profiles	 as	 t	 approaches
zero?	 Comment	 on	 the	 differences	 one	 would	 observe	 in	 the	 profiles	 for
large	values	of	k	and	for	small	values	of	k.
2.	Find	the	general	solution	of	the	following	partial	differential	equations	in
terms	of	arbitrary	functions.

a)	uxx	+	u	=	6y,	where	u	=	u(x,	y).
b)	tuxx	−	4ux	=	0,	where	u	=	u(x,	t).	(Hint:	Let	v	=	ux.)

c)	uxt	+	(1/x)ut	=	t/x2,	where	u	=	u(x,	t).
d)	utx	+	ux	=	1,	where	u	=	u(x,	t).

e)	uut	=	x	−	t,	where	u	=	u(x,	t).	(Hint:	(u2)t	=	2uut.)
3.	Find	a	formula	for	the	solution	to	the

that	satisfies	the	auxiliary	conditions	u(x,	0)	=	g(x),	x	>	0	and	u(0,	t)	=	h(t),	t
>	0,	where	f,	g,	and	h	are	given,	well-behaved	functions	with	g(0)	=	h(0),	g
′(0)	=	h′(0).
4.	Find	the	general	solution	of	the	first-order	linear	equation

by	changing	variables	to	the	new	spatial	coordinate	z	=	x	−	ct,	where	c	is	a
constant.	(Hint:	take	τ	=	t,	z	=	x	−	ct.)
5.	Show	that	the	general	solution	u	=	u(x,	y)	of	the	equation

is	 ,	where	 	is	an	arbitrary	function.
6.	 Determine	 regions	 in	 the	 plane	 where	 the	 equation	

	is	hyperbolic,	elliptic,	or	parabolic.
7.	Show	that	a	parabolic	equation	αutt	+	βutx	+	γuxx	=	F(x,	t,	u,	ux,	ut),	where
α,	 β,	 γ	 are	 constant,	 can	 be	 reduced	 to	 an	 equation	 of	 the	 form	

	 by	 a	 linear	 transformation	 of
the	variables,	 .



8.	Find	all	solutions	of	the	heat	equation	ut	=	kuxx	of	the	form	u(x,	t)	=	U(z),
where	 .



6.2	Conservation	Laws
Many	 fundamental	 equations	 in	 the	natural	 and	physical	 sciences	 are	 obtained
from	conservation	laws.	Conservation	laws	are	balance	laws,	or	equations	that
express	 the	 fact	 that	 some	 quantity	 is	 balanced	 throughout	 a	 process.	 In
thermodynamics,	 for	 example,	 the	 first	 law	 states	 that	 the	 change	 in	 internal
energy	in	a	given	system	is	equal	to,	or	is	balanced	by,	the	total	heat	added	to	the
system	plus	the	work	done	on	the	system.	Thus	the	first	law	of	thermodynamics
is	an	energy	balance	 law,	or	conservation	 law.	As	another	example,	 consider	a
fluid	 flowing	 in	 some	 region	 of	 space	 that	 consists	 of	 chemical	 species
undergoing	 chemical	 reaction.	 For	 a	 given	 chemical	 species,	 the	 time	 rate	 of
change	of	the	total	amount	of	that	chemical	in	the	region	must	equal	the	rate	at
which	the	chemical	flows	into	the	region,	minus	the	rate	at	which	it	flows	out,
plus	 the	 rate	 at	 which	 the	 species	 is	 created,	 or	 consumed,	 by	 the	 chemical
reactions.	This	is	a	verbal	statement	of	a	conservation	law	for	the	amount	of	the
given	 chemical	 species.	 Similar	 balance	 or	 conservation	 laws	 occur	 in	 all
branches	of	science.	In	population	ecology,	for	example,	the	rate	of	change	of	a
given	animal	population	 in	a	certain	region	must	equal	 the	birthrate,	minus	 the
deathrate,	plus	the	migration	rate	into	or	out	of	the	region.



6.2.1	One	Dimension
Mathematically,	 conservation	 laws	 translate	 into	 differential	 equations,	 which
are	 then	 regarded	 as	 the	 governing	 equations	 or	 equations	 of	 motion	 of	 the
process.	 These	 equations	 dictate	 how	 the	 process	 evolves	 in	 time.	 First	 we
formulate	 the	basic	one-dimensional	 conservation	 law,	out	of	which	will	 come
some	of	the	basic	models	and	concepts.
Let	 us	 consider	 some	 quantity	 (mass,	 animals,	 energy,	 momentum,	 or

whatever)	distributed	along	a	tube	of	cross-sectional	area	A	(see	Fig.	6.2),	and	let
u	=	u(x,	 t)	 denote	 its	 density,	 or	 concentration,	measured	 in	 the	 amount	 of	 the
quantity	per	unit	volume.	An	implicit	assumption	is	 that	 there	is	enough	of	the
quantity	distributed	in	space	that	it	makes	sense	to	talk	about	its	density.	(If	there
were	only	a	few	items,	then	a	probability	model	would	be	more	appropriate.)	By
definition,	u	varies	in	only	one	spatial	direction,	the	axial	direction	x.	Therefore,
by	assumption,	u	 is	constant	in	any	cross	section	of	the	tube,	which	is	the	one-
dimensional	assumption.	Next	consider	an	arbitrary	segment	of	the	tube	denoted
by	the	interval	I	=	[a,	b].	The	total	amount	of	the	quantity	u	inside	I	at	time	t	is

Figure	6.2	Cylindrical	tube	of	cross-sectional	area	A	showing	a	cross	section	at	x
and	a	finite	section	I:	a	≤	x	≤	b.	u(x,	t)	is	the	concentration	at	x	at	time	t.

Assume	there	 is	motion	of	 the	quantity	 in	 the	 tube	 in	 the	axial	direction.	We
define	the	flux	of	u	at	x	at	time	t	to	be	the	scalar	function	J(x,	t);	that	is,	J(x,	t)	is
the	amount	of	the	quantity	u	flowing	through	the	cross	section	at	x	at	time	t,	per
unit	area,	per	unit	time.	Thus	the	dimensions	of	J	are	[J]	=	amount/(area·time).
Notice	that	flux	is	density	times	velocity.	By	convention	we	take	J	to	be	positive
if	the	flow	at	x	is	in	the	positive	x	direction,	and	J	is	negative	at	x	if	the	flow	is	in
the	 negative	 x	 direction.	 Therefore,	 at	 time	 t	 the	 net	 rate	 that	 the	 quantity	 is
flowing	into	the	interval	I	is	the	rate	it	is	flowing	in	at	x	=	a	minus	the	rate	it	is
flowing	out	at	x	=	b.	That	is,



Finally,	the	quantity	u	may	be	created	or	destroyed	inside	I	by	some	external	or
internal	source	(e.g.,	by	a	chemical	reaction	if	u	were	a	species	concentration,	or
by	birth	or	death	if	u	were	a	population	density,	or	by	a	heat	source	or	sink	if	u
were	energy	density—a	heat	source	could	be	resistive	heating	if	the	tube	were	a
wire	through	which	a	current	is	flowing).	We	denote	this	source	function,	which
is	 a	 local	 function	 acting	 at	 each	 x,	 by	 f(x,	 t,	 u)	 with	 dimensions
[f]=amount/(vol·time).	Consequently,	f	is	the	rate	that	u	is	created	(or	destroyed)
at	x	at	time	t,	per	unit	volume.	Note	that	the	source	function	f	may	depend	on	u
itself,	as	well	as	space	and	time.	If	f	is	positive,	we	say	that	it	is	a	source,	and	if	f
is	negative,	we	say	that	it	is	a	sink.	Given	f,	we	may	calculate	the	total	rate	that	u
is	created	in	I	by	integration.	We	have

Rate	that	quantity	is	produced	in	I	by	sources	 .

The	fundamental	conservation	law	may	now	be	formulated	for	the	quantity	u.
For	any	interval	I,	we	have

In	 terms	 of	 the	 expressions	we	 introduced	 above,	 after	 canceling	 the	 constant
cross-sectional	area	A,	we	have

(2.1)	
In	summary,	(2.1)	states	that	the	rate	that	u	changes	in	I	must	equal	the	net	rate

at	which	u	flows	into	I	plus	the	rate	that	u	is	produced	in	I	by	sources.	Equation
(2.1)	is	called	a	conservation	law	in	integral	form,	and	it	holds	even	if	u,	J,	or	f
are	 not	 smooth	 (continuously	 differentiable)	 functions.	 The	 latter	 remark	 is
important	when	we	 consider	 in	 subsequent	 chapters	 physical	 processes	 giving
rise	to	shock	waves,	or	discontinuous	solutions.
If	some	restrictions	are	place	on	the	triad	u,	J,	and	f,	(2.1)	may	be	transformed

into	 a	 single	 partial	 differential	 equation.	 Two	 results	 from	 elementary
integration	theory	are	required	to	make	this	transformation:	(i)	 the	fundamental
theorem	of	calculus,	and	(ii)	the	result	on	differentiating	an	integral	with	respect
to	a	parameter	in	the	integrand.	Precisely,



(i)	 .
(ii)	 .
These	results	are	valid	if	J	and	u	are	continuously	differentiable	functions	on	

2.	Of	course,	 (i)	and	 (ii)	 remain	correct	under	 less	stringent	conditions,	but	 the
assumption	 of	 smoothness	 is	 all	 that	 is	 required	 in	 the	 subsequent	 discussion.
Therefore,	assuming	smoothness	of	u	and	J,	as	well	as	continuity	of	f,	equations
(i)	and	(ii)	imply	that	the	conservation	law	(2.1)	may	be	written
(2.2)	

Because	the	integrand	is	a	continuous	function	of	x,	and	because	(2.2)	holds	for
all	intervals	of	integration	I,	it	follows	that	the	integrand	must	vanish	identically;
that	is,

(2.3)	
Equation	(2.3)	is	a	partial	differential	equation	relating	the	density	u	=	u(x,	t)	and
the	 flux	J	 =	 J(x,	 t).	 Both	 are	 regarded	 as	 unknowns,	whereas	 the	 form	 of	 the
source	 f	 is	 given.	 Equation	 (2.3)	 is	 called	 a	 conservation	 law	 in	 differential
form,	 in	contrast	 to	 the	 integral	 form	(2.2).	The	Jx	 term	is	called	 the	 flux	 term
because	it	arises	from	the	movement,	or	transport,	of	u	through	the	cross	section
at	x.	 The	 source	 term	 f	 is	 often	 called	 a	 reaction	 term	 (especially	 in	 chemical
contexts)	 or	 a	growth	 or	 interaction	 term	 (in	 biological	 contexts).	 Finally,	 we
have	defined	the	flux	J	as	a	function	of	x	and	t,	but	this	dependence	on	space	and
time	 may	 occur	 through	 dependence	 on	 u	 or	 its	 derivatives.	 For	 example,	 a
physical	assumption	may	 require	us	 to	posit	J(x,	 t)	=	J(x,	 t,	 u(x,	 t)),	where	 the
flux	is	dependent	upon	u	itself.
If	there	are	several	quantities	with	densities	u1,	u2,…,	then	we	can	write	down

a	conservation	law	for	each.	The	fluxes	and	source	terms	may	involve	several	of
the	densities,	leading	to	a	coupled	system	of	conservation	laws.

Remark	6.8
(Small	box	method)	We	derived	 the	 differential	 form	of	 the	 conservation	 law
(2.3)	by	balancing	mass	in	an	interval	and	then	appealing	to	the	arbitrariness	of
the	 interval.	 This	 is	 sometimes	 referred	 to	 as	 the	 large	 box	 method.	 Another
common	approach	is	to	use	a	small	box,	or	small	interval	[x,	×	+	dx],	where	dx
is	a	small	increment.	Then	we	could	write	a	conservation	law	on	this	interval	as



where	 .	Dividing	by	the	volume	of	the	box	Adx	gives

Now,	taking	the	limit	as	dx	→	0	gives	the	conservation	law



6.2.2	Several	Dimensions
It	 is	 straightforward	 to	 formulate	 conservation	 laws	 in	 several	 spatial
dimensions.	 For	 review,	 and	 to	 set	 the	 notation,	 we	 introduce	 some	 basic
definitions.	 In	 n,	 points	 are	 denoted	 by	 x	 =	 (x1,…,	 xn),	 and	 dx	 =	 dx1…	dxn
represents	a	volume	element.	In	 2	we	often	use	(x,	y),	and	in	 3	we	use	(x,	y,	z).
If	 u	 =	 u(x,	 t)	 is	 a	 scalar	 function	 (a	 density),	 then	 its	 integral	 over	 a	 suitable
region	(volume)	Ω	is

In	 2	we	have	dx	=	dxdy,	and	in	 3	we	have	dx	=	dxdydz.	The	boundary	of	Ω	is
denoted	by	∂Ω.	We	always	 assume	 that	 the	domain	Ω	has	 a	 smooth	boundary
∂Ω,	 or	 piecewise	 smooth	 boundary	 composed	 of	 finitely	 many	 smooth
components.	We	say	Ω	is	open	if	it	includes	none	of	its	boundary,	and	we	denote
	 =	 Ω	∪	 ∂Ω	 as	 the	 closure	 of	 Ω.	 This	 assumption	 will	 cover	 the	 cases	 of

spheres,	rectangles,	parallelepipeds,	cylinders,	and	so	on,	which	are	the	domains
important	 in	most	science	and	engineering	problems.	We	refer	 to	 these	 type	of
domains	 as	well	 behaved.	 The	 set	 of	 continuous	 functions	 on	 a	 domain	 Ω	 is
denoted	by	C(Ω).	Surface	integrals	are	denoted	by

Nearly	 always,	 surface	 integrals	 are	 flux	 integrals	 (discussed	 below).	 Partial
derivatives	are	represented	by	subscripts,	or	∂u/∂xk	=	uxk.	The	gradient	of	u	 is
the	vector

The	 gradient	 points	 in	 the	 direction	 of	 the	maximum	 increase	 of	 the	 function.
The	directional	derivative	of	u	in	the	direction	of	a	unit	vector	n	=	(n1,…,	nn)	is
denoted	by

It	measures	 the	change	 in	u	 in	 the	direction	n.	 If	J(x,	 t)	=	 (x,	 t)	=	 (J1(x,	 t),…,
Jn(x,	t))	is	a	vector	field,	then	its	divergence	is	the	scalar	function



Two	common,	alternate	notations	for	the	divergence	and	gradient	are	div	J	and
grad	u,	respectively.
The	 flux	 of	 a	 vector	 field	 J(x,	 t)	 through	 an	 oriented	 surface	 element	 ndA,

where	n	is	an	outward	oriented	unit	normal	vector	(see	Fig.	6.3	for	a	diagram	in	
3),	is	defined	to	be

Figure	6.3	A	surface	with	surface	element	ndA,	oriented	by	its	outward	unit
normal	vector	n,	along	with	the	flux	vector	J.

There	 are	 two	 useful	 differential	 identities	 that	 are	 straightforward	 to	 prove.
The	 first	 is	 a	 formula	 for	 the	 divergence	 of	 a	 gradient,	 and	 the	 second	 is	 a
product	rule	for	the	divergence	of	a	scalar	function	times	a	vector	field:

The	first	expression	defines	the	Laplacian	Δu	as	the	sum	of	the	second	partial
derivatives.	Another	common	notation	for	the	Laplacian	of	u	is

Next	we	formally	catalog	two	useful	integral	theorems	in	 n	 that	are	analogs
of	the	one-dimensional	results	from	the	preceding	section.

Theorem	6.9
(a)	Let	f	be	a	continuous	function	on	a	well-behaved	domain	Ω	with



for	every	subdomain	D	⊂	Ω.	Then	f(x)	=	0	for	all	x	 	Ω.
(b)	Let	u	=	u(x,	t)	and	ut(x,	t)	be	continuous	on	a	well-behaved	domain	x	
Ω,	and	for	all	t	 	I,	where	I	is	an	open	interval.	Then	the	time	derivative	can
be	pulled	under	the	integral	sign,	or

The	 most	 important	 integral	 identity	 in	 multivariable	 calculus	 in	 the
divergence	theorem,	which	is	an	n-dimensional	version	of	the	fundamental
theorem	of	calculus.	 It	 states	 that	 the	 integral	of	a	partial	derivative	over	a
volume	 is	 a	 boundary,	 or	 surface,	 integral.	 It	 has	 been	 proved	 for	 very
general	 domains	 Ω,	 but	 we	 only	 require	 it	 for	 well-behaved	 domains.	 A
natural	 mathematical	 question	 concerns	 conditions	 on	 the	 functions	 for
which	the	divergence	theorem	holds.	Generally,	we	assume	that	all	functions
are	continuous	on	 the	closed	domain	consisting	of	Ω	and	its	boundary	∂Ω,
and	 have	 as	 many	 continuous	 partial	 derivatives	 in	 Ω	 that	 occur	 in	 the
formula.	We	do	not	formulate	the	most	general	conditions.	Let	Ω	be	an	open,
well-behaved	domain.	By	 	we	mean	 that	u	 is	 continuous	on	Ω,
and	 its	 first	 partial	 derivatives	 are	 continuous	 on	Ω,	 and	 can	 be	 extended
continuously	 to	 the	 boundary	 of	 Ω.	 By	 u	 	 C2(Ω)	 to	 mean	 that	 u	 has
continuous	second	partial	derivatives	in	Ω.	Many	of	our	theorems	require	u	

,	 that	 is,	 u	 is	 twice	 continuously	 differentiable	 in	 the
open	domain	Ω	and	its	first	derivatives	can	be	extended	to	the	closure.	With
all	this	said,	we	in	fact	do	not	require	detailed	mathematical	analysis	in	our
work;	so	these	technical	issues	do	not	enter	the	discussion.

Theorem	6.10
(Divergence	theorem)	Let	Ω	be	a	well-behaved,	open,	bounded	region	in	
n	and	let	u	 .	Then

where	nk	 is	 the	kth	 component	of	 the	outward	unit	normal	vector	n	on	 the
bounding	surface.
If	J	is	a	vector	field,	we	can	apply	this	result	to	each	component	and	add	to



obtain	the	standard	vector	version	of	the	theorem:

The	 divergence	 theorem	 leads	 immediately	 to	 fundamental	 integral
identities.	We	state	these	important	results.

Corollary	6.11
Under	the	assumptions	of	the	Theorem	6.10:

(a)	Integration	by	parts	formula

(a)	Green’s	first	identity

(c)	Green’s	second	identity

It	is	impossible	to	overestimate	the	utility	of	integration	by	parts	formulae
in	partial	differential	equations.	Green’s	second	identity	is	just	an	integration
by	parts	formula	for	the	Laplacian	operator.	The	proofs	of	these	relations	are
requested	in	the	Exercises.
With	this	preparation	we	are	ready	to	write	down	the	conservation	law	in

several	variables.	Let	Ω	be	a	region	in	 n	and	let	u	=	u(x,	t)	be	the	density,	or
concentration,	of	some	quantity	distributed	throughout	Ω.	Let	J(x,	t)	be	 the
flux	 vector	 for	 that	 quantity,	 where	 J	 ·	 ndA	 measures	 the	 rate	 that	 the
quantity	crosses	an	oriented	surface	element	in	the	medium.	In	this	domain
Ω	 let	 V	 be	 an	 arbitrary,	 well-behaved	 bounded	 region	 (for	 example,	 a
sphere).	Then	the	total	amount	of	 the	quantity	in	V	 is	given	by	the	volume
integral

The	 time	 rate	 of	 change	 of	 the	 total	 amount	 of	 the	 quantity	 in	V	must	 be
balanced	by	the	rate	that	the	quantity	is	produced	in	V	by	sources,	plus	the
net	rate	that	the	quantity	flows	through	the	boundary	of	V.	We	let	 f(x,	 t,	u)
denote	the	source	term,	so	that	the	rate	that	the	quantity	is	produced	in	V	is



given	by

The	net	outward	flux	of	the	quantity	u	through	the	boundary	∂V	is	given	by
the	surface	integral

where	n	=	n(x)	is	the	outward	unit	normal.	Therefore,	the	conservation	law,
or	balance	law,	is	given	by

(2.4)	
The	minus	sign	on	the	flux	term	occurs	because	outward	flux	decreases	the
rate	that	u	changes	in	V.	This	integral	law	is	the	higher-dimensional	analog
of	(2.2).
The	 integral	 form	of	 the	conservation	 law	(2.4)	can	be	reformulated	as	a

local	condition,	that	is,	a	partial	differential	equation,	provided	that	u	and	J
are	 sufficiently	 smooth	 functions.	 In	 this	 case	 the	 surface	 integral	 can	 be
rewritten	as	a	volume	integral	over	V	using	the	divergence	theorem,	and	the
time	derivative	 can	be	brought	 under	 the	 integral	 sign	by	Theorem	6.9(b).
Hence,

From	Theorem	6.9(a),	 the	 arbitrariness	of	V	 implies	 the	 local	 form	of	 the
conservation	law	throughout	the	domain	Ω:
(2.5)	

Equation	(2.5)	is	the	higher-dimensional	version	of	equation	(2.3),	the	local
conservation	law	in	one	dimension.



6.2.3	Constitutive	Relations
Because	 the	 one-dimensional	 conservation	 law	 (2.3)	 [or	 (2.5)]	 is	 a	 single
partial	 differential	 equation	 for	 two	unknown	quantities	 (the	density	u	 and
the	flux	J),	our	intuition	indicates	that	another	equation	is	required	to	have	a
well-determined	system.	This	additional	equation	is	often	an	equation	that	is
based	on	an	assumption	about	the	physical	properties	of	the	medium,	which,
in	 turn,	 is	 based	 on	 empirical	 reasoning	 or	 experimental	 observation.
Equations	expressing	these	assumptions	are	called	constitutive	relations	or
equations	of	state.	Thus	constitutive	equations	are	on	a	different	level	from
the	 basic	 conservation	 law;	 the	 latter	 is	 a	 fundamental	 law	 of	 nature
connecting	the	density	u	to	the	flux	J,	whereas	a	constitutive	relation	is	often
an	 approximate	 equation	 whose	 origin	 lies	 in	 empirics.	 In	 the	 next	 few
paragraphs	we	examine	some	possibilities	for	modeling	the	flux,	or	motion
of	the	quantity	under	examination.

Example	6.12
(Diffusion)	In	many	physical	problems	it	is	observed	that	the	amount	of	the
substance	that	moves	through	a	cross	section	at	x	at	time	t	is	proportional	to
its	density	gradient	ux,	or	J(x,	t)	 	ux(x,	t).	If	ux	>	0,	then	J	<	0	(the	substance
moves	 to	 the	 left),	 and	 if	ux	 <	 0,	 then	 J	 >	 0	 (the	 substance	moves	 to	 the
right).	 Figure	 6.4	 illustrates	 the	 situation.	 The	 substance	 moves	 down	 the
density	 gradient,	 from	 regions	 of	 high	 concentration	 to	 regions	 of	 low
concentrations.	We	 say	 the	motion	 is	 “down	 the	 gradient.”	By	 the	 second
law	of	thermodynamics,	heat	behaves	in	this	manner;	heat	flows	from	hotter
regions	to	colder	regions,	and	the	steeper	the	temperature	distribution	curve,
the	more	rapid	the	flow	of	heat.	This	movement	is	closely	connected	to	the
random	 motion	 of	 molecules	 caused	 by	 collisions	 of	 the	 particles.	 If	 u
represents	 a	 concentration	 of	 organisms,	 one	may	 observe	 that	 they	move
from	high	densities	 to	 low	densities	with	a	 rate	proportional	 to	 the	density
gradient.	Therefore,	we	assume	the	basic	constitutive	law

Figure	6.4	Time	snapshot	of	the	concentration	u(x,	t)	at	a	fixed	time	t.	The
arrows	indicate	the	direction	of	the	flow,	from	higher	concentrations	to
lower	concentrations.	The	flow	is	said	to	be	down	the	gradient.	The	minus
occurs	because	positive	flux	requires	a	negative	derivative.



(2.6)	
which	 is	 known	 as	 Fick’s	 law.	 It	 models	 diffusion.	 The	 positive
proportionality	 constant	 D	 is	 called	 the	 diffusion	 constant	 and	 has
dimensions	[D]	=length2/time.	Fick’s	 law	accurately	describes	 the	behavior
of	 many	 physical	 and	 biological	 systems.	 This	 assumption	 reduces	 the
conservation	 law	 (2.3)	 to	 a	 single	 second-order	 linear	 partial	 differential
equation	for	the	unknown	density	u	=	u(x,	t)	given	by

(2.7)	
In	several	dimensions	Fick’s	law	is
(2.8)	

giving
(2.9)	

Equations	(2.7)	and	(2.9)	are	called	reaction–diffusion	equations,	and	they
govern	 processes	 where	 the	 flux,	 called	 a	 diffusive	 flux,	 is	 specified	 by
Fick’s	law.	If	the	source	term	vanishes,	they	are	called	diffusion	equations.
The	diffusion	constant	D	defines	a	characteristic	time,	or	time	scale,	τ	for	a
diffusion	process.	If	L	is	a	length	scale	(e.g.,	the	length	of	the	container),	the
quantity

is	 the	only	 constant	 in	 the	process	with	dimensions	of	 time,	 and	 τ	 gives	 a
measure	 of	 the	 time	 required	 for	 discernible	 changes	 in	 concentration	 to
occur.	 The	 diffusion	 constant	 may	 depend	 upon	 x	 in	 a	 nonhomogeneous
medium,	as	well	as	the	density	u	itself.	These	cases	are	mentioned	below.

Example	6.13



(Classical	heat	equation)	 In	 the	case	where	u	 is	an	energy	density	 (i.e.,	 a
quantity	with	dimensions	of	energy	per	unit	volume),	the	diffusion	equation
describes	the	transport	of	energy	in	the	medium.	In	a	homogeneous	medium
with	density	ρ	and	specific	heat	C,	the	energy	density	is

where	T	 is	 the	 temperature.	The	dimensions	are	[C]	=energy/(mass·degree)
and	[ρ]	=mass/volume.	For	example,	the	units	of	energy	could	be	joules	or
calories.	The	conservation	law	may	be	written

where	f	is	a	heat	source.	In	heat	conduction	Fick’s	law	has	the	form
(2.10)	

where	K	is	the	thermal	conductivity,	measured	in	energy/(mass·time·degree).
In	the	context	of	heat	conduction,	Fick’s	law	is	called	Fourier’s	law	of	heat
conduction.	It	follows	that	the	temperature	T	satisfies	the	equation

or

(2.11)	
Equation	 (2.11)	 is	 called	 the	 heat	 equation	 with	 heat	 source	 f,	 and	 the
constant	 k,	 which	 plays	 the	 role	 of	 the	 diffusion	 constant,	 is	 called	 the
diffusivity,	measured	as	length-squared	per	unit	time.	Thus	the	diffusivity	k
in	heat	 flow	problems	 is	 the	analog	of	 the	diffusion	constant,	 and	 the	heat
equation	 is	 just	 the	diffusion	equation.	 In	 this	discussion	we	have	assumed
that	 the	 physical	 parameters	 C,	 K,	 and	 ρ	 of	 the	 medium	 are	 constant;
however,	 these	 quantities	 could	 depend	 on	 the	 temperature	T,	which	 is	 an
origin	of	nonlinearity	in	the	problem.	If	these	parameters	depend	on	location
x,	then	the	medium	is	nonhomogeneous	and	the	conservation	law	in	this	case
becomes

The	 variable	 conductivity	 cannot	 be	 pulled	 outside	 the	 divergence.	Notice
that	if	the	system	is	in	a	steady-state	where	the	temperature	is	not	changing
in	time	and	the	source	is	 independent	of	 t,	then	Tt	=	0	and	 the	 temperature
depends	on	x	alone,	T	=	T(x).	Then	the	last	equation	becomes



This	is	the	steady-state	heat	equation,	and	it	is	addressed	in	detail	in	later
sections.

Example	6.14
(Advection)	Advection,	or	convection	or	drift,	occurs	when	the	bulk	motion
of	 the	medium	carries	 the	 substance	 under	 investigation	 along	with	 it	 at	 a
given	 velocity.	 For	 example,	 wind	 can	 carry	 propagules,	 water	 can	 carry
chemicals	or	animals,	air	motion	can	transport	heat	energy,	and	so	on.	The
advective	 flux,	 which	 measures	 the	 amount	 of	 the	 substance	 crossing	 a
section,	is	given	by	the	velocity	times	the	concentration,	or

where	c	 =	c(x,	 t)	 is	 the	 velocity	 of	 the	medium.	Then,	 combined	with	 the
conservation	law,	we	obtain	the	reaction-advection	equation

If	the	advection	speed	c	is	a	constant	vector,	this	equation	reduces	to	a	first-
order	PDE

These	 types	 of	 equations	 give	 rise	 to	 wave	 propagation,	 rather	 than
diffusion,	and	are	examined	in	Chapter	7.

Example	6.15
(Advection–diffusion)	When	both	advection	and	diffusion	occur,	the	flux	is
composed	of	two	parts	and	the	model	becomes

Here	we	have	assumed	D	and	c	are	spatially	dependent.	 In	one	dimension,
with	constant	diffusion,

This	is	the	reaction–advection–diffusion	equation.

Example	6.16
(Growth)	 If	u	 =	u(x,	 t)	 is	 a	 population	 density	 that	 grows	 logistically	 and
Fick’s	law	models	its	diffusion,	then	the	population	law	in	one	dimension	is

which	 is	 Fisher’s	 equation	 (see	 Section	 6.1).	 This	 important	 equation	 is	 a
prototype	 of	 nonlinear	 reaction-diffusion	 equations.	Other	 types	 of	 growth



rates	 are	 also	 of	 great	 interest	 in	 population	 ecology.	 For	 example,	 the
reaction	 term	 f(u)	=	ru	models	growth	or	decay,	and	 the	Allee	growth	 rate
f(u)	=	ru(a	−	u)(u	−	b),	0	<	a	<	b,	models	growth	where	the	growth	rate	is
negative	for	small	populations.



6.2.4	Probability	and	Diffusion
There	 is	 a	 strong	 connection	 between	 diffusion	 and	 randomness.	 For
example,	we	 think	of	heat	 flow,	governed	by	 the	diffusion	equation,	being
caused	by	 random	molecular	collisions	which	cause	 the	energy	 to	disperse
from	high-energy	regions	to	low-energy	regions.	This	idea	is	based	upon	the
kinetic	theory	of	gases,	and	the	quantities	involved	are	statistical	averages	of
the	behavior	of	large	numbers	of	particles.	For	animal	populations,	diffusion
is	a	different	type	of	mechanism,	but	the	constitutive	law	is	the	same	as	for
heat	 flow	 (Fick’s	 law).	 If	 there	 are	 only	 a	 few	 particles	 or	 a	 few	 animals,
then	 it	 is	 not	 sensible	 to	 define	 a	 density	 and	 we	 cannot	 apply	 the	 direct
arguments	 above	 to	 obtain	 a	 partial	 differential	 equation.	 In	 this	 case	 we
must	rely	on	probability	theory	and	make	deductions	about	the	spread	of	the
quantity	of	interest.	We	fix	the	idea	by	examining	animal	populations.	As	we
shall	 observe,	 information	 about	 how	 an	 organism	moves	 on	 a	 short	 time
scale	 can	 be	 used	 to	 determine	 where	 it	 is	 likely	 to	 be	 at	 any	 time.	 We
translate	the	short	time	behavior	into	a	probability	density	function	(pdf)	u(x,
t)	 for	 the	 random	variable	X	 =	X(t)	 giving	 the	 location	 of	 the	 organism	 at
time	t.	The	analysis	leads	to	a	partial	differential	equation	for	u(x,	t).
Suppose	 an	 organism	 is	 located	 at	 the	 origin	 x	 =	 0	 at	 time	 t	 =	 0.	 The

movement	rule	is	a	simple	random	walk	in	one	dimension.	At	each	time	step
the	 organism	 jumps	 a	 distance	 h	 either	 to	 the	 left	 or	 right	 with	 equal
probability.	As	time	advances	in	equal	discrete	steps,	the	organism	moves	on
the	lattice	of	points	0,	±h,	±2h,	±3h,…	on	the	x	axis.	We	let	u(x,	t)h	be	 the
probability	that	the	organism	is	located	in	the	interval	between	x	and	x	+	h	at
time	 t,	 given	 that	 it	 was	 at	 x	 −	 0	 at	 t	 =	 0.	 Rather	 than	 calculating	 the
probability	density	 function	directly,	we	show	that	 it	must	 satisfy	a	special
partial	differential	equation,	the	Fokker–Planck	equation.	This	result	follows
from	the	master	equation

which	states	that	the	probability	that	the	organism	is	in	the	interval	[x,	×	+
h]	at	time	t	+	τ	equals	the	probability	that	it	was	either	in	[x	−	h,	x]	at	time	t
and	jumped	to	the	right,	or	it	was	in	the	interval	[x	+	h,	x	+	2h]	at	time	t	and
it	 jumped	 to	 the	 left	 (we	 have	 canceled	 a	 h	 factor	 in	 the	 last	 equation).
Expanding	each	term	in	the	master	equation	in	Taylor	series,	we	get



where	 the	 “dots”	 denote	 higher-order	 terms	 in	 the	 increments	 h	 and	 τ.
Simplifying,	we	obtain

Now	we	 pass	 from	 a	 discrete	 random	walk	 to	 a	 continuous	 random	walk.
Taking	the	limit	as	h,	τ	→	0	in	such	a	way	that	the	ratio	of	h2	to	2τ	remains
constant,	or	h2/2τ	=	D,	we	get

which	 is	 the	 one-dimensional	 diffusion	 equation.	 If	 the	 probabilities	 of
moving	to	the	left	or	right	in	the	random	walk	are	not	equal,	then	a	drift	term
arises	 in	 the	 preceding	 argument	 and	 the	 probability	 density	 function
satisfies	 the	 advection-diffusion	 equation	 (see	 the	 Exercises).	 These
equations	for	the	probability	densities	in	the	random	walk	models	are	special
cases	of	 the	Fokker–Planck	equation.	 In	 passing	 from	 a	 discrete	 random
walk	to	a	continuous	one,	we	have	masked	a	lot	of	detailed	analysis;	suffice
it	to	say	that	this	process	can	be	put	on	a	firm	mathematical	foundation	using
the	theory	of	stochastic	processes.
We	have	derived	the	diffusion	equation	in	two	ways—from	a	conservation

law	and	from	a	probability	model.	Previously,	we	defined	the	fundamental
solution	to	the	one-dimensional	diffusion	equation	as

It	 will	 be	 derived	 later	 using	 Fourier	 transforms.	 This	 solution	 is	 the
probability	density	 function	for	 the	random	variable	X	=	X(t),	which	 is	 the
location	of	an	individual	performing	a	continuous	random	walk	beginning	at
the	origin.	That	is,



It	 is	 straightforward	 to	 show	 that	 .	 We	 recognize	 the
distribution	 u	 as	 a	 normal	 density	 with	 variance	 2Dt.	 Therefore,	 the
probability	density	profiles	spread	as	time	increases,	and	the	location	of	the
individual	becomes	less	certain.	As	t	→	0+	we	have	u(x,	t)	→	0	if	x	≠	0,	and
u(0,	 t)	→	 +∞.	 In	 fact,	 we	 have	 u(x,	 0)	 =	 δ0(x),	 in	 a	 distributional	 sense
(fundamental	solution).
The	fundamental	solution	to	the	diffusion	equation	ut	=	DΔu	in	 n	is

This	solution,	which	one	can	verify,	can	be	derived	using	Fourier	transforms
(Section	6.5).	The	function	u(x	−	ξ,	t)	describes	the	evolution	of	organisms
or	heat,	for	example,	from	a	point	release	of	unit	magnitude	at	a	location	ξ	at
time	t	−	0.	Thus,	the	initial	condition	is	a	delta	distribution	∂ξ(x).	So	it	is	the
solution	to	a	problem	with	a	unit	point	source.	An	example	from	population
ecology	illustrates	the	utility	of	this	solution.

Example	6.17
(Invasion	of	species)	In	two	spatial	dimensions,	consider	a	diffusing	animal
population	 whose	 growth	 rate	 is	 λu.	 The	 model	 is	 the	 growth-diffusion
equation

A	 change	 of	 dependent	 variables	 to	 v(x,	 t)	 =	 u(x,	 t)e−λt	 transforms	 the
growth-diffusion	equation	into	the	diffusion	equation	for	v,

The	fundamental	solution	is,	using	 ,

Therefore,	a	point	release	of	u0	animals	at	the	origin	will	result	in	the	radial
population	density

We	ask	how	fast	the	animals	invade	the	region.	Imagine	that	the	population
is	detectable	at	a	given	radius	when	it	reaches	a	critical	threshold	density	uc;
that	is,



This	leads	to

For	large	times	t	the	limit	is

Therefore	 the	 invasion	 speed	 approaches	 a	 constant	 determined	 by	 the
growth	rate	λ	and	the	diffusion	constant	D.	This	result	has	been	confimed	by
various	observations,	one	of	the	most	famous	being	the	muskrat	invasion	in
Europe	and	Asia	beginning	in	1905	by	an	accidental	release	in	Bohemia.



6.2.5	Boundary	Conditions
In	 the	 context	 of	 heat	 conduction,	 we	 now	 discuss	 the	 types	 of	 auxiliary
conditions	 that	 lead	 to	 a	 well-defined	 mathematical	 problem	 that	 is
physically	 meaningful.	 The	 heat	 conduction	 equation	 is	 the	 canonical
example	 of	 a	 parabolic	 partial	 differential	 equation.	 Basically,	 evolution
problems	require	an	 initial	condition,	and	 if	 spatial	boundaries	are	present,
then	boundary	conditions	are	needed.	We	want	 to	formulate	problems	with
conditions	that	make	the	mathematical	problem	well	posed.	This	means	that
a	solution	must	exist,	the	solution	must	be	unique,	and	the	solution	should	be
stable	in	the	sense	that	it	should	depend	continuously	on	initial	and	boundary
data.
Consider	 a	 bar	 of	 length	 l	 and	 constant	 cross-sectional	 area	 A.	 The

temperature	u	=	u(x,	 t)	 (we	use	u	 as	 the	dependent	variable,	 rather	 than	T)
must	satisfy	the	one-dimensional	heat	equation	(see	(2.11))
(2.12)	

where	we	have	assumed	no	heat	sources.
An	 auxiliary	 condition	 on	 the	 temperature	 u	 at	 time	 t	 =	 0	 is	 called	 an

initial	condition	and	is	of	the	form
(2.13)	

where	f(x)	is	the	given	initial	temperature	distribution.	Conditions	prescribed
at	x	=	0	and	x	=	l	are	boundary	conditions.	If	the	temperature	u	at	the	ends	of
the	bar	are	prescribed,	then	the	boundary	conditions	take	the	form

(2.14)	
where	g	and	h	are	prescribed	functions.	Boundary	conditions	of	this	type	are
called	Dirichlet	 conditions.	 Other	 boundary	 conditions	 are	 possible.	 It	 is
easy	to	imagine	physically	that	one	end	of	the	bar,	say	at	x	=	0,	is	insulated
so	that	no	heat	can	pass	through.	By	Fourier’s	heat	law	this	means	that	the
flux	at	x	=	0	is	zero	or
(2.15)	

Condition	(2.15)	 is	 called	an	 insulated	boundary	 condition.	Or,	 one	may
prescribe	the	flux	at	an	end	as	a	given	function	of	t,	for	example,

(2.16)	
which	is	called	a	Neumann	condition.	If	the	conductivity	K	depends	on	u,



then	condition	(2.16)	is	a	nonlinear	boundary	condition.	Finally,	a	boundary
condition	may	be	specified	by	Newton’s	law	of	cooling,

which	 requires	 the	 flux	 be	 proportional	 to	 the	 difference	 between	 the
temperature	 at	 the	 end	 and	 the	 temperature	 	 of	 the	 outside	 environment.
This	is	a	Robin	condition,	or	radiation	condition.

Remark	6.18
For	the	advection–diffusion	equation

the	flux	is	J(x,	t)	=	−Dux	+	cu;	so	specifying	the	flux	at	a	boundary	amounts
to	specifying	J,	and	not	just	the	diffusive	flux	−Dux.
If	 an	 initial	 condition	 is	 given	 and	a	boundary	 condition	 is	 prescribed	 at

one	end	(say	at	x	=	0)	of	a	very	long	rod,	then	the	problem	can	be	considered
on	 a	 semi-infinite	 domain	 x	 ≥	 0	 on	 which	 the	 heat	 conduction	 equation
holds.	For	example,	the	initial	boundary	value	problem

models	 heat	 flow	 in	 an	 infinite	 medium	 x	 ≥	 0	 of	 constant	 diffusivity	 k,
initially	at	zero	degrees,	subject	to	the	maintenance	of	the	end	at	x	=	0	at	g(t)
degrees.	Here	we	expect	the	problem	to	model	heat	conduction	in	a	long	bar
for	short	enough	time	so	that	any	condition	at	 the	far	end	would	not	affect
the	temperature	distribution	in	the	portion	of	the	rod	that	we	are	interested	in
studying.	 As	 a	 practical	 example,	 heat	 flow	 in	 an	 infinite	 medium	 arises
from	 the	 study	 of	 the	 underground	 temperature	 variations,	 given	 the
temperature	changes	at	ground	level	on	the	earth	(x	=	0).
It	 seems	clear	 that	problems	on	 the	 infinite	 interval	−∞	<	x	<	∞	are	also

relevant	in	special	physical	situations	where	the	medium	is	very	long	in	both
directions.	In	this	case	only	an	initial	condition	can	be	prescribed.	To	restrict
the	class	of	solutions	to	those	that	are	physically	meaningful,	a	condition	is
sometimes	 prescribed	 at	 infinity,	 for	 example,	 u	 is	 bounded	 at	 infinity	 or
limx→∞	u(x,	t)	=	0,	t	>	0.
In	 summary,	 by	 an	 initial	 boundary	 value	 problem	 for	 the	 heat

conduction	 equation	 we	 mean	 the	 problem	 of	 solving	 the	 heat	 equation



(2.12)	 subject	 to	 the	 initial	 initial	 condition	 (2.13)	 and	 some	 type	 of
boundary	 conditions	 imposed	 at	 the	 endpoints.	 It	 may	 be	 clear	 from	 the
physical	context	which	auxiliary	conditions	should	be	prescribed	to	obtain	a
unique	solution;	in	some	cases	it	is	not	clear.	A	large	body	of	mathematical
literature	 is	 devoted	 to	 proving	 existence	 and	 uniqueness	 theorems	 for
various	 kinds	 of	 partial	 differential	 equations	 subject	 to	 sundry	 auxiliary
data.	An	example	of	a	uniqueness	theorem	is	the	following:

Theorem	6.19
The	initial	boundary	value	problem

where	f	 	C[0,	l]	and	g,	h	 	C[0,	T],	has	a	solution	u(x,	t)	on	the	rectangle	R:
0	≤	x	≤	l,	0	≤	t	≤	T,	then	the	solution	is	unique.

Proof
We	prove	 this	 theorem	by	an	energy	argument.	By	way	 of	 contradiction,
assume	solutions	are	not	unique	and	there	are	two	distinct	solutions	u1(x,	 t)
and	u2(x,	t).	Then	their	difference	w(x,	t)	 	u1(x,	t)	−	u2(x,	t)	must	satisfy	the
boundary	value	problem

If	 we	 show	 w(x,	 t)	 	 0	 on	 R,	 then	 u1(x,	 t)	 =	 u2(x,	 t)	 on	 R,	 which	 is	 a
contradiction.	To	this	end	define	the	energy	integral

Taking	the	time	derivative,

where	the	last	equality	was	obtained	using	integration	by	parts.	Because	the
boundary	term	vanishes,



Thus	E(t)	is	nonincreasing,	which	along	with	the	facts	that	E(t)	≥	0	and	E(0)
=	0,	implies	E(t)	=	0.	Therefore	w(x,	t)	=	0	identically	in	0	≤	x	≤	l,	0	≤	t	≤	T,
since	 w	 is	 continuous	 in	 both	 its	 arguments.	 Existence	 of	 a	 solution	 is
established	later	by	actually	exhibiting	the	solution.
The	energy	method	 is	an	 important	 technique	 in	proving	uniqueness	and

obtaining	estimates	of	solutions	in	partial	differential	equations	in	one	and	in
several	 dimensions.	 In	 addition	 to	 existence	 and	 uniqueness	 questions	 the
notion	of	continuous	dependence	of	 the	solution	on	 the	 initial	or	boundary
data	 is	 important.	 From	 a	 physical	 viewpoint	 it	 is	 reasonable	 that	 small
changes	 in	 the	 initial	 or	 boundary	 temperatures	 should	 not	 lead	 to	 large
changes	 in	 the	 overall	 temperature	 distribution.	 A	 mathematical	 model
should	reflect	this	stability	in	that	small	changes	in	the	auxiliary	data	should
lead	 to	 only	 small	 changes	 in	 the	 solution.	 Stated	 differently,	 the	 solution
should	 be	 stable	 under	 small	 perturbations	 of	 the	 initial	 or	 boundary	 data.
(We	 remark,	 parenthetically,	 that	 although	 stability	 seems	 desirable,	many
important	 physical	 processes	 are	 unstable,	 and	 so	 ill-posed	 problems	 are
often	studied	as	well.)

Example	6.20
(Hadamard’s2	example)	Consider	the	partial	differential	equation
(2.17)	

subject	to	the	initial	conditions
(2.18)	

Note	 that	 (2.17)	 is	 elliptic	 and	 not	 parabolic	 like	 the	 heat	 equation.	 The
solution	of	this	pure	initial	value	problem	is	clearly	the	zero	solution	u(x,	t)	
	0	for	t	≥	0,	x	 	 .	Now	let	us	change	(2.18)	to

(2.19)	
which	represents	a	very	small	change	in	the	initial	data,	provided	n	is	large.
As	 one	 can	 check,	 the	 solution	 of	 (2.17)	 subject	 to	 this	 new	 boundary
condition	is

(2.20)	
For	 large	 values	 of	 t,	 the	 function	 sinh(10nt)	 behaves	 like	 exp(10nt).
Therefore	the	solution	grows	exponentially	with	 t.	Therefore,	for	the	initial



value	problem	 (2.17)–(2.18),	 an	 arbitrarily	 small	 change	 in	 the	 initial	 data
leads	 to	 an	 arbitrarily	 large	 solution,	 and	 the	 problem	 is	 not	 well	 posed.
Observe	that	the	PDE	here	is	Laplace’s	equation	which	models	steady	state
phenomena;	 an	 initial	 value	 problem	 for	 Laplace’s	 equation	 is	 not	 well
posed.
Initial	 value	 problems	 for	 elliptic	 equations	 are	 not	 well	 posed.	 In

numerical	 calculations	 stability	 is	 essential.	 For	 example,	 suppose	 a
numerical	 scheme	 is	 devised	 to	 propagate	 the	 initial	 and	 boundary
conditions.	 Those	 conditions	 can	 never	 be	 represented	 exactly	 in	 the
computer,	as	small	errors	will	exist	because	of	roundoff	or	truncation	of	the
data.	If	the	problem	itself	is	unstable,	then	these	small	errors	in	the	data	may
be	 propagated	 in	 the	 numerical	 scheme	 in	 such	 a	way	 that	 the	 calculation
becomes	meaningless.

EXERCISES
1.	Solve	the	nonlinear	Cauchy	problem

by	making	the	transformation	w	=	eu.
2.	Use	the	energy	method	to	prove	that	a	solution	to	the	initial	boundary
value	problem

must	be	unique.
3.	Use	the	energy	method	to	prove	uniqueness	for	the	problem

4.	A	homogeneous	(constant	ρ,	C,	and	K)	metal	rod	has	cross-sectional
area	A(x),	0	<	x	<	l,	and	there	is	only	a	small	variation	of	A(x)	with	x,	so
that	the	assumption	of	constant	temperature	in	any	cross	section	remains
valid.	There	are	no	sources	and	the	flux	is	given	by	−Kux(x,	t).	From	a



conservation	 law	 obtain	 a	 partial	 differential	 equation	 for	 the
temperature	u(x,	t)	that	reflects	the	area	variation	of	the	bar.
5.	 In	 the	 absence	 of	 sources,	 derive	 the	 diffusion	 equation	 for	 radial
motion	in	the	plane,

from	first	principles.	That	is,	take	an	arbitrary	domain	between	circles	r
=	a	and	r	=	b	and	apply	a	conservation	law	for	the	density	u	=	u(r,	 t),
assuming	the	flux	is	J(r,	t)	=	−Dur.	Assume	no	sources.
6.	A	fluid,	having	density	ρ,	specific	heat	C,	and	conductivity	K,	flows	at
a	constant	velocity	V	in	a	cylindrical	tube	of	length	L	and	radius	R.	The
temperature	at	position	x	is	T	=	T(x,	t),	and	diffusion	of	heat	is	ignored.
As	 it	 flows,	 heat	 is	 lost	 through	 the	 lateral	 side	 at	 a	 rate	 jointly
proportional	to	the	area	and	to	the	difference	between	the	temperature	Te
of	 the	 external	 environment	 and	 the	 temperature	 T(x,	 t)	 of	 the	 fluid
(Newton’s	 law	 of	 cooling).	 Derive	 a	 partial	 differential	 differential
equation	model	for	the	temperature	T(x,	t).	Find	the	general	solution	of
the	equation	by	transforming	to	a	moving	coordinate	system	z	=	×	−	Vt,
τ	=	t.
7.	 Show	 that	 the	 growth-diffusion	 equation	 ut	 =	 DΔu	 +	 ru	 can	 be
transformed	into	a	pure	diffusion	equation	via	the	transformation	v	=	ue
−rt.
8.	Repeat	the	random	walk	argument	in	Section	6.2.4	in	the	case	that	the
probabilities	 of	 moving	 to	 the	 right	 and	 to	 the	 left	 are	 p	 and	 1	 −	 p,
respectively,	 and	 show	 in	 appropriate	 limits	 that	 one	 obtains	 the
advection-diffusion	equation	ut	=	−cux	+	Duxx.
9.	Show	that	the	nonhomogeneous	problem

can	 be	 transformed	 into	 a	 problem	 with	 homogeneous	 boundary
conditions	by	subtracting	from	u	a	linear	function	of	x	 that	satisfies	the
boundary	conditions	for	all	time.
10.	 Consider	 the	 following	 initial	 boundary	 value	 problem	 for	 the



diffusion	equation.

Show	that	if	the	solution	is	independent	of	time,	i.e.,	u	=	u(x),	then	DA
−	DB	=	ƒl0	 f(x)	dx.	Give	a	physically	meaningful	 interpretation	of	 this
condition.
11.	Solve	the	initial,	boundary	value	problem

for	the	heat	equation	by	assuming	a	solution	of	 the	form	u(x,	t)	=	U(z)
where	 	Write	the	solution	in	terms	of	the	error	function	erf.
12.	Green’s	theorem	in	the	plane	is	usually	stated	in	calculus	texts	as

where	P	and	Q	are	smooth	functions	in	a	well-behaved	domain	R	in	the
xy	plane	with	boundary	C.	The	 line	 integral	 is	 taken	counterclockwise.
Verify	 that	 Green’s	 theorem	 is	 really	 the	 divergence	 theorem	 in	 two
dimensions.
13.	Show	that	the	nonlinear	initial	boundary	value	problem

has	only	the	trivial	solution.	(Hint:	multiply	by	u	and	integrate.)
14.	Let	u	=	u(x,	t)	be	a	positive	solution	to	the	equation

where	Ω,	 is	 a	well-behaved,	 bounded	 domain,	 and	 let	 s	 =	 ln	u	 be	 the
local	entropy	of	u.	Let	 	denote	the	total	entropy	in	Ω,	let	J
=	 	be	 the	net	 entropy	 flux	 through	 the	boundary,	 and
let	Q	=	ƒΩ	fu−1	dx.	be	the	entropy	change	due	to	the	source	f	in	Ω.	Prove
that



15.	Two	homogeneous	rods	of	 length	L1	and	L2	have	 the	same	density
and	specific	heats,	but	their	thermal	conductivities	are	K1	and	K2,	which
differ.	The	two	rods	are	welded	together	with	a	weld	joint	that	puts	them
in	 perfect	 contact.	 The	 composite	 rod	 is	 laterally	 insulated	 and	 the
temperature	of	 the	 left	 end	 is	 held	 at	 0	degrees,	while	 the	 right	 end	 is
held	 at	 τ	 degrees.	 Assume	 the	 system	 is	 allowed	 to	 come	 to	 a	 steady
state	 where	 the	 temperature	 distribution	 in	 the	 system	 depends	 only
upon	x.

a)	Discuss	why	the	temperature	and	the	flux	should	be	continuous	at
the	joint.
b)	 Determine	 the	 steady-state	 temperature	 distribution	 in	 the
composite	rod.



6.3	Equilibrium	Equations
6.3.1	Laplace’s	Equation
Laplace’s	 equation,	 the	 prototype	 of	 elliptic	 equations,	 is	 one	 of	 the	 basic
equations	 of	 mathematics.	 Elliptic	 equations	 model	 equilibrium,	 or	 time-
independent,	 phenomena.	 One	 way	 to	 motivate	 equilibrium	 states	 is	 to
imagine	 that	 these	 states	 arise	 from	 a	 long-time,	 or	 asymptotic,	 limit	 of
transient	 states,	 which	 are	 solutions	 to	 evolution	 problems.	 For	 example,
suppose	that	conditions	on	the	boundary	∂Ω	are	fixed	and	do	not	depend	on
time,	and	sources,	 if	present,	are	 time-independent.	Then,	after	a	 long	time
we	expect	that	the	effects	of	the	initial	condition	in	the	region	Ω,	will	decay
away,	giving	an	equilibrium	state	u	=	u(x)	 that	satisfies	a	steady-state	 type
equation.
Consider	the	initial	boundary	value	problem	for	the	diffusion	equation,

Over	 the	 long	run	we	may	expect	 the	effects	of	 the	 initial	data	 to	be	small
and	an	equilibrium	solution	u	=	u(x)	to	emerge	that	satisfies	the	equilibrium
problem

(3.1)	
(3.2)	

Equation	(3.1)	is	Poisson’s3	equation.
If	there	are	no	sources,	then	the	equation	(3.1)	reduces	to
(3.3)	

which	 is	Laplace’s	equation.	 This	 partial	 differential	 equation	 is	 possibly
the	most	analyzed	equation	in	analysis.	 It	also	arises	 in	many	other	natural
settings.	 Readers	 who	 have	 studied	 complex	 analysis	 may	 recall	 that	 the
two-dimensional	Laplace	equation	is	satisfied	by	both	the	real	and	imaginary
parts	 of	 a	 holomorphic	 (analytic)	 function	 F(z)	 =	 u(x,	 y)	 +	 iv(x,	 y)	 on	 a
domain	Ω	in	the	complex	plane;	that	is,	Δu	=	0	(or	uxx	+	uyy	=	0)	and	Δv	=	0



in	Ω.	Thus	Laplace’s	equation	plays	an	important	role	in	complex	analysis;
conversely,	 complex	 analysis	 can	 be	 the	 basis	 of	 an	 approach	 to	 study
Laplace’s	equation	 in	 two	dimensions.	These	equations	also	arise	naturally
in	potential	theory.	For	example,	if	E	is	a	static	electric	field	in	Ω	induced	by
charges	 lying	 outside	 Ω,	 then	∇	 ×	E	 =	 0.	 If	V(x)	 is	 a	 potential	 function,
which	means	E	=	−∇V,	then	it	follows	that	the	potential	function	V	satisfies
Laplace’s	equation.	Laplace’s	equation	is	also	important	in	fluid	mechanics
and	 many	 other	 areas	 of	 application.	 Solutions	 to	 Laplace’s	 equation	 are
called	harmonic	 functions.	 In	one	dimension	Laplace’s	equation	 is	 just	−u
″(x)	 =	 0,	 which	 has	 linear	 solutions	 u(x)	 =	 ax	 +	 b.	 So,	 steady-state
temperature	profiles	in	a	rod	are	linear.	The	constants	a	and	b	are	determined
from	boundary	conditions.
What	kinds	of	auxiliary	conditions	are	appropriate	for	Laplace’s	equation,

or	 equation	 (3.1)?	 From	 the	 preceding	 remarks	we	 expect	 to	 impose	 only
boundary	 conditions	 along	 ∂Ω,	 and	 not	 initial	 conditions	 (in	 Hadamard’s
example	we	observed	that	the	initial	value	problem	for	Laplace’s	equation	in
two	dimensions	was	not	well	posed).	Therefore,	we	 impose	only	boundary
conditions,	such	as	the	Dirichlet	condition	(3.2),	the	Neuman	condition,

(3.4)	
which	specifies	the	flux	across	the	boundary,	or	a	Robin	condition,

(3.5)	
In	some	applications	in	three	dimensions,	it	is	convenient	to	work	in	either

cylindrical	 or	 spherical	 coordinates.	 These	 coordinates	 are	 defined	 by	 the
equations

and

where	θ	is	the	polar	angle	and	ϕ	is	the	azimuthal	angle.	An	application	of	the



chain	 rule	 permits	 us	 to	 write	 the	 Laplacian	 in	 cylindrical	 and	 spherical
coordinates	as

and

The	details	of	these	calculations	are	left	as	an	exercise	that	should	be	done
once	 in	everyone’s	 life;	but	not	 twice.	For	 two-dimensional	problems	with
circular	symmetry,	polar	coordinates	are	appropriate.

Example	6.21
Find	all	radial	solutions	to	Laplace’s	equation	in	two	dimensions.	We	write
Laplace’s	equation	in	polar	coordinates	as

Notice	that	 the	partial	derivatives	are	actually	ordinary	derivatives.	We	can
immediately	write

This	equation	is	separable	and	can	be	integrated	to	get

where	a	is	a	constant.	Then

where	b	is	another	arbitrary	constant.	For	example,	equilibrium	temperatures
between	two	concentric	circles,	with	constant	values	on	the	boundaries,	vary
logarithmically.	This	is	in	contrast	to	the	linear	distribution	in	a	bar,	or	linear
geometry.

Example	6.22
(Gradient	 in	 polar	 coordinates)	 It	 is	 straightforward,	 yet	 tedious,	 to
calculate	 the	 standard	 differential	 operators	 (gradient,	 divergence,	 curl)	 in
curvilinear	 coordinates.	 For	 example,	 the	 gradient	 operator	 in	 polar
coordinates	is



(3.6)	
where	er	and	eθ	are	the	unit	polar	vectors.	This	follows	from	the	chain	rule
for	derivatives	and	the	fact	that

Verification	 is	 requested	 in	 the	 exercises.	 Expressions	 for	 the	 gradient,
divergence,	 and	 curl	 in	 all	 coordinate	 systems	 can	 easily	 be	 found	 in
handbooks	or	on	the	web.



6.3.2	Basic	Properties
The	 identities	 in	 the	 previous	 subsection	 permit	 us	 to	 obtain	 in	 an	 easy
manner	some	basic	properties	of	equilibrium	problems.	For	example,	we	can
prove	that	solutions	to	the	Dirichlet	problem	are	unique.

Theorem	6.23
Let	 h	 be	 a	 continuous	 function	 on	 	 and	 f	 be	 continuous	 on	 .	 If	 the
Dirichlet	problem

has	a	solution	 ,	then	it	is	unique.

Proof
Assume	that	there	are	two	solutions,	u1	and	u2.	Then

Therefore	the	difference	w	 	u1	−	u2	must	satisfy	the	homogeneous	problem

Now,	in	Green’s	identity,	take	u	=	w	to	obtain

Hence	∇w	=	0	and	so	w	=	const.	in	Ω;	since	w	is	continuous	in	 	and	zero
on	the	boundary	we	must	have	u1	−	u2	=	w	=	0	in	 ,	or	u1	=	u2.
In	the	same	way	we	can	prove	the	following	theorem.

Theorem	6.24
Let	 g	 be	 continuous	 on	 ∂Ω	 and	 f	 be	 continuous	 on	 .	 If	 the	 Neumann
problem

has	a	solution	u	 ,	then	necessarily

(3.7)	
The	 proof	 follows	 immediately	 from	 setting	w	 =	 1	 in	 Green’s	 identity.

Physically,	 (3.7)	 means	 that,	 in	 a	 steady	 state,	 the	 net	 flux	 (of	 heat,	 for



example)	 through	 the	boundary	 should	be	balanced	by	 the	 total	 amount	of
heat	being	created	in	the	region	by	the	sources.
Additional	 applications	 of	 the	 Green’s	 identities	 are	 found	 in	 the

Exercises.
Another	 important	 property	 of	 (nonconstant)	 solutions	 to	 Laplace’s

equation	 is	 that	 they	 attain	 their	 maximum	 and	 minimum	 values	 on	 the
boundary	 of	 the	 domain,	 and	 not	 the	 interior.	 This	 result	 is	 called	 the
maximum	principle,	and	we	refer	to	the	references	for	a	proof.

Theorem	6.25
(Maximum	principle)	Let	Ω,	be	an	open,	bounded,	well-behaved	domain	in
n.	 If	 Δu	 =	 0	 in	 Ω,	 and	 u	 is	 continuous	 in	 ,	 then	 the	 maximum	 and

minimum	values	of	u	are	attained	on	∂Ω.

EXERCISES
1.	Start	with	 the	product	 rule	 for	derivatives	and	derive	 the	 integration
by	parts	formula	in	Corollary	6.11.
2.	 Use	 the	 divergence	 theorem	 to	 derive	 Green’s	 identities	 stated	 in
Corollary	6.11.
3.	 Consider	 the	 initial	 boundary	 value	 problem	 for	 the	 n-dimensional
heat	equation	given	by

where	ρ,	g,	and	f	are	continuous.	Use	an	energy	argument	to	prove	that
solutions	are	unique	under	reasonable	smoothness	conditions	on	u.
4.	Let	q	>	0	and	continuous	in	 	⊂	 n,	f	be	continuous	in	 ,	and	g
be	continuous	on	∂Ω.	Prove	that	the	Neumann	problem

can	have	at	most	one	solution	in	 .
5.	A	radially	symmetric	solution	to	Laplace’s	equation	Δu	=	0	in	 3	is	a
solution	of	the	form



where	u	depends	only	on	the	distance	from	the	origin.	Find	all	radially
symmetric	solutions	in	 3.
6.	Prove	that	if	the	Dirichlet	problem

has	a	nontrivial	solution,	then	the	constant	λ	must	be	positive.
7.	Let	f	be	a	smooth	vector	field	on	 3	with	the	property	that

Prove	that	 .
8.	 (Calculus	 of	 variations)	 Problems	 in	 the	 calculus	 of	 variations
(Chapter	4)	can	be	generalized	 to	multiple	 integral	problems.	Consider
the	problem	of	minimizing	the	functional

over	 all	 u	 	C2(Ω)	 with	 ,	 where	 f	 is	 a	 given
function	on	the	boundary;	Ω	is	a	bounded	well-behaved	region	in	 n.

a)	Show	that	the	first	variation	is

where	 ,	and	where	h	 	C2(Ω)	with	h(x)	=	0,	x	
	∂Ω.
b)	Show	that	a	necessary	condition	for	u	to	minimize	J	is	that	u	must
satisfy	the	Euler	equation

c)	 If	u	 is	 not	 fixed	 on	 the	 boundary	 ∂Ω,	 find	 the	 natural	 boundary
condition.

9.	Find	the	Euler	equation	for	the	following	functionals:
a)	J(u)	=	



b)	J(u)	=	 ,	where	u	=	u(x,	y),	dx	=	dxdy.
c)	J(u)	=	 	where	u	=	u(x,	t),
and	 c	 and	 m	 are	 constants.	 (Hint:	 Treat	 time	 t	 as	 an	 additional
independent	variable	and	work	in	 n+1.)

10.	The	biomass	density	u	 (mass	per	unit	volume)	of	zooplankton	 in	a
very	deep	lake	varies	as	a	function	of	depth	x	and	 time	 t.	Zooplankton
diffuse	vertically	with	diffusion	constant	D,	and	buoyancy	effects	cause
them	to	migrate	toward	the	surface	at	a	constant	speed	of	ag,	where	g	is
the	acceleration	due	to	gravity	and	a	is	a	positive	constant.	At	any	time,
in	 any	 vertical	 tube	 of	 unit	 cross-sectional	 area,	 the	 total	 biomass	 of
zooplankton	is	a	constant	U.

a)	 From	 first	 principles	 derive	 a	 partial	 differential	 equation	model
for	the	biomass	density	of	zooplankton.	(Take	x	=	0	at	the	surface.)
b)	 Find	 the	 steady-state	 biomass	 density	 as	 a	 function	 of	 depth.
(Formulate	 any	 reasonable	 boundary	 conditions,	 or	 other	 auxiliary
conditions,	that	are	needed	to	solve	this	problem.)

11.	Consider	the	initial	boundary	value	problem

Use	an	energy	method	to	show	that	the	solution	must	be	identically	zero.
12.	Verify	the	formula	(3.6)	for	the	gradient	in	polar	coordinates.	Derive
the	formula	for	the	divergence	in	polar	coordinates.



6.4	Eigenfunction	Expansions
In	 Chapter	 5	 we	 noted	 the	 importance	 of	 the	 eigenvalue	 problem	 for
transformations	 on	 n	 (matrices),	 for	 Sturm–Liouville	 operators,	 and	 for
integral	 operators.	 The	 same	 theme	 carries	 over	 to	 partial	 differential
operators.	Basically,	these	problems	have	the	form
(4.1)	
(4.2)	

where	L	is	a	linear	partial	differential	operator	and	B	is	a	linear	operator	on
the	boundary.	Specification	of	the	operator	includes	both	L	and	B.
If	there	is	a	value	of	λ	for	which	(4.1)–(4.2)	has	a	nontrivial	solution	u(x),

then	 λ	 is	 called	 an	 eigenvalue	 and	 u(x)	 is	 a	 corresponding	 eigenfunction.
Any	 constant	 multiple	 of	 an	 eigenfunction	 is	 also	 an	 eigenfunction	 with
respect	to	the	same	eigenvalue.	The	set	of	all	eigenfunctions	form	an	natural
orthogonal	basis	for	the	function	spaces	involved	in	solving	boundary	value
problems.



6.4.1	Spectrum	of	the	Laplacian
Consider
(4.3)	
(4.4)	

To	 find	 the	 spectrum	 (eigenvalues)	 we	 use	 the	 method	 of	 separation	 of
variables.	 It	 is	 a	 widely	 used	 method	 for	 solving	 linear	 boundary	 value
problems	 on	 bounded	 domains	 with	 boundaries	 along	 the	 coordinate
directions.	Here	 the	method	 is	 illustrated	on	 the	Laplacian	operator,	and	 in
the	next	section	we	show	how	it	equally	applies	to	evolution	problems.	The
negative	sign	on	 the	Laplacian	will	give	positive	eigenvalues.	As	an	aside,
the	 spectrum	 of	 an	 operator	 can	 actually	 contain	 values	 other	 than
eigenvalues.	 There	 is	 a	 part	 of	 the	 spectrum,	 particularly	 for	 operators	 on
infinite	 spatial	 domains,	 called	 the	 continuous	 spectrum.	 Therefore,	 in	 a
broader	context,	we	should	refer	to	the	spectrum	for	the	Laplacian	operator
above	as	the	discrete	spectrum.

Example	6.26
Take	 .	Then	the	partial	differential	equation	is	-(uxx
+	uyy)	=	λu	for	u	=	u(x,	y).	The	Dirichlet	boundary	conditions	become	u(0,	y)
=	u(π,	y)	=	0	for	0	≤	y	≤	π,	and	u(x,	0)	=	u(x,	π)	=	0	for	0	≤	x	≤	π.	We	assume
a	separable	solution	of	the	form	u(x,	y)	=	X(x)Y(y)	for	some	functions	X	and
Y	to	be	determined.	Substituting	we	get

which	can	be	rewritten	as

with	a	function	of	x	on	one	side	and	a	function	of	y	on	the	other.	Now	comes
a	crucial	observation.	A	function	of	x	can	equal	a	function	of	y	for	all	x	and	y
only	if	both	are	equal	to	a	constant.	That	is,

for	 some	 constant	 μ,	 called	 the	 separation	 constant.	 Therefore	 the	 partial
differential	 equation	 separates	 into	 two	 ordinary	 differential	 equations	 for



the	two	spatial	variables:

Next	we	 substitute	 the	 assumed	 form	of	u	 into	 the	boundary	 conditions	 to
obtain	X(0)	=	X(π)	=	0,	and	Y(0)	=	Y(π)	=	0.	Consequently	we	have	obtained
two	boundary	value	problems	of	Sturm–Liouville	type,

The	first	problem	was	solved	in	Chapter	5	and	we	have	eigenpairs

Then	the	Y	problem	becomes

This	 problem	 is	 again	 of	 Sturm-Liouville	 type	 and	 will	 have	 nontrivial
solutions	Yk(y)	=	sin	ky	when	λ−n2	=	k2,	for	k	=	1,	2,	3,…	Therefore,	double
indexing	 λ,	 we	 get	 eigenvalues	 and	 eigenfunctions	 for	 the	 negative
Laplacian	with	Dirichlet	boundary	conditions	as

Observe	that	there	are	infinitely	many	positive,	real	eigenvalues,	whose	limit
is	infinity,	and	the	corresponding	eigenfunctions	are	orthogonal,	that	is,

This	 example	 illustrates	 what	 to	 expect	 from	 the	 Dirichlet	 problem
(4.3)–(4.4).	In	fact,	we	have,	in	general,	the	following	properties.
1.	The	eigenvalues	are	real.
2.	There	are	infinitely	many	eigenvalues	that	can	be	ordered	as	0	<	λ1	≤	λ2	≤
λ3	≤	···	with	λn	→	+∞	as	n	→	∞.
3.	Eigenfunctions	corresponding	to	distinct	eigenvalues	are	orthogonal	in	the
inner	product	(u,	v)	=	ƒΩ	u(x)v(x)dx.
4.	The	set	the	eigenfunctions	un(x)	is	complete	in	the	sense	that	any	square-
integrable	function	f(x)	on	Ω	can	be	uniquely	represented	in	its	generalized
Fourier	series



where	 the	cn	are	 the	Fourier	coefficients,	and	 the	norm	is	 ||un||	=	√(un,	un).
Convergence	of	the	series	is	in	the	L2(Ω)	sense,	meaning

The	results	are	exactly	the	same	when	the	Dirichlet	boundary	condition	(4.4)	is
replaced	by	a	Neumann	boundary	condition	 	=	0,	with	the	exception	that	λ	=	0
is	 also	 an	 eigenvalue,	 with	 eigenfunction	 u0(x)	 =	 constant.	 When	 a	 Robin
boundary	 condition	 	 is	 imposed,	 again	 there	 is	 a	 zero
eigenvalue	 with	 constant	 eigenfunction	 provided	 a(x)	 ≥	 0.	 If	 a(x)	 fails	 to	 be
nonnegative,	then	there	may	also	be	negative	eigenvalues.

Remark	6.27
The	previous	results	extend	to	the	eigenvalue	problem

Here,	w	=	w(x)	>	0,	p	=	p(x)	>	0,	q	=	q(x),	p,	q	and	w	are	continuous	on	 ,	and
p	has	continuous	first	partial	derivatives	on	Ω.	The	boundary	conditions	may	be
Dirichlet	 (u	 =	 0	 on	 ∂Ω)	 Neumann	 ,	 or	 Robin	

,	 with	 a(x)	 ≥	 0).	 In	 this	 case	 the	 eigenfuctions	 are
orthogonal	un(x)	with	respect	to	the	inner	product

and	 .	The	Fourier	series	takes	the	form

where	convergence	is

Just	 as	 for	 one-dimensional	 Sturm–Liouville	 problems	 and	 for	 integral
equations,	 the	completeness	of	 the	set	of	eigenfunctions	allows	us	 to	 solve	 the
nonhomogeneous	problem.



Theorem	6.28
(Fredholm	alternative)	Consider	the	boundary	value	problem

with	 homogeneous	 Dirichlet,	 Neumann,	 or	 Robin	 boundary	 conditions,	 where
the	coefficient	functions	satisfy	the	conditions	in	Remark	6.22,	and	f	 is	a	given
function.	Then,

(a)	If	μ	is	not	an	eigenvalue	of	the	corresponding	homogeneous	problem	(f	=
0),	then	there	is	a	unique	solution	for	all	functions	f	with	ƒΩ	f(x)dx	<	∞.
(b)	 If	 μ,	 is	 an	 eigenvalue	 of	 the	 homogenous	 problem,	 then	 there	 is	 no
solution	or	infinitely	many	solutions,	depending	upon	the	function	f.
The	proof	of	this	theorem	is	straightforward	and	follows	exactly	the	format	of

the	proofs	in	Chapter	5,	namely,	to	expand	u	and	f	 in	eigenfunction	expansions
and	solve	for	the	coefficients	of	u.



6.4.2	Evolution	Problems
The	 method	 of	 separation	 of	 variables	 is,	 in	 general,	 a	 way	 of	 constructing
solutions	 to	 partial	 differential	 equations	 in	 the	 form	 of	 an	 eigenfuction
expansion.
Let	u	=	u(x,	t)	satisfy	the	initial	boundary	value	problem

on	a	well-behaved	bounded	domain	Ω.	The	strategy	is	simple.	We	seek	functions
of	the	form	u(x,	t)	=	F(x)T(t)	which	satisfy	the	partial	differential	equation	and
the	Dirichlet	 boundary	 condition,	 but	 not	 necessarily	 the	 initial	 condition.	We
find	 that	 there	are	many	such	solutions,	and	because	 the	problem	is	 linear,	any
linear	combination	of	them	will	satisfy	the	equation	and	boundary	condition.	We
then	 form	 the	 linear	 combination	and	 select	 the	constants	 so	 that	 the	 sum	also
satisfies	the	initial	condition.
To	this	end	substitute	u(x,	t)	=	F(x)T(t)	into	the	partial	differential	equation	to

obtain

which	we	write	as

for	 some	 λ.	 The	 crucial	 part	 of	 the	 argument	 is	 to	 note	 that	 λ	 is	 a	 constant
because	it	cannot	be	both	a	function	of	only	t	and	only	x.	When	this	occurs,	we
say	the	differential	equation	is	separable,	and	λ	is	called	the	separation	constant.
Consequently,	we	have
(4.5)	

The	partial	 differential	 equation	 is	 separated	 into	 a	 spatial	 part	 and	 a	 temporal
part.	The	sign	we	put	on	λ	does	not	matter	because	it	all	comes	out	correctly	in
the	end.	But,	note	that	the	choice	of	a	negative	sign	gives	the	standard	negative
Laplacian	 examined	 previously	 and	 makes	 the	 temporal	 part	 decay,	 which	 is
expected	from	a	diffusion	process.	Next,	the	boundary	condition	implies	u(x,	t)	=
F(x)T(t)	=	0	for	x	 	∂Ω,	or



(4.6)	
(A	choice	of	T(t)	=	0	would	give	the	uninteresting	trivial	solution.)
The	first	equation	in	(4.5)	along	with	the	Dirichlet	boundary	condition	(4.6)	is

the	 eigenvalue	 problem	 for	 the	 negative	 Laplacian	 that	 we	 studied	 in	 the
previous	 section.	The	eigen-pairs	are	λn,	Fn(x),	n	 =	 1.2,	 3,….	The	 eigenvalues
are	positive	and	the	eigenfunctions	are	orthogonal.	In	the	context	of	an	evolution
problem,	 the	 spatial	 eigenfunctions	 are	 called	 the	 normal	 modes.	 With	 these
eigenvalues,	 the	 temporal	 equation	 	 has	 solutions	

.	 Therefore	 we	 have	 constructed	 solutions	
,	 that	 satisfy	 the	 partial	 differential

equation	 and	 the	 Dirichlet	 boundary	 condition.	 Next	 we	 form	 the	 linear
combination

The	initial	condition	now	forces

which	 is	 the	 generalized	 Fourier	 series	 for	 f.	 The	 coefficients	 must	 be	 the
Fourier	coefficients

Recall	that	
Therefore	 we	 have	 derived	 a	 formal	 solution	 to	 the	 initial	 boundary	 value

problem	 in	 the	 form	 of	 an	 infinite	 series.	 The	 validity	 of	 such	 a	 series
representation	 must	 be	 proved	 by	 checking	 that	 it	 does	 indeed	 satisfy	 the
problem.	 This	 requires	 substitution	 into	 the	 partial	 differential	 equation	 and
boundary	 conditions,	 so	 conditions	 that	 guarantee	 term-by-term	 differentiation
must	be	verified.

Example	6.29
In	 one	 spatial	 dimension,	 consider	 the	 initial	 boundary	 value	 problem	 for	 the
heat	equation:
(4.7)	



(4.8)	
(4.9)	

This	models	heat	 flow	 in	a	bar	of	 length	 l	with	 the	 ends	held	 at	 constant	 zero
temperature.	 The	 function	 f	 defines	 the	 initial	 temperature	 distribution.
Substituting	u(x,	t)	=	F(x)T(t)	into	the	partial	differential	equation	and	boundary
conditions	leads	to	the	equation	T′(t)	=	-λkT(t),	and	the	eigenvalue	problem

(4.10)	
which	is	 the	Sturm–Liouville	problem	discussed	in	Chapter	5.	The	eigenvalues
and	eigenfunctions	are

The	solution	to	the	time	equation	is	 .	We	form	the	series

where	the	an	are	to	be	determined.	But	the	initial	condition	implies

which	is	the	generalized	Fourier	series	for	f.	The	an	are	the	Fourier	coefficients

We	have	 .	Therefore	the	solution	to	(4.7)–(4.9)
is	given	by	the	infinite	series

By	 rearranging	 the	 terms	 and	 formally	 switching	 the	 order	 of	 summation	 and
integration,	we	can	write	the	solution	in	a	particularly	nice	form	as

where



This	last	example	shows	how	to	proceed	when	there	is	one	spatial	variable.	In
higher	dimensions	the	eigenvalue	problem	will	be	higher-dimensional,	and	it	can
be	solved	by	separating	the	spatial	variables.

Remark	6.30
The	 eigenfunction	 expansion	 method	 performs	 equally	 well	 on	 any	 evolution
equation	of	the	form

with	initial	condition	u(x,	0)	=	f(x),	x	 	Ω.	Here,	p	=	p(x)	>	0,	q	=	q(x),	p,	q	are
continuous	on	 ,	and	p	has	continuous	first	partial	derivatives	on	Ω.	All	of	these
equations	 are	 separable.	 The	 boundary	 conditions	may	 be	Dirichlet	 (u	 =	 0	 on
∂Ω),	Neumann	 ,	or	Robin	 ,	with	a	≥
0).	 The	 domain	Ω	must	 be	 bounded,	 and	 the	 boundary	 conditions	 have	 to	 be
given	on	x	=	constant	planes.	In	polar,	cylindrical,	and	spherical	coordinates	the
boundary	conditions	must	be	given	on	constant	coordinate	curves	and	surfaces.
The	associated	eigenvalue	problem	will	have	the	form

with	either	Dirichlet,	Neumann,	or	Robin	boundary	conditions.

Remark	6.31
The	eigenfunction	method	is	also	applicable	to	equations	of	the	form

with	 the	 same	 caveats	 and	 limitations	 as	 in	 the	 last	 Remark.	 These	 are	 wave
equations	and	have	second-order	time	derivatives.	When	variables	are	separated,
the	 temporal	 equation	 will	 be	 second-order,	 and	 in	 this	 case	 two	 initial
conditions,	u(x,	0)	=	f(x)	and	ut(x,	0)	=	g(x),	x	 	Ω,	are	required.	Wave	equations
are	discussed	in	the	next	chapter.
Nonhomogenous	 problems.	 Generally,	 a	 partial	 differential	 equation	 with	 a
source	term,

can	be	solved	by	assuming	a	solution	of	the	form



where	the	Fn(x)	are	the	eigenfunctions	of	the	nonhomogeneous	spatial	problem.
Upon	substitution	into	the	nonhomogeneous	equation,	the	unknown	coefficients
gn	(t)	can	be	determined	by	solving	the	resulting	ordinary	differential	equations
for	gn,	subject	to	the	initial	condition.
When	problems	have	both	nonhomogeneous	boundary	conditions	and	a	source

term,	 the	 strategy	 is	 to	 first	 homogenize	 the	 boundary	 conditions,	 and	 then
homogenize	the	PDE.

EXERCISES
1.	Use	the	eigenfunction	expansion	method	to	solve	the	following	problems:

a)

b)

c)

2.	Transform	the	problem

into	one	with	homogeneous	boundary	conditions.	(Hint:	Let	u(x,	y)	=	v(x,	y)
+	A(x),	where	A	is	chosen	to	satisfy	the	boundary	conditions.)
3.	Transform	the	problem	with	a	source	term,



into	a	nonhomogeneous	problem.	Solve	the	problem	when	f(x)	=	1.
4.	Solve	the	problem

5.	Solve	the	problem

6.	Organisms	of	density	u(x,	 t)	 are	distributed	 in	 a	patch	of	 length	 l.	They
diffuse	with	diffusion	constant	D,	and	their	growth	rate	is	ru.	At	the	ends	of
the	patch	a	zero	density	is	maintained,	and	the	initial	distribution	is	u(x,	0)	=
f(x).	Because	there	is	competition	between	growth	in	the	interior	of	the	patch
and	 escape	 from	 the	 boundaries,	 it	 is	 interesting	 to	 know	 whether	 the
population	increases	or	collapses.	Show	that	the	condition	on	the	patch	size,
l	 ,	ensures	death	of	the	population.
7.	 Consider	 Laplace’s	 equation	 on	 the	 unit	 circle	 with	 given	 boundary
condition:

a)	 Assuming	 u	 =	 R(r)Y(θ),	 along	 with	 the	 implicit	 periodic	 boundary
conditions	 u(r,	 0)	 =	 u(r,	 2π),	 uθ(r,	 0)	 =	 uθ(r,	 2π),	 use	 separation	 of
variables	to	find	an	infinite	series	representation	of	the	solution.
b)	Show	that	the	solution	can	be	written	in	integral	for	as

This	representation	is	Poisson’s	integral	formula.
8.	Consider	Laplace’s	equation	on	a	unit	sphere.



a)	Assume	a	solution	of	the	form	u(r,	θ,	ϕ)	=	Sn(ϕ)rn,	n	=	0,	1,	2,…,	and
show	that	Sn(ϕ),	the	spherical	harmonics,	satisfies	the	equation

b)	Change	the	independent	variable	to	x	=	cos	ϕ	with	Pn(x)	=	Sn(ϕ),	and
show

This	is	Legendre’s	differential	equation.
c)	Assume	a	power	series	solution	of	Legendre’s	equation	of	the	form

and	show	that	for	each	fixed	n,

d)	Show	that	for	each	fixed	n,	 there	is	a	polynomial	solution.	These	are
called	the	Legendre	polynomials.	Up	to	a	constant	multiple,	find	the	first
four	Legendre	polynomials	P0(x),…	P3(x).	[Note:	It	can	be	shown	that	the
Legendre	polynomials	are	orthogonal	on	−1	<	x	<	1.]

9.	Consider	the	partial	differential	operator

where	 p	 =	 p(x)	 >	 0,	 q	 =	 q(x),	p	 and	 q	 are	 continuous	 on	 ,	 and	 p	 has
continuous	first	partial	derivatives	on	 .

a)	Prove	the	integration	by	parts	formula

b)	 Consider	 the	 eigenvalue	 problem	 Lu	 =	 λu,	 x	 	 Ω	 with	 a	 Dirichlet
boundary	condition	u	=	0,	x	 	∂Ω.	Prove	that	the	eigenvalues	are	positive
and	 that	 distinct	 eigenvalues	 have	 corresponding	 orthogonal
eigenfunctions.

10.	Give	a	statement	and	proof	of	the	Fredholm	alternative	theorem	for	the
problem

with	a	homogeneous	Dirichlet	boundary	condition.



6.5	Integral	Transforms
The	 eigenfunction	 expansion	 method	 is,	 for	 the	 most	 part,	 applicable	 to
problems	on	 bounded	 spatial	 domains.	Transform	methods,	 on	 the	 other	 hand,
are	usually	applied	 to	problems	on	 infinite	or	 semi-infinite	 spatial	domains.	 In
this	 section	 we	 introduce	 two	 fundamental	 integral	 transforms,	 the	 Laplace
transform	and	the	Fourier	transform.	Basically,	the	idea	is	to	transform	a	partial
differential	 equation	 into	 an	 ordinary	 differential	 equation	 in	 a	 transformed
domain,	solve	the	ordinary	differential	equation,	and	then	return	to	the	original
domain	by	an	inverse	transform.



6.5.1	Laplace	Transforms
Laplace	transforms	are	introduced	in	elementary	differential	equations	courses	as
a	 technique	 for	 solving	 linear	 ordinary	 differential	 equations	 with	 constant
coefficients.	They	are	particularly	useful	 for	nonhomogeneous	problems	where
the	 source	 term	 is	 piecewise	 continuous	 or	 is	 an	 impulse	 function	 (a	 delta
function).	We	assume	the	reader	is	familiar	with	these	elementary	methods	(see
any	sophomore-level	ODE	book),	and	we	show	that	they	easily	extend	to	partial
differential	equations.
First,	we	review	the	basic	notions	for	functions	of	a	single	variable.	If	u	=	u(t)

is	a	piecewise	continuous	function	on	t	≥	0	that	does	not	grow	too	fast,4,	then	the
Laplace	transform	of	u	is	defined	by

(5.1)	
In	 shorthand,	we	write	 	 The	 Laplace	 transform	 is	 an	 example	 of	 an
integral	transform;	it	takes	a	given	function	u(t)	in	the	time	domain	and	maps	it
to	a	new	function	U(s)	in	the	so-called	transform	domain.	U	and	s	are	called	the
transform	 variables.	 The	 Laplace	 transform	 is	 linear	 in	 that	

,	where	c1	and	c2	are	constants.	 If	 the	 transform
U(s)	 is	known,	then	u(t)	 is	called	the	 inverse	transform	of	U(s)	and	we	write	

,	 or	 just	u	 =	 	 Pairs	 of	 Laplace	 transforms	 and	 their
inverses	 have	 been	 tabulated	 in	 extensive	 tables	 and	 in	 computer	 algebra
programs;	Table	6.1	gives	a	brief	list.

Table	6.1	Laplace	Transforms



The	 importance	 of	 the	 Laplace	 transform,	 like	 other	 transforms,	 is	 that	 it
changes	derivative	operations	in	the	time	domain	to	multiplication	operations	in
the	transform	domain.	In	fact,	we	have	the	important	operational	formulas

(5.2)	

(5.3)	
Formulae	 (5.2)	 and	 (5.3)	 are	 readily	 proved	 using	 the	 definition	 (5.1)	 and
integration	by	parts.
The	 strategy	 for	 solving	 differential	 equations	 is	 simple.	Taking	 the	Laplace



transform	 of	 an	 ordinary	 differential	 equation	 for	 u(t)	 results	 in	 an	 algebraic
equation	 for	U(s)	 in	 the	 transformed	 domain.	 Solve	 the	 algebraic	 equation	 for
U(s)	and	then	recover	u(t)	by	inversion.
Determining	u(t)	from	knowledge	of	its	transform	U(s)	would	take	us	into	the

realm	of	complex	contour	integration	(which	is	not	a	prerequisite	for	this	book).
However,	 we	 can	 indicate	 the	 general	 formula	 for	 the	 inverse	 transform.	 The
inversion	formula	is

The	 integral	 is	 a	 complex	contour	 integral	 taken	over	 the	 infinite	vertical	 line,
called	 a	 Bromwich	 path,	 in	 the	 complex	 plane	 from	 a	 −	 i∞	 to	 a	 +	 i∞.	 The
number	a	 is	any	real	number	for	which	the	resulting	Bromwich	path	lies	to	the
right	of	any	singularities	 (poles,	essential	 singular	points,	or	branch	points	and
cuts)	 of	 the	 function	U(s).	Calculating	 inverse	 transforms	using	 the	Bromwich
integral	usually	involves	a	difficult	contour	integration	in	the	complex	plane	and
using	the	residue	theorem.	In	this	text	we	only	use	a	table	or	a	computer	algebra
system.
One	 of	 the	 most	 useful	 tools	 is	 the	 convolution	 theorem.	 Often,	 solving	 a

differential	equation	results	in	having	to	invert	the	product	of	two	transforms	in
the	 transform	 domain.	 The	 convolution	 theorem	 tells	 what	 the	 inverse
transformation	is.

Theorem	6.32
(Convolution	theorem)	Let	u	 and	v	 be	 piecewise	 continuous	 on	 t	 ≥	 0	 and	 of
exponential	order.	Then

where

is	the	convolution	of	u	and	v,	and	 	Furthermore,

Whereas	 the	 Laplace	 transform	 is	 additive,	 it	 is	 not	 multiplicative.	 The
convolution	theorem	tells	what	to	take	the	transform	of	in	order	to	get	a	product
of	Laplace	transforms,	namely	the	convolution.	The	convolution	theorem	is	easy
to	 prove	 using	 the	 definition	 of	 the	 transform	 and	 interchanging	 the	 order	 of



integration;	it	is	proved	in	most	elementary	texts	(e.g.,	Logan	2010).

Remark	6.33
We	leave	it	to	an	exercise	to	show	that	convolution	is	commutative,	that	is,

Example	6.34
Solve	the	initial	value	problem

Taking	the	transform	of	both	sides	we	get

where	 .	Applying	the	initial	conditions	and	then	solving	for	U	gives

To	 invert,	we	 note	 the	 right	 side	 is	 the	 product	 of	 two	 transforms	 and	we	 can
apply	the	convolution	theorem.	From	the	table,

and	 	Therefore

The	same	transform	strategy	applies	to	partial	differential	equations	where	the
unknown	 is	 a	 function	 of	 two	 variables,	 for	 example,	 u	 =	 u(x,	 t).	 Now	 we
transform	on	t,	as	before,	with	the	variable	x	being	a	parameter	unaffected	by	the
transform.	In	particular,	we	define	the	Laplace	transform	of	u(x,	t)	by

Then	time	derivatives	transform	as	in	(5.2)	and	(5.3);	for	example,

On	the	other	hand,	spatial	derivatives	are	left	unaffected,	for	example,



and	 .	Therefore,	taking	Laplace	transform	of	a	partial
differential	equation	in	x	and	t	reduces	it	to	an	ordinary	differential	equation	in	x
with	s	as	a	parameter;	all	 the	 t	derivatives	are	 turned	 into	multiplication	 in	 the
transform	domain.

Example	6.35
Let	u	=	u(x,	t)	denote	the	concentration	of	a	chemical	contaminant,	and	let	x	>	0
be	a	semi-infinite	region	that	initially	contains	no	contaminant.	For	times	 t	>	0
we	impose	a	constant,	unit	concentration	on	the	boundary	x	=	0,	and	we	ask	how
the	contaminant	diffuses	into	the	region.	Assuming	a	unit	diffusion	constant	(the
problem	can	be	rescaled	to	make	the	diffusion	constant	unity),	the	mathematical
model	is

Taking	Laplace	transforms	of	both	sides	of	the	equation	yields

This	is	an	ordinary	differential	equation	with	x	as	the	independent	variable,	and
the	solution	is

Because	solutions	are	bounded	we	set	b(s)	=	0.	Then

Next	we	take	Laplace	transforms	of	the	boundary	condition	to	get	U(0,	s)	=	1/s,
where	 we	 used	 	 Therefore	 a(s)	 =	 1/s	 and	 the	 solution	 in	 the
transform	domain	is

Consulting	Table	6.1,	we	find	that	the	solution	is

where	erf	 is	 the	error	 function.	Figure	6.5	shows	several	 time	snapshots	of	 the
concentration	of	the	contaminant	as	it	diffuses	into	the	medium.

Figure	6.5	Concentration	profiles	u	=	u(x,	t)	for	different	times	t.



The	Laplace	 transform	of	a	distribution	can	be	defined	as	well,	 and	we	may
formally	 transform	 delta	 functions	 and	 thus	 solve	 equations	with	 point	 source
functions.	See	Table	6.1	 for	 the	relevant	entries.	The	 theoretical	basis	 for	 these
calculations	is	contained	in	Section	6.7.2.

Example	6.36
(Transform	of	the	delta	function)	Here	we	give	an	intuitive	calculation	based
on	 approximating	 a	 delta	 distribution	 δa	 (t)	 by	 the	 limit	 of	 a	 sequence	 of	 unit
pulses

as	 ε	→	 0.	 (H	 is	 the	 Heaviside	 function.)	 On	 the	 left,	 for	 ease	 of	 writing,	 we
suppress	the	dependence	on	a.	This	is	a	sequence	of	rectangular,	unit	pulses	of
width	2ε	and	height	 ε	that	get	narrower	and	taller	as	ε	→	0,	yet	all	have	area	1.
In	 the	 limit	 it	 approaches	a	unit	 source	at	 t	=	a,	 or	 a	 delta	 ‘function’.	That	 is,
intuitively,

We	calculate	the	Laplace	transform	of	fε(t)	and	take	the	limit.



In	the	limit	as	ε	→	0	we	get

leading	us	to	conclude	 .

EXERCISES
1.	Find	the	Laplace	transform	of	 	(Hint:	make	the	substitution
st	=	r2	in	the	integral.)
2.	The	gamma	function	is	defined	by

a)	Show	
b)	Show	

3.	Show	that	u	*	v	=	v	*	u.
4.	Solve	the	following	initial	value	problems.

a)	u’	+	au	=	f(t),	u(0)	=	u0,	where	a	is	constant.

b)	u”	−	k2u	=	f(t),	u(0)	=	0,	u’(0)	=	1.
c)	u′	+	3u	=	δ1(t)	+	H4(t),	u(0)	=	1.

5.	If	f(t)	is	periodic	of	period	p	for	t	≥	0,	i.e.,	f(t	+	P)	=	f(t)	for	all	t,	show	that

6.	Solve	the	integral	equation

7.	Show	 that	 the	 transform	of	 tn	 f(t)	 is	 (−1)nU(n)	 (s),	where	n	 is	 a	 positive
integer.



8.	Use	a	transform	method	to	solve	the	diffusion	problem

9.	 A	 toxic	 chemical	 diffuses	 into	 a	 semi-infinite	 domain	 x	 ≥	 0	 from	 its
boundary	x	=	0,	where	the	concentration	is	maintained	at	g(t).	The	model	is

Determine	the	concentration	u	=	u(x,	t)	and	write	the	solution	in	the	form	of
u(x,	t)	=	ƒt0	K(x,	t	−	τ)g(τ)dτ,	identifying	the	kernel	K.
10.	 The	 small,	 transverse	 deflections	 from	 equilibrium	 of	 an	 elastic	 string
under	the	influence	of	gravity	satisfy	the	forced	wave	equation

where	c2	is	a	constant	and	g	is	the	acceleration	due	to	gravity;	u(x,	t)	is	the
actual	 deflection	 at	 location	 x	 at	 time	 t.	 (Wave	 equations	 are	 derived	 in
Chapter	7.)	At	t	=	0	a	semi-infinite	string	(x	≥	0),	supported	underneath,	lies
motionless	along	the	x	axis.	Suddenly	the	support	is	removed	and	the	string
falls	under	the	force	of	gravity	with	the	deflection	at	x	=	0	held	fixed	at	the
origin;	 the	 initial	 velocity	 ut(x,	 0)	 of	 the	 string	 is	 zero.	 Determine	 the
displacement	of	the	string	and	sketch	several	time	snapshots	of	the	solution.
11.	 Solve	utt	 =	c2uxx	 on	 t	>	0,	x	 >	 0,	 subject	 to	u(x,	 0)	 =	ut(x,	 0)	 =	 0	 and
boundary	condition	u(0,	t)	=	g(t).
12.	Solve	utt	=	c2uxx	on	t	>	0,	x	 	(0,	1),	subject	to	boundary	conditions	u(0,
t)	=	u(1,	t)	=	0	and	initial	conditions	u(x,	0)	=	sin	πx,	ut(x,	0)	=	−	sin	πx.



6.5.2	Fourier	Transforms
It	is	impossible	to	overestimate	the	important	role	that	Fourier	analysis	played	in
the	evolution	of	mathematical	analysis	over	the	last	two	centuries.	Much	of	this
development	 was	motivated	 by	 theoretical	 issues	 associated	 with	 problems	 in
engineering	and	 the	 sciences.	Now,	Fourier	 analysis	 is	 a	monument	of	 applied
mathematics,	 forming	 a	base	of	 signal	 processing,	 imaging,	 probability	 theory,
and	differential	equations,	only	to	mention	a	few	such	areas.
There	are	many	ways	to	introduce	the	Fourier	transform.	Many	texts	show	that

it	 is	 the	 limit	 of	 a	 complex	 Fourier	 series	 as	 the	 period	 of	 the	 function
approaches	 infinity.	 Here	 we	 examine	 its	 origin	 from	 a	 PDE	 viewpoint.	 In
Section	 7.2	 we	 show	 that	 the	 Cauchy	 problem	 for	 a	 linear,	 homogeneous,
constant	coefficient	PDE	may	admit	a	solution	u(x,	t)	that	is	the	superposition	of
plane	waves;	that	is,

where	 ω	 =	 ω(ξ)	 is	 the	 dispersion	 relation,	 and	 the	 coefficient	 function,	 the
amplitude	c(ξ),	is	to	be	determined.	[Note	that	we	used	ξ	in	lieu	of	k	as	the	wave
number.]	If	u(x,	0)	=	f(x),	we	find

(5.4)	
This	looks	very	much	like	a	continuous	version	of	the	complex	Fourier	series

We	know	that	the	cξ	are	the	Fourier	coefficients	of	f	given	by

Therefore,	we	suspect	in	the	continuous	case	that

(5.5)	
Compare	the	last	four	formulas	and	observe	the	strong	similarity!	The	formulas
(5.4)	 and	 (5.5)	 are	 basically	 the	 Fourier	 transform	 and	 the	 inverse	 Fourier
transform,	respectively,	with	a	little	rearrangement	of	variables.



From	a	PDE	viewpoint,	 it	 turns	 out	 that	 the	Fourier	 transform	 is	 an	 integral
operator	with	properties	similar	to	the	Laplace	transform	in	that	derivatives	are
turned	into	multiplication	operations	in	the	transform	domain.	Thus	the	Fourier
transform,	 like	 the	 Laplace	 transform,	 is	 useful	 as	 a	 computational	 tool	 in
solving	 differential	 equations.	 The	 Fourier	 transform	 of	 a	 function	 in	 one
dimension	u	=	u(x),	x	 	 ,	is	defined	by	the	equation

The	variable	ξ	is	called	the	frequency	(or	wave	number)	variable.	There	is	one
important	 remark	 about	 notation.	 There	 is	 no	 standard	 convention	 on	 how	 to
define	 the	Fourier	 transform;	some	put	a	 factor	of	 	 in	 front	of
the	integral,	and	some	have	a	negative	power	in	the	exponential	or	even	a	factor
of	 2π.	 Physicists	 and	 engineers	 often	 use	 k,	 ω,	 or	 p	 (meaning	 wave	 number,
frequency,	or	momentum)	in	place	of	ξ.	Therefore	one	needs	to	be	aware	of	these
differences	 when	 consulting	 other	 sources	 because	 the	 formulas	 change
depending	upon	the	convention.
Another	 important,	 even	 crucial,	 issue	 is	 to	 decide	what	 set	 of	 functions	 on

which	 to	 define	 the	 transform.	 Certainly,	 if	 u	 is	 integrable	 on	 ,	 that	 is,	
,	then	 ,	and

	 exists.	 But,	 as	 the	 example	 below	 shows,	 if	 u	 is	 integrable	 then	 	 is	 not
necessarily	 integrable;	 this	 causes	 problems,	 therefore,	 with	 inversion	 of	 the
transform.	Consequently,	in	the	theory	of	Fourier	transforms	one	often	takes	the
domain	 to	 be	 a	 much	 smaller	 class	 of	 functions,	 for	 example,	 the	 square-
integrable	functions	L2( ),	or	the	Schwartz	class	of	functions	S.	The	Schwartz
class	 consists	 of	 very	 smooth	 functions	 that	 decay,	 along	 with	 all	 their
derivatives,	very	rapidly	at	infinity.	Specifically,	u	 	S	if	u	 	C∞( )	and	u	and	all
its	 derivatives	 u(k)	 have	 the	 property	 lim|x|→∞	 xpu(k)(x)	 =	 0,	 for	 any	 positive
integer	 p.	 Thus,	 Schwartz	 class	 functions	 decay	 faster	 at	 infinity	 than	 any
algebraic	polynomial.	This	assumption	makes	the	theory	go	through	in	a	highly
aesthetic	way	(see,	for	example,	Strichartz	1994).

Example	6.37
Compute	the	Fourier	transform	of	the	characteristic	function



We	have

Notice	that	u	has	its	support,	or	nonzero	values,	in	a	bounded	interval,	and	it	is
integrable.	Its	Fourier	transform	is	in	C∞( ),	yet	it	is	not	absolutely	integrable.

Remark	6.38
In	 general,	 one	 can	 show	 that	 if	 u	 is	 absolutely	 integrable,	 then	 (i)	 	 is
continuous	and	bounded,	(ii)	 	=	0,	and	(iii)	if	u	 	S,	then	 	 	S.
Our	goal	in	this	text	is	not	a	thorough	analysis	of	transforms;	rather,	we	want

to	study	the	mechanics	and	applications	of	Fourier	transforms.	Our	strategy	is	to
perform	the	calculations	formally,	making	what	smoothness	assumptions	that	are
required	 to	 do	 the	 calculations.	 Once	 a	 result,	 say,	 a	 solution	 formula,	 is
obtained,	 we	 could	 then	make	 assumptions	 that	 are	 needed	 to	 validate	 it.	 For
example,	we	may	require	a	high	degree	of	smoothness	and	rapid	decay	at	infinity
to	apply	the	transform	method	and	invert	it,	but	at	the	end	we	may	find	that	the
solution	is	valid	under	much	less	strenuous	conditions.
A	basic	property	of	the	one-dimensional	Fourier	transform	is

(5.6)	
confirming	our	comment	that	derivatives	are	transformed	to	multiplication	by	a
factor	of	 (−iξ)k.	This	operational	 formula	 is	 easily	proved	using	 integration	by
parts	 (like	 for	 the	 Laplace	 transform),	 assuming	 u	 and	 its	 derivatives	 are
continuous	and	integrable.
For	 functions	 of	 two	 variables,	 say	 u	 =	 u(x,	 t),	 the	 variable	 t	 acts	 as	 a

parameter	and	we	define	the	Fourier	transform	by

Then,	under	Fourier	 transformation,	x	derivatives	 turn	 into	multiplication	and	 t
derivatives	remain	unaffected;	for	example,

Solving	 a	 differential	 equation	 for	u	 first	 involves	 transforming	 the	 problem



into	 the	 transform	domain	 and	 then	 solving	 for	 .	 Then	 one	 is	 faced	with	 the
inversion	problem,	or	the	problem	of	determining	the	u	for	which	 	u	=	 .	One
of	 the	 nice	 properties	 of	 the	 Fourier	 transform	 is	 the	 simple	 form	 of	 the
inversion	formula,	or	inverse	transform:

(5.7)	
This	result	is	the	content	of	the	Fourier	integral	theorem.	For	example,	if	u	 	S,
then	 	 	S,	 and	conversely.	Under	 the	weaker	 condition	 that	both	u	 and	 	are
integrable,	then	(5.7)	holds	at	all	points	where	u	is	continuous.
Some	 Fourier	 transforms	 can	 be	 calculated	 directly,	 as	 in	 the	 preceding

example;	many	 others	 require	 complex	 contour	 integration.	A	 table	 of	 Fourier
transforms	appears	at	the	end	of	this	section	(Table	6.2).	In	the	next	example	we
calculate	 the	 transform	 of	 Gaussian	 function	 u(x)	 =	 e−ax

2
,	 a	 >	 0,	 using	 a

differential	equation	technique.

Example	6.39
(The	Gaussian)	We	want	to	calculate	 	where

Differentiating	with	respect	to	ξ	and	then	integrating	by	parts	gives

Therefore	we	 have	 a	 differential	 equation	 	 for	 .	 Separating
variables	and	integrating	gives	the	general	solution

and	the	constant	C	can	be	determined	by	noticing

Consequently,



(5.8)	
So,	 the	 Fourier	 transform	 of	 a	 Gaussian	 (a	 normal	 probability	 distribution)
function	 is	 a	 Gaussian;	 conversely,	 the	 inverse	 transform	 of	 a	 Gaussian	 is	 a
Gaussian.	Observe	that	a	Gaussian	with	large	spread	(variance)	gets	transformed
to	a	Gaussian	with	a	narrow	spread,	and	conversely.
Similar	 to	 Laplace	 transforms,	 a	 convolution	 relation	 holds	 for	 Fourier

transforms.	If	u	and	v	are	absolutely	integrable,	then	we	define	the	convolution
of	u	and	v	by

Then	we	have	the	following	theorem.

Theorem	6.40
(Convolution	theorem)	If	u	and	v	are	in	 ,	then	u	*	v	 	 	and

Then

This	formula,	which	can	also	be	stated	under	less	strenuous	conditions,	asserts
that	 the	 inverse	 transform	 of	 a	 product	 is	 a	 convolution.	 As	 with	 Laplace
transforms,	this	is	a	useful	relationship	in	solving	differential	equations	because
we	frequently	end	up	with	a	product	of	transforms	in	the	frequency	domain.

Proof
The	 convolution	 theorem	 follows	 from	 formally	 interchanging	 the	 order	 of
integration	in	the	following	string	of	equalities:



Example	6.41
Consider	the	ordinary	differential	equation

Assume	 that	 u	 and	 its	 derivatives,	 and	 f,	 are	 sufficiently	 smooth	 and	 decay
rapidly	at	 infinity.	Proceeding	 formally,	we	 take	 the	 transform	of	both	 sides	 to
obtain

Hence

In	the	transform	domain	the	solution	is	a	product	of	transforms,	and	so	we	apply
the	convolution	theorem.	From	Table	6.2

Table	6.2	Fourier	Transforms



Therefore

We	can	show,	in	fact,	that	this	is	a	solution	if	f	is	continuous	and	integrable.

Example	6.42
Use	Fourier	transforms	to	solve	the	pure	initial	value	problem	for	the	diffusion
equation:
(5.9)	

We	 assume	 the	 functions	 u	 and	 f	 are	 in	 .	 Taking	 Fourier	 transforms	 of	 the
equation	gives

which	is	an	ordinary	differential	equation	in	t	for	 (ξ,	t),	with	ξ	as	a	parameter.



Its	solution	is

The	initial	condition	gives	 	and	so	 .	Therefore

Replacing	a	by	1/4kt	in	formula	(5.8)	gives

By	the	convolution	theorem	we	have

(5.10)	
This	solution	was	derived	under	the	assumption	that	u,	f	 	S.	But,	now	that	we

have	 it,	 we	 can	 show	 that	 it	 is	 a	 solution	 under	 milder	 restrictions	 on	 f.	 For
example,	 one	 can	 prove	 that	 (5.10)	 is	 a	 solution	 to	 (5.9)	 if	 f	 is	 a	 continuous,
bounded	 function	 on	 .	 If	 f	 is	 only	 piecewise	 continuous,	 then	 u	 remains	 a
solution	 for	 t	 >	 0,	 but	 at	 point	 of	 discontinuity	 of	 f,	 say	 x0,	 we	 have	 lim

.

Example	6.43
Next	we	 consider	 the	 problem	 of	 finding	 an	 electrical	 potential	 u(x,	 y)	 in	 the
upper-half	plane	caused	by	a	given	potential	on	the	lower	edge	y	=	0.	Therefore,
consider	the	boundary	value	problem

We	 append	 the	 condition	 that	 the	 solution	 u	 stay	 bounded	 as	 y	 →	 ∞.	 This
example	 is	similar	 to	 the	 last	example.	Taking	 the	 transform	(on	x,	with	y	as	a
parameter)	of	the	equation	we	obtain

which	has	general	solution

The	first	term	will	grow	exponentially	if	ξ	<	0,	and	the	second	term	will	grow	if
ξ	>	0.	To	maintain	boundedness	for	all	ξ	we	can	take



Applying	 the	Fourier	 transform	 to	 the	boundary	condition	yields	 .
Therefore	the	solution	in	the	transform	domain	is

By	the	convolution	theorem,

As	in	the	case	of	Laplace	transforms,	the	Fourier	transform	can	be	extended	to
distributions;	a	few	examples	are	given	in	Table	6.2.	In	Section	6.7	we	define	the
Fourier	transform	of	a	distribution.
We	 end	 this	 section	 with	 some	 brief	 comments	 on	 eigenvalue	 problems	 on

infinite	domains.	For	example,	consider	the	eigenvalue	problem

On	 bounded	 domains	 there	 are	 accompanying	 boundary	 conditions	 (Dirichlet,
Neumann,	Robin)	on	u.	Now	we	must	decide	what	kind	of	boundary	conditions
to	 impose	 at	 infinity.	 For	 example,	 do	 we	 assume	 u	 is	 square-integrable,
bounded,	 or	 goes	 to	 zero	 as	 |x|	→	∞?	A	 one-dimensional	 problem	 reveals	 the
issues.	Consider

The	general	solution	is:	u(x)	=	ax	+	b	if	
if	λ	<	0,	and	 .	None	of	 these	solutions
is	square-integrable	on	 	or	goes	to	zero	at	x	=	±∞;	so	in	these	cases	there	would
be	no	eigenvalues.	However,	if	we	impose	a	boundedness	condition	on	all	of	 ,
then	any	λ	≥	0	gives	a	nontrivial	solution	u(x,	λ).	In	this	case	we	say	λ	belongs	to
the	 continuous	 spectrum	 of	 the	 operator	 ,	 and	 the	 associated
eigenfunctions	 are	 .	 These	 are	 sometimes	 given	 the
unfortunate	 misnomers	 improper	 eigenvalues	 and	 improper	 eigenfunctions.
Later,	 in	 a	 quantum	 mechanical	 context,	 we	 see	 that	 these	 functions	 can	 be
interpreted	as	traveling	wave	packets.
We	can	write	this	set	of	eigenfunctions	as	e−ikx,	where	−∞	<	k	<	∞.	Then,	if	f	is

a	 given	 function,	 we	 can	 think	 of	 representing	 it	 as	 an	 as	 eigenfunction
expansion,	but	 this	 time	not	as	a	sum	(as	 for	 the	case	of	discrete	eigenvalues),
but	as	an	integral



But	 this	means	 that	 the	 continuum	c(k)	 of	 Fourier	 coefficients	 is	 given	 by	 the
Fourier	 transform	 of	 f.	 In	 a	 distributional	 sense,	 the	 eigenfunctions	 e−ikx	 are
orthogonal.	 Therefore,	 the	 entire	 theory	 of	 eigenfunction	 expansions	 seems	 to
remain	 valid	 for	 operators	 with	 continuous	 spectrum.	 Indeed,	 this	 is	 true	 and
there	is	a	close	connection	to	eigenfunction	expansions	and	transform	theory.
These	ideas	have	their	origin	in	quantum	theory.	The	eigenvalue	problem	for

the	Schrödinger	operator

where	 V	 is	 the	 potential	 function,	 can	 have	 both	 eigenvalues	 (with	 square-
integrable	 eigenfunctions,	 called	 bound	 states)	 and	 continuous	 spectrum	 (with
bounded	 eigenfunctions,	 called	 unbound	 states).	 The	 eigenfunction	 expansion
then	involves	both	Fourier	series	(sums)	and	Fourier	integrals.	These	topics	are
beyond	our	scope	and	we	refer	the	reader	to	Keener	(2000)	or	Stakgold	(1998).

EXERCISES
1.	Show	that	the	inverse	Fourier	transform	of	e−a|ξ|,	a	>	0,	is

2.	Verify	the	following	properties	of	the	Fourier	transform:
a)	
b)	
c)	

3.	Find	the	Fourier	transform	of	the	following	functions:
a)	u(x)	=	H(x)e−ax,	where	H	is	the	heaviside	function.
b)	u(x)	=	xe−ax2.
c)	u(x)	=	f(x)	cos	ax,	where	f	is	given.

4.	 Give	 an	 argument	 similar	 to	 that	 in	 Example	 6.36	 to	 find	 the	 Fourier
transform	of	the	delta	distribution	δa(x).
5.	Show	that	the	solution	of	the	Cauchy	problem

where	δ(x)	is	a	point	source	at	the	origin	is	the	fundamental	solution	to	the
diffusion	equation,



6.	What	 is	 the	 solution	 to	 the	diffusion	equation	when,	 at	 t	 =	 0,	 there	 two
point	sources,	one	at	x	=	−4	and	the	other	at	x	=	5,	of	magnitudes	3	units	and
1	 unit,	 respectively?	 Choose	 a	 value	 of	 the	 diffusion	 constant	D	 and	 plot
several	solution	profiles	showing	how	the	concentration	spreads.
7.	If	 	find	

8.	Compute	u	*	u	where	u(x)	=	e−|x|,	and	then	find	the	Fourier	transform	of
the	function	f(x)	such	that	 .

9.	If	 	find	 (f(2x	+	1)).
10.	Use	Fourier	 transforms	to	find	 the	solution	 to	 the	 initial	value	problem
for	the	advection–diffusion	equation

11.	Solve	the	Cauchy	problem	for	the	nonhomogeneous	heat	equation:

12.	The	Fourier	transform	and	its	inverse	in	 n	are	given	by

a)	 Show	 that	 the	 Fourier	 transform	 of	 the	 Laplacian	 is	
.

b)	 Find	 the	 Fourier	 transform	 of	 the	 n-dimensional	 Gaussian	 u(x)	 =	 e
−a|x|2.
c)	Solve	the	Cauchy	problem	for	the	diffusion	equation	in	 n.

13.	If	u	and	v	are	absolutely	integrable,	show	that

Hint:	the	given	conditions	allow	interchange	of	the	order	of	integration.
14.	Prove	the	Plancherel	relation



or,	 .	Hint:	set	 	 in	 the	previous	problem.	(Recall	 that
||u||	is	the	L2	norm.)
15.	Use	the	Plancherel	relation	to	evaluate	the	integral

16.	Find	a	formula	for	the	solution	to	the	free	Schrödinger	equation

17.	 (Uncertainty	 principle)	 In	 quantum	mechanics,	 the	 square	 of	 the	wave
function,	 | (x)|2	 is	probability	density	 for	 the	 location	of	a	particle;	 that	 is,
Pr(X	 	I)	=	ƒI	| (x)|2dx,	where	X	is	a	random	variable	for	the	position	of	the
particle,	 and	 I	 is	 an	 interval.	 The	 quantity	 ||x ||2	 therefore	 measures	 the
spread	of	 the	density.	The	spread	of	 the	momentum	of	a	particle	 is	 .
Heisenberg’s	uncertainty	principle	states	that

(5.11)	
which	is	to	say	that	both	the	position	and	momentum	of	a	particle	cannot	be
measured	 simultaneously	 as	 close	 as	 desired.	 Prove	 (5.11)	 using	 the
Cauchy–Schwartz	 inequality	 and	 Plancherel’s	 formula	 and	 the	 following
steps:

The	first	equality	follows	from	integration	by	parts	and	the	fact	that	|| ||2	=	1.
18.	Solve	the	initial	boundary	value	problem:

by	 extending	 f	 to	 the	 entire	 real	 line	 as	 an	 odd	 function	 and	 then	 using
Fourier	transforms.



19.	Solve	the	following	initial	value	problem	for	the	heat	equation.

where	u0	is	a	constant.	Write	your	solution	in	terms	of	the	erf	function.	For
large	 times	 t,	 show	 that	 u	 decays	 like	 ,	 or	 more	 specifically,	

20.	Show	that	the	solution	to	Laplace’s	equation	in	the	upper	half-plane	with
a	Neumann	boundary	condition,

is	given	by

Hint:	let	v(x,	y)	=	uy(x,	y).
21.	Use	Plancherel’s	formula	to	show

22.	Solve	the	boundary	value	problem

with	each	of	the	two	boundary	conditions:	(a)	u(x,	0)	=	H(x),	x	 	 ,	and	(b)
u(x,	0)	=	 ,	x	 	 .
23.	Solve	the	integral	equation



6.6	Stability	of	Solutions

6.6.1	Reaction–Diffusion	Equations
We	 already	 noted	 the	 broad	 occurrence	 of	 diffusion	 problems	 in	 biological
systems.	In	this	section	we	investigate	another	aspect	of	such	problems,	namely
the	 persistence	 of	 equilibrium	 states	 in	 systems	 governed	 by	 reaction—
diffusion	 systems.	At	 issue	 is	 the	 stability	of	 those	 states:	 if	 a	 system	 is	 in	 an
equilibrium	state	and	it	is	slightly	perturbed,	does	the	system	return	to	that	state,
or	does	it	evolve	to	a	completely	different	state?
Underpinned	 by	 the	 seminal	work	 of	Alan	Turing5	 in	 1952	 on	 the	 chemical

basis	of	morphogenesis,	it	has	been	shown	in	extensive	research	that	diffusion-
induced	 instabilities	 can	 give	 rise	 to	 spatial	 patterns	 in	 all	 sorts	 of	 biological
systems.	Reaction-diffusion	models	have	been	used	 to	explain	 the	evolution	of
form	 and	 structure	 in	 developmental	 biology	 (morphogenesis),	 tumor	 growth,
ecological	spatial	patterns,	aggregation	in	slime	molds,	patterns	on	animal	coats,
and	many	other	observed	processes	in	molecular	and	cellular	biology.
In	 this	 section	 we	 introduce	 the	 basic	 idea	 of	 stability	 in	 reaction–diffusion

models	 and	 we	 observe	 that	 such	 systems	 can	 have	 instabilities	 that	 lead	 to
density	variations	and	patterns.
A	 similar	 theory	of	 local	 stability	 of	 equilibrium	 solutions	 can	be	 developed

for	partial	differential	equations.	In	the	interval	0	<	x	<	L	consider	the	reaction–
diffusion	equation
(6.1)	

with	 no-flux	 boundary	 conditions	ux(0,	 t)	=	ux(π,	 t)	 =	 0.	 Let	 u(x,	 t)	 =	ue	 be	 a
constant	equilibrium	solution	(so	that	f(ue)	=	0).	To	fix	the	idea	let	a	=	f′(ue)	>	0.
Note	 that	 the	equilibrium	solution	 satisfies	 the	partial	differential	 equation	and
the	 boundary	 conditions.	 Next,	 let	 U(x,	 t)	 be	 a	 small	 perturbation	 from	 the
equilibrium	 solution,	 or	 u(x,	 t)	 =	 ue	 +	 U(x,	 t).	 The	 perturbation	 equation	 is
determined	 by	 substituting	 this	 expression	 into	 (6.1)	 and	 the	 boundary
conditions:

To	linearize	this	equation	we	expand	the	right	side	in	a	Taylor	series	and	discard



the	nonlinear	terms:

Then	we	obtain	the	linearized	perturbation	equation

(6.2)	
subject	to	boundary	conditions

(6.3)	
This	problem,	which	is	on	a	bounded	interval,	can	be	solved	by	separation	of

variables.	We	assume	U	=	g(x)h(t)	and	 then	substitute	 into	(6.2)	 and	boundary
conditions	(6.3)	to	obtain

or

Then	h	=	Ceλt	and

This	 equation	 cannot	 have	 nontrivial	 exponential	 solutions	 that	 satisfy	 the
boundary	conditions;	therefore	a	−	λ	≥	0.	In	the	case	λ	=	a	we	obtain	a	constant
solution,	and	in	the	case	a	−	λ	>	0	we	obtain

Applying	g′(0)	=	0	forces	A	=	0;	then	g′(L)	=	0	implies

or

Therefore,	incorporating	the	case	λ	=	a,	we	obtain	eigenvalues

(6.4)	
The	modal	solutions	are	therefore



(6.5)	
What	 conclusions	 can	 we	 draw	 from	 this	 calculation?	 Because	 the	 general

solution	 U(x,	 t)	 to	 the	 boundary	 value	 problem	 (6.2)–(6.3)	 is	 a	 linear
combination	of	the	modal	solutions	(6.5),

it	 will	 decay	 if	 all	 of	 the	modes	 decay,	 and	 it	 will	 grow	 if	 one	 of	 the	modes
grows.	The	constants	cn	 are	 determined	by	 the	 initial	 perturbation.	The	 spatial
part	 of	 the	 modal	 solutions,	 or	 the	 cosine,	 remains	 bounded.	 The	 amplitude
factor	eλnt,	and	therefore	the	eigenvalues	λn,	will	determine	growth	or	decay.	Let
us	examine	the	modes.	In	the	case	n	=	0	the	eigenvalue	is	λn	=	a	and	the	modal
solution	 is	 c0eat,	 which	 grows	 exponentially.	 In	 fact,	 any	 mode	 satisfying	 a	

	is	unstable.	Therefore,	instabilities	are	likely	to	occur	for	modes	of	low
frequency	(n	small),	or	in	systems	of	large	size	L	or	low	diffusion	properties	D.
Oppositely,	 small	 systems	with	 large	 diffusion	 constants	 are	 stabilizing,	 as	 are
the	high–frequency	modes	and	geometrically	small	regions.	In	the	most	general
case	the	initial	perturbation	will	nearly	always	contain	all	modes	and	the	steady
state	will	be	locally	unstable.
Above	we	examined	the	stability	of	a	constant	solution,	but	the	idea	applies	to

nonconstant	equilibrium	solutions	as	well.



6.6.2	Pattern	Formation
The	mechanism	causing	instabilities	in	the	preceding	problem	causes	patterns	to
form.	 We	 apply	 this	 idea	 to	 a	 problem	 in	 cell	 aggregation.	 A	 slime	 mold
population	is	a	collection	of	unicellular	amoeboid	cells	 that	feed	on	bacteria	 in
the	soil.	When	the	food	supply	is	plentiful,	the	bacteria	are	generally	distributed
uniformly	 throughout	 the	 soil.	 But,	 as	 the	 food	 supply	 becomes	 depleted	 and
starvation	begins,	the	amoeba	start	to	secrete	a	chemical	(cyclic	AMP)	that	acts
as	an	attractant	to	the	other	amoeba	and	aggregation	sites	form.	The	rest	of	the
story	 is	 even	 more	 interesting	 as	 the	 aggregation	 sites	 evolve	 into	 slugs	 that
ultimately	 develop	 into	 sporangiophores	 consisting	 of	 a	 stalk	 and	 head
containing	new	spores.	The	spores	are	released	and	the	process	begins	anew.	We
are	interested	here	in	only	the	first	part	of	this	complicated	problem,	the	onset	of
aggregation.	 We	 work	 in	 one	 spatial	 dimension	 and	 imagine	 the	 amoeba	 are
distributed	throughout	a	tube	of	length	L.
Let	a	=	 a(x,	 t)	 and	 c	 =	 c(x,	 t)	 denote	 the	 density	 and	 concentration	 of	 the

cellular	amoeba	and	cAMP,	respectively.	The	fundamental	conservation	laws	are
(see	Section	6.2)

where	J(a)	and	J(c)	are	 the	fluxes	of	 the	amoeba	and	the	chemical,	 respectively.
There	are	no	source	terms	in	the	amoeba	equation	because	we	will	not	consider
birth	and	death	processes	on	 the	 time	scale	of	 the	analysis.	The	source	 term	in
the	chemical	equation	consists	of	 two	parts:	production	of	 the	chemical	by	 the
amoeba	and	degradation	of	the	chemical	in	the	soil.	We	assume	the	chemical	is
produced	by	the	amoeba	at	a	rate	proportional	to	the	density	of	the	amoeba,	and
the	chemical	degrades	at	a	rate	proportional	to	its	concentration;	that	is,

The	motion	of	 the	chemical	 is	caused	by	diffusion	only,	and	we	assume	Fick’s
law:

where	 δ	 is	 the	 diffusion	 constant.	 The	 amoeba	 are	 also	 assumed	 to	 randomly
diffuse	via	Fick’s	 law,	but	 there	 is	another	 flux	source	 for	 the	amoeba,	namely
attraction	to	the	chemical.	We	assume	this	attraction	is	up	the	chemical	gradient,
toward	 high	 concentrations	 of	 c.	 Additionally,	 the	 rate	 of	 diffusion	 should
depend	on	the	amoeba	population	because	that	will	increase	the	magnitude	of	the



chemical	 concentration	 released.	 This	 type	 of	 flow,	 induced	 by	 chemical
gradients,	is	called	chemotaxis.	Therefore	we	assume

where	 μ	 is	 the	 amoeba	motility	 and	 v	 is	 the	 strength	 of	 the	 chemotaxis,	 both
assumed	to	be	positive	constants.	Note	that	the	random	flux,	having	the	form	of
Fick’s	law,	has	a	negative	sign	because	flow	is	“down	the	gradient”	(from	high	to
low	 densities),	 and	 the	 chemotatic	 flux	 has	 a	 positive	 sign	 because	 that	 term
induces	 flow	 “up	 the	 chemical	 gradient”	 (from	 low	 to	 high	 concentrations).
Putting	 all	 these	 equations	 all	 together	 gives	 a	 system	 of	 reaction–diffusion
equations,

(6.6)	
Both	a	and	c	satisfy	no-flux	boundary	conditions	(i.e.,	ax	=	cx	=	0	at	x	=	0,	L,),
which	means	there	is	no	escape	from	the	medium.
Notice	 that	 there	 will	 be	 an	 equilibrium	 solution	 	 to	 (6.6)

provided

That	is,	the	production	of	the	chemical	equals	its	degradation.	This	equilibrium
state	represents	the	spatially	uniform	state	in	the	soil	before	aggregation	begins.
To	determine	the	local	stability	of	this	uniform	state	we	let

where	 u	 and	 v	 are	 small	 perturbations.	 Substituting	 these	 quantities	 into	 (6.6)
gives,	after	simplification,	the	perturbation	equations

These	equations	are	nonlinear	because	of	the	uvx	term	in	the	amoeba	equation.	If
we	discard	the	nonlinear	terms	on	the	assumption	that	the	product	of	small	terms
is	even	smaller,	then	we	obtain	the	linearized	perturbation	equations
(6.7)	

Easily	 one	 can	 see	 that	 the	 perturbations	 satisfy	 Neumann,	 no-flux	 boundary
conditions.
Motivated	by	our	knowledge	of	 the	form	of	solutions	 to	 linear	equations,	we

assume	there	are	modal	solutions	of	the	form

(6.8)	
where	r	and	σ	are	to	be	determined,	and	c1	and	c2	are	some	constants.	Notice	the



form	of	these	assumed	solutions.	The	spatial	part	is	bounded	and	periodic	with
wave	number,	or	 frequency,	r,	 and	have	wavelength	2π/r.	The	 temporal	part	 is
exponential	with	growth	factor	σ,	which	may	be	a	real	or	complex	number.	If	σ
is	 negative	 or	 has	 negative	 real	 part,	 then	 the	 perturbation	will	 decay	 and	 the
equilibrium	state	will	return	(the	uniform	state	is	stable);	 if	σ	is	positive	or	has
positive	 real	part,	 then	 the	perturbations	will	grow	and	 the	equilibrium	will	be
unstable.	Let	us	ask	why	solutions	of	(6.7)	should	be	of	this	form	(6.8)	without
going	 through	 the	 entire	 separation	 of	 variables	 argument.	 Equations	 (6.7)	 are
linear	with	 constant	 coefficients,	 and	 both	 equations	 contain	 both	 unknowns	u
and	v	and	their	derivatives.	If	we	are	to	have	a	solution,	then	all	the	terms	must
match	 up	 in	 one	 way	 or	 another	 in	 order	 to	 cancel.	 So	 both	 u	 and	 v	 must
essentially	have	the	same	form.	Because	there	is	a	first	derivative	in	t,	the	time
factor	must	be	exponential	so	it	will	cancel,	and	the	spatial	part	must	be	a	sine	or
a	cosine	because	of	the	appearance	of	a	second	spatial	derivative.	We	anticipate
the	cosine	function	because	of	the	no-flux	boundary	conditions,	as	in	Chapter	5.
If	we	substitute	(6.8)	into	(6.7)	we	obtain	the	two	algebraic	equations

which	 relate	 all	 the	 parameters.	 We	 may	 regard	 these	 as	 two	 linear,
homogeneous	 equations	 for	 the	 constants	 c1	 and	 c2.	 If	 we	 want	 a	 nontrivial
solution	 for	 c1	 and	 c2,	 then	matrix	 theory	 dictates	 that	 the	 determinant	 of	 the
coefficient	matrix	must	be	zero.	That	is,

which	is	an	equation	relating	the	temporal	growth	factor	σ,	the	wave	number	r,
and	 the	 other	 constants	 in	 the	 problem.	 Expanded	 out,	 this	 equation	 is	 a
quadratic	in	σ,

where

The	roots	of	the	quadratic	are

Clearly	 one	 of	 the	 roots	 (taking	 the	 minus	 sign)	 is	 always	 negative	 or	 has
negative	 real	 part.	 The	 other	 root	 can	 have	 positive	 or	 negative	 real	 part,
depending	 upon	 the	 value	 of	 the	 discriminant	 γ21	 −	 4γ2.	We	 are	 interested	 in
determining	if	there	are	parameter	choices	that	lead	to	an	instability;	so	we	ask



when	σ	positive.	Hence,	γ2	must	be	negative,	or

If	 this	 inequality	holds,	 there	 is	an	unstable	mode	and	perturbations	will	grow.
We	analyze	this	further.
The	number	r	 is	 the	wave	number	of	 the	perturbations.	Applying	the	no-flux

boundary	conditions	forces

For	each	value	of	n	we	obtain	a	wave	number	r	=	rn	and	a	corresponding	growth
factor	σn.	The	nth	mode	will	therefore	grow	and	lead	to	local	instability	when

(6.9)	
We	 can	 now	 ask	what	 factors	 destabilize	 the	 uniform,	 equilibrium	 state	 in	 the
amoeba–cAMP	system	and	therefore	promote	aggregation.	That	is,	when	is	(6.9)
likely	 to	 hold?	 We	 can	 list	 the	 factors	 that	 may	 make	 the	 left	 side	 of	 the
inequality	 (6.9)	 smaller	 than	 the	 right	 side:	 low	motility	μ	of	 the	bacteria;	 low
degradation	rate	k	or	large	production	rate	f	of	cAMP;	large	chemotactic	strength
v;	large	dimensions	L	of	the	medium;	a	small	value	of	n	(thus,	low	wave	number,
or	 long	wavelength,	perturbations	are	 less	stabilizing	 than	short	wavelength,	or
high	 wave	 number,	 perturbations);	 decreasing	 the	 diffusion	 constant	 of	 the
cAMP.	Figure	6.6	shows	time	snapshots	of	the	amoeba	density	for	the	mode	n	=
2	when	 it	 is	 unstable.	 The	 regions	where	 the	 amplitude	 is	 high	 correspond	 to
higher	concentrations	of	amoeba,	or	regions	of	aggregation.

Figure	6.6	Plot	showing	the	growing	amoeba,	density	at	time	t	when	the	uniform
state	is	unstable	to	local	perturbations	in	the	mode	n	=	2.	This	instability	gives
rise	to	the	aggregation	sites	in	the	regions	where	the	solution	has	greater
amplitude.



EXERCISES
1.	 Consider	 the	 problem	 for	 Fisher’s	 equation	 with	 Dirichlet	 boundary
conditions:

a)	Show	that	 	is	an	equilibrium	solution.
b)	Define	perturbations	U(x,	 t)	 by	 the	 equation	u	=	ue(x)	+	U(x,	 t)	 and
find	the	linearized	perturbation	equation	and	boundary	conditions	for	U(x,
t).
c)	Assume	a	solution	to	the	linearized	equation	of	the	form	U	=	eσt	g(x)
and	show	that	g	must	satisfy

(6.10)	
d)	 Show	 that	 if	 (6.10)	 has	 a	 nontrivial	 solution,	 then	 σ	 <	 0,	 thereby
showing	local	stability	of	the	steady	solution.	(Hint:	Consider	two	cases,
when	 g	 is	 positive	 and	 when	 g	 is	 negative	 on	 the	 interval	 and	 then
examine	 the	signs	of	g”	and	 the	other	 terms	 in	 (6.10)	at	a	maximum	or
minimum	point.)



2.	(Turing	system).	Consider	the	system	of	reaction-diffusion	equations	on
the	spatial	domain	0	<	x	<	L	given	by

with	no-flux	boundary	conditions	ux	=	vx	=	0	at	x	=	0,	L.	Let	
be	 an	 equilibrium	 solution	 and	 define	 small	 perturbations	U	 and	 V	 from
equilibrium	given	by

a)	 Show	 that	 U	 and	 V	 satisfy	 no-flux	 boundary	 conditions	 and	 the
linearized	perturbation	equations

(6.11)	

(6.12)	
b)	Introduce	matrix	notation

and	show	that	(6.11)–(6.12)	can	be	written	as
(6.13)	
c)	Assume	modal	solutions	to	(6.13)	of	the	form

and	show	that	for	a	nontrivial	solution	we	must	have

(6.14)	
(When	expanded,	this	equation	is	a	quadratic	equation	for	the	growth	factor
σn	of	the	nth	mode.	The	roots	σn	depend	upon	the	diffusion	constants	α,	β,
the	equilibrium	solution	 ,	the	size	of	the	medium	L,	and	the	wavelength
πL/n	of	the	perturbation.	If	one	can	find	values	of	the	parameters	that	make
one	of	the	roots	positive	or	have	positive	real	part,	then	there	is	an	unstable
mode.)
3.	Apply	the	method	of	Exercise	2	to	examine	the	stability	of	the	steady	state
of	the	Turing	system

under	 no-flux	 boundary	 conditions.	 Specifically,	 find	 the	 condition	 (6.14)
and	determine	values	of	D	for	which	various	modes	(n)	are	unstable.



6.7	Distributions

6.7.1	Elliptic	Problems
The	notions	of	Green’s	functions	and	distributions	introduced	in	Chapter	5	carry
over	 in	a	straightforward	manner	 to	several	variables	and	 to	partial	differential
equations.	We	briefly	state	some	of	the	main	ideas.	Let	Ω	be	an	open	set	in	 n

(for	 definiteness	 the	 reader	may	 take	n	 =	 2	 or	n	 =	 3).	We	 denote	 by	D(Ω)	
C∞0(Ω)	the	set	of	functions	defined	on	Ω	that	have	continuous	derivatives	of	all
orders	and	 that	vanish	outside	a	closed,	bounded	subset	of	Ω.	The	set	D(Ω)	 is
called	 the	 set	 of	 test	 functions	 on	 Ω.	 Then,	 a	 distribution	 u	 on	 D(Ω)	 is	 a
continuous	linear	functional	on	D(Ω),	and	we	denote	the	value,	or	action,	of	the
distribution	u	by	(u,	ϕ),	where	ϕ	ε	D	(Ω).	The	set	of	all	distributions	defined	on
D(Ω)	 is	 denoted	 by	D’(Ω).	 Every	 function	u	 that	 is	 locally	 integrable	 on	 Ω,
namely	 ƒK|u(x)|	 dx	 <	 ∞	 for	 all	 closed	 bounded	 subsets	 K	 of	 Ω,	 generates	 a
distribution	via	the	formula

(7.1)	
The	Dirac	(delta)	distribution	with	pole	at	ξ	 	Rn	is	defined	by

(7.2)	
As	in	the	one-dimensional	case	we	often	denote	a	locally	integrable	function	and
its	 associated	 distribution	 by	 the	 same	 symbol.	 Even	 if	 a	 distribution	u	 is	 not
generated	by	a	 locally	 integrable	 function	as	 in	 (7.1),	we	often	write	 it	 as	u(x)
even	 though	 it	 is	 not	 a	 pointwise	 function	 of	 x;	 and	we	write	 its	 action	 on	 ϕ
symbolically	in	the	integral	form	(7.1),	even	though	the	integral	is	not	defined.
Thus,	for	example,	we	write	δξ(x)	or	δ(x	−	ξ)	for	 the	delta	distribution,	and	we
define	its	action	(7.2)	symbolically	as

The	multiplication	 of	 a	 distribution	 	 function	a	 is
defined	by	 ;	moreover,	the	partial	derivative	of	a
distribution	u	is	defined	by



Second-order	derivatives	are	defined	by

All	 of	 these	 definitions	 for	 general	 distributions	 are	motivated,	 as	 in	 the	 one-
dimensional	 case,	 by	 the	 action	 of	 locally	 integrable	 functions.	 Higher-order
distributional	derivatives	can	be	defined	as	well.	Thus	it	makes	sense	to	regard	a
linear,	 second-order	 partial	 differential	 operator	 L	 with	 C∞-coefficients	 as	 a
distribution	in	D’(Ω).	If	f	is	a	distribution,	then	the	differential	equation
(7.3)	

can	 be	 regarded	 as	 an	 equation	 in	 distributions,	 and	 any	 distribution	 u	 that
satisfies	(7.3)	is	called	a	distribution	solution.	Thus,	u	is	a	distribution	solution
to	(7.3)	if,	and	only	if,

(7.4)	
In	 particular,	 if	 f	 =	 δ(x	 −	 ξ)	 is	 the	 delta	 distribution,	 then	 u	 is	 called	 a
fundamental	 solution	 associated	 with	 the	 operator	 L.	 The	 formal	 adjoint
operator	associated	with	L	is	denoted	by	L*	and	is	defined	by	the	relation

(7.5)	
Therefore,	u	is	a	distribution	solution	of	(7.3)	if,	and	only	if,

(7.6)	
and	u	is	a	fundamental	solution	(with	pole	at	ξ)	associated	with	the	operator	L	if,
and	only	if,

If	u	and	f	are	locally	integrable	functions	on	Ω	that	satisfy	(7.5),	then	we	say	u	is
a	weak	solution	to	(7.3).	Thus,	u	is	a	weak	solution	to	(7.3)	if,	and	only	if,

A	solution	to	(7.3)	that	is	twice	continuously	differentiable	(we	are	restricting	the
discussion	 to	 second-order	 PDEs)	 on	 Ω,	 is	 called	 a	 classical,	 or	 genuine,
solution.
So,	 there	 are	 three	 levels	 of	 solutions:	 classical,	 weak,	 and	 distribution.

Classical	 solutions	 are	 functions	 that	 have	 sufficiently	 many	 derivatives	 and
satisfy	 the	 PDE	 (7.3)	 pointwise	 on	 the	 domain	 of	 interest.	Weak	 solutions	 of



(7.3),	where	 f	 is	 locally	 integrable,	 are	 locally	 integrable	 functions	 that	 satisfy
(7.5).	Distribution	solutions	of	(7.3)	may	not	be	functions	or	even	generated	by
functions.	 Classical	 solutions	 are	 weak	 solutions,	 and	 weak	 solutions	 are
distribution	solutions,	but	the	converses	are	not	true.

Example	6.44
Show	that	the	function

(7.7)	
is	a	distributional	solution	of	the	equation

where	Δ	=	∂2/∂x2	+	∂2/∂y2	 is	 the	 two-dimensional	Laplacian,	and	δ(x,	y)	 is	 the
Dirac	 distribution	 with	 pole	 at	 (0,	 0).	 Thus	 we	 have	 to	 show	 that	

.	To	this	end,	using	polar
coordinates,	we	have

The	integral	of	the	last	term	is	zero	by	the	θ	periodicity	of	ϕ	and	its	θ	derivatives.
So	we	need	to	calculate	the	other	two	terms.	Integrating	by	parts	gives

and	integrating	by	parts	twice	gives

Putting	these	results	together	gives



Therefore,	 the	 function	 defined	 by	 (7.7),	 which	 is	 called	 the	 logarithmic
potential,	 is	 a	 fundamental	 solution	 associated	 with	 the	 two-dimensional
Laplacian.	Note	that	it	is	not	correct	to	say	(7.7)	is	a	genuine	solution	or	a	weak
solution	to	Laplace’s	equation	Δu	=	0	in	 2.	Observe	that	the	Laplacian	operator
is	 invariant	 under	 a	 translation	 of	 coordinates,	 and	 so	 a	 fundamental	 solution
associated	with	the	Laplacian	with	pole	at	(ξ,	η)	is

(7.8)	

Example	6.45
A	fundamental	solution	associated	with	the	Laplacian	in	 3	is	the	function	g(x,	y,
z)	=	1/4πr,	where	 .	This	means	Δg	=	δ(x,	y,	z)	in	the	sense
of	distributions.	Again,	the	distribution	g	can	be	translated	to	any	point	(ξ	η	ζ)	to
obtain	a	fundamental	solution	with	pole	(ξ,	η,	ζ).	In	three	dimensions	g	is	called
the	Newtonian	potential.	We	remark	 that	 the	fundamental	solutions	associated
with	the	Laplacian	are	radial	solutions	in	that	they	depend	only	on	the	distance
from	the	pole.
The	Green’s	function	associated	with	a	partial	differential	operator,	such	as	the

Laplacian,	 is	 a	 fundamental	 solution	 that	 also	 satisfies	 the	 homogeneous
boundary	conditions.	As	such,	 the	Green’s	function	is	 the	equilibrium	response
of	 the	 physical	 system	 under	 investigation	 caused	 by	 a	 unit	 point	 source.
Mathematically,	 the	Green’s	 function	 is	 the	kernel	of	 the	 integral	operator	 that
represents	 the	 inverse	 of	 the	 partial	 differential	 operator.	 There	 is	 no	 single,
universal	method	to	construct	Green’s	function.	On	finite	domains	one	may	use
separation	of	variables,	and	on	infinite	domains	one	may	try	transform	methods.
Often	geometric	or	physical	arguments	are	helpful.

Example	6.46



Find	 the	 Green’s	 function	 associated	 with	 the	 Laplacian	 operator	 on	 the	 two-
dimensional	domain	−∞	<	x	<	∞,	y	>	0	with	a	Dirichlet	boundary	condition	on	y
=	0.	This	means	 that	we	seek	a	distributional	 solution	G	=	G(x,	y;	 ξ,	 η)	 to	 the
problem

(7.9)	
(7.10)	

Physically,	G	 could	 represent	 the	 potential	 in	 the	 half-plane	y	 >	 0	 of	 an	 static
electric	 field	 generated	 by	 a	 unit	 point	 positive	 charge	 at	 (ξ,	 η),	 with	 the
condition	 that	 the	potential	vanish	along	y	=	0.	We	shall	 construct	 the	Green’s
function	G	by	the	so-called	method	of	images,	or	reflection	principle.	We	know
that	the	fundamental	solution	g	from	equation	(7.8)	in	Example	6.44	satisfies	the
equation	Δg	=	δ(x,	y;	ξ,	η)	for	a	positive	charge	at	(ξ,	η),	but	it	does	not	satisfy
the	boundary	condition.	To	compensate	we	locate	an	“image”	charge	of	opposite
sign	at	(ξ,	-η),	the	reflection	of	the	point	(ξ,	η)	through	the	y	axis.	The	potential
due	to	that	charge	would	be	 .	Now	take	 ,	or

(7.11)	
Clearly	 G	 satisfies	 the	 homogeneous	 boundary	 condition	 (7.10).	 Moreover,	

	 in	 the	upper	half-plane	y
>	0.	Here	we	used	the	fact	that	 	=	0	in	the	upper	half-plane;	its	pole	is	in	the
lower	half-plane,	and	everywhere	but	at	its	pole	it	satisfies	Laplace’s	equation.
Knowing	Green’s	function	allows	us	to	solve	the	nonhomogeneous	problem

(7.12)	

(7.13)	
The	Green’s	function	G	given	by	(7.11)	is	the	response	of	the	system	for	a	unit
point	 source	 (say	 a	 unit	 charge)	 at	 (ξ,	 η).	 Therefore,	 to	 find	 the	 response	 to	 a
problem	with	a	continuum	of	sources	(a	charge	density)	of	magnitude	ρ	we	can
superimpose	all	the	point	source	responses	over	all	ξ	and	η	to	obtain

(7.14)	
One	 can	 show	 that	 (7.14)	 is	 the	 solution	 to	 (7.12)–(7.13)	 under	 reasonable
conditions	on	ρ	(see,	e.g.,	McOwen	(2003)).



6.7.2	Fourier	Transforms	of
Distributions
In	problems	involving	point	sources	we	are	faced	with	a	Dirac	distribution	in	the
partial	 differential	 equation.	 If	 we	 want	 transform	methods	 to	 apply,	 then	 we
must	make	sense	of	 the	 transform	of	a	distribution.	A	 formal	calculation	gives
the	 correct	 answer.	 For	 example,	 consider	 taking	 the	 Fourier	 transform	 of	 the
delta	distribution	δ(x	−	a)	with	pole	at	x	=	a;	we	have

Thus

Many	 readers	 will	 be	 satisfied	 with	 this	 formal	 calculation.	 However,	 to	 take
some	of	the	mystery	out	of	it	we	give	a	cursory	explanation	of	its	underpinnings.
Suppose	u	 is	 a	 distribution	 in	D’( )	 that	 is	 generated	 by	 a	 locally	 integrable
function	u,	 and	 assume	 that	 the	 Fourier	 transform	 	 is	 also	 locally	 integrable.
(Here	 we	 are	 using	 the	 convention	 of	 denoting	 a	 function	 and	 its	 associated
distribution	by	the	same	symbol.)	Then,	for	any	ϕ	ε	D( )	we	have

This	seems	correct,	but	it	would	require	that	both	(ϕ	and	its	Fourier	transform	
to	be	test	functions	in	D( ).	If	both	are	test	functions,	then	one	can	prove	that	ϕ
must	 be	 identically	 zero.	 Therefore	 we	 cannot	 define	 	 on	 the	 set	 of	 test
functions	D( ).	 The	way	 out	 of	 this	 problem	 is	 to	 consider	 distributions	 on	 a
larger	 class	 of	 test	 functions,	 namely	 the	 Schwartz	 class	 ;	 Schwartz	 class
functions	 contain	 the	 C∞	 functions	 with	 compact	 support.	 A	 tempered
distribution	 is	 a	 continuous	 linear	 functional	 on	 .	With	 this	 approach,	 it	 is
possible	to	define	the	Fourier	transform	of	a	tempered	distribution	u	to	be	the
tempered	distribution,	 	whose	action	on	 	is	given	by



Example	6.47
(Delta	 distribution)	 Thus,	 for	 example,	 the	 Fourier	 transform	 of	 the	 Dirac
distribution	is	defined	by

Therefore,

for	all	ϕ	 	 .	We	conclude	that,	in	the	sense	of	tempered	distributions,

In	particular,	if	a	=	0,	then	we	have

Example	6.48
In	 this	 example	 we	 use	 the	 definition	 of	 the	 transform	 and	 the	 result	 on
transforms	of	derivatives,	 ,	to	show

We	let	the	notation	work	for	us.



6.7.3	Diffusion	Problems
Now	let	us	consider	problems	involving	time.	We	examine	the	heat	operator	in
one	spatial	dimension	and	time	defined	by

Based	 on	 our	 discussion	 of	 elliptic	 problems,	 we	 say	 that	 u	 is	 a	 fundamental
solution	associated	with	L	if	u	is	a	distributional	solution	of

(7.15)	
where	the	right	side	is	interpreted	as	a	unit	heat	source	applied	at	x	=	ξ	and	at	the
instant	of	time	 t	=	τ.	Here,	 the	domain	Ω	is	a	space–time	domain	consisting	of
coordinates	(x,	t)	ε	 2.	To	find	the	fundamental	solution	we	take	the	source	to	be
at	ξ	=	0	and	τ	=	0.	We	can	then	examine	the	initial	value	problem
(7.16)	
(7.17)	

(If	we	want	to	think	about	this	carefully,	we	can	regard	(7.16)	as	a	one-parameter
family	of	equations	for	u(·,	t)	in	D’( )	for	each	value	of	the	parameter	t	>	0,	and
(7.17)	 as	 an	 equation	 in	D’( )).	Now	 let	 us	 solve	 (7.16)–(7.17)	 using	 Fourier
transforms,	assuming	that	the	distributions	are	tempered.	Taking	the	transform	of
(7.16)	gives,	using	ζ	for	the	transform	variable,

Solving	this	ordinary	differential	equation	for	 	yields

where	c(ζ)	is	arbitrary.	The	Fourier	transform	of	the	initial	condition	(7.17)	gives
(ζ,	0)	=	1,	and	therefore	c(ζ)	=	1.	Consequently

So	the	Fourier	transform	of	the	solution	is	a	Gaussian	function.	We	know	that	the
inverse	transform	is	also	a	Gaussian	and	is	in	fact	given	by

This	is	the	solution	to	the	initial	value	problem	(7.16)–(7.17).	Finally,	translating
the	source	to	x	=	ζ,	t	=	τ	and	multiplying	by	a	Heaviside	function	to	turn	on	the
solution	at	t	=	τ,	we	obtain



(7.18)	
which	 is	 the	 fundamental	 solution	 associated	 with	 the	 heat	 operator.	 One	 can
verify	that	(7.18)	is	a	distributional	solution	to	(7.15).
To	understand	 the	 fundamental	 solution	of	 the	heat	equation,	 let	us	 fix	τ	=	0

and	consider

(7.19)	
We	observe	that

Therefore,	for	large	times	the	fundamental	solution	goes	to	zero	for	all	x.	As	t	→
0+,	however,	the	solution	develops	an	infinite	spike	at	x	=	ξ	while	tending	to	zero
for	x	≠	ξ.	So,	physically,	we	interpret	the	fundamental	solution	K(x	−	ξ,	t)	as	the
temperature	 distribution	 in	 an	 infinite	 bar	 initially	 at	 zero	 degrees	 with	 an
instantaneous	unit	heat	source	applied	at	x	=	ξ	and	t	=	0.	It	is	a	unit	heat	source
because,	as	one	can	check,

That	is,	the	area	under	the	temperature	profile	curve,	which	is	proportional	to	the
energy,	 is	 unity.	 Stated	 differently,	 the	 function	K(x	 −	 ξ,	 t)	 is	 the	 temperature
effect	at	(x,	t)	caused	by	a	unit	heat	source	applied	initially	at	x	=	ξ.	Figure	6.7
shows	 time	 snapshots	 of	 the	 function	 K	 for	 different	 values	 of	 t.	 The
fundamental	 solution	 (7.19)	 associated	 with	 the	 heat	 operator	 is	 useful	 in
constructing	solutions	to	a	variety	of	initial	boundary	value	problems	involving
the	heat	equation.

Figure	6.7	Temperature	profiles	for	different	times	t	caused	by	a	unit	energy
source	at	x	=	ξ	=	0	and	t	=	0.



Example	6.49
Consider	the	pure	initial	value	problem	for	the	heat	equation

(7.20)	
By	our	previous	discussion	K(x	−	ξ,	t)	is	the	heat	response	of	the	system	when	a
unit	 point	 source	 is	 applied	 at	 x	 =	 ξ	 and	 τ	 =	 0.	 Thus,	 to	 solve	 (7.20)	 we
superimpose	 these	 solutions	 for	 point	 sources	 of	magnitude	 f(ξ)	 for	 all	 ξ	 	 .
Therefore	the	solution	to	(7.20)	is

Example	6.50
Consider	the	nonhomogeneous	problem

(7.21)	
The	solution	for	a	point	source	at	(ξ,	τ)	is	K(x	−	ξ,	t	−	τ).	To	find	the	solution	for
distributed	sources	F(x,	t)	we	superimpose	to	obtain



which	is	the	solution	to	(7.21).

EXERCISES
1.	Is	the	function	ex2	locally	integrable	on	 ?	Does	it	generate	a	distribution
in	D’( )?	Does	it	generate	a	tempered	distribution?
2.	Show	that	for	any	locally	integrable	function	f	on	 	the	function	u(x,	y)	=
f(x	−	y)	is	a	weak	solution	to	the	equation	ux	+	uy	=	0	on	 2.

3.	 In	 the	quarter	plane	 in	 2	 find	 the	Green’s	 function	associated	with	 the
boundary	value	problem

(Hint:	Put	image	charges	in	the	other	quadrants.)
4.	In	the	upper	half	plane	in	 2,	use	an	image	charge	find	Green’s	function
for	the	Neumann	problem

5.	 At	 t	 =	 0	 and	 at	 a	 point	 in	 a	 homogeneous	medium	 an	 amount	 of	 heat
energy	 E	 is	 released	 and	 allowed	 to	 diffuse	 outward.	 Deduce	 that	 the
temperature	u(r,	t)	at	time	t	and	distance	r	from	the	release	point	satisfies	the
initial	boundary	value	problem

where	 k	 is	 the	 diffusivity	 of	 the	 medium	 and	 c	 is	 its	 heat	 capacity.	 Use



dimensional	analysis	and	the	Pi	theorem	to	show	that

for	some	function	U.	Determine	U	to	conclude	that

6.	Using	the	definition	of	Fourier	transform,	verify	that	 (1)	=	2πδ0.

7.	In	 2	consider	the	operator

Find	the	adjoint	operator	L*.
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Chapter	7

Wave	Phenomena

Two	of	the	fundamental	processes	in	nature	are	diffusion	and	wave	propagation.
In	the	last	chapter	we	studied	the	equation	of	heat	conduction,	a	parabolic	partial
differential	equation	that	is	the	prototype	of	equations	governing	linear	diffusion
processes.	 In	 the	 present	 chapter	 we	 investigate	 wave	 phenomena	 and	 obtain
equations	 that	 govern	 the	 propagation	 of	waves	 first	 in	 simple	model	 settings.
The	 evolution	 equations	 governing	 such	 phenomena	 are	 hyperbolic	 and	 are
fundamentally	different	from	their	parabolic	counterparts	 in	diffusion	and	from
elliptic	equations	that	govern	equilibrium	states.



7.1	Waves
A	wave	 is	 defined	 as	 an	 identifiable	 signal	 or	disturbance	 in	 a	medium	 that	 is
propagated	 in	 time,	 carrying	 energy	 with	 it.	 A	 few	 familiar	 examples	 are
electromagnetic	waves,	waves	on	the	surface	of	water,	sound	waves,	and	stress
waves	 in	 solids,	 as	 occur	 in	 earthquakes.	Material	 or	matter	 is	 not	 necessarily
convected	 with	 the	 wave;	 it	 is	 the	 disturbance,	 which	 carries	 energy,	 that	 is
propagated.	In	this	section	we	investigate	several	model	equations	that	occur	in
wave	phenomena	and	point	out	basic	features	that	are	encountered	in	the	study
of	the	propagation	of	waves.
One	simple	mathematical	model	of	a	wave	is	the	function

(1.1)	
which	 represents	 an	 undistorted	 right-traveling	 wave	 moving	 at	 constant
velocity	c.	The	coordinate	x	represents	position,	t	time,	and	u	the	strength	of	the
disturbance.	At	t	=	0	 the	wave	profile	 is	u	=	 f(x)	and	at	 t	>	0	units	of	 time	 the
disturbance	has	moved	to	the	right	ct	units	of	length	(see	Fig.	7.1).	Of	particular
importance	is	that	the	wave	profile	described	by	(1.1)	moves	without	distortion.
Not	 all	waves	 have	 this	 property;	 it	 is	 characteristic	 of	 linear	waves,	 or	wave
profiles	 that	 are	 solutions	 to	 linear	 partial	 differential	 equations.	 On	 the	 other
hand,	 waves	 that	 distort,	 and	 possibly	 break,	 are	 characteristic	 of	 nonlinear
processes.	To	find	a	model	that	has	(1.1)	as	the	solution	we	compute	ut	and	ux	to
get

Figure	7.1	Right–traveling	wave	moving	at	speed	c.



Hence
(1.2)	

Equation	(1.2)	is	a	first-order	linear	partial	differential	equation	that,	in	the	sense
just	described,	is	the	simplest	wave	equation.	It	is	called	the	advection	equation
and	its	general	solution	is	(1.1),	where	f	is	an	arbitrary	differentiable	function.	As
we	 noted	 in	 Section	 6.2,	 the	 advection	 equation	 describes	 how	 a	 quantity	 is
carried	along	with	the	bulk	motion	of	a	medium.	Similarly,	a	traveling	wave	of
the	 form	u	 =	 f(x	 +	ct)	 is	 a	 left–traveling	wave	 and	 is	 a	 solution	 of	 the	 partial
differential	equation	ut	−	cux	−	0.
Other	waves	of	interest	in	many	physical	problems	are	periodic,	or	sinusoidal

waves.	These	traveling	waves	are	represented	by	expressions	of	the	form

(1.3)	
(see	Fig.	7.2).	The	positive	number	A	 is	the	amplitude,	k	 is	 the	wave	number
(the	number	of	oscillations	in	2π	units	of	space,	observed	at	a	fixed	time),	and	ω
the	angular	frequency	(the	number	of	oscillations	in	2π	units	of	time,	observed
at	a	fixed	location	x).	The	number	λ	=	2π/k	 is	the	wavelength	and	P	=	2π/ω	 is
the	 time	 period.	 The	 wavelength	 measures	 the	 distance	 between	 successive
crests	and	the	time	period	is	the	smallest	time	for	an	observer	located	at	a	fixed
position	x	to	see	a	repeat	pattern.	If	we	write	(1.3)	as

Figure	7.2	Plane	wave.



then	 we	 note	 that	 (1.3)	 represents	 a	 traveling	 wave	 moving	 to	 the	 right	 with
velocity	c	=	ω/k.	This	number	 is	called	 the	phase	velocity,	 and	 it	 is	 the	 speed
one	would	have	to	move	to	remain	at	the	same	point	on	the	traveling	wave.	For
calculations,	the	complex	exponential	form

(1.4)	
is	 often	 used	 rather	 than	 (1.3).	 These	 waves	 are	 called	 plane	 waves.
Computations	 involving	 differentiations	 are	 easier	 with	 (1.4)	 and	 afterward,
making	use	of	Euler’s	 formula	exp(iθ)	=	cos	θ	+	 i	 sin	θ,	 the	 real	or	 imaginary
part	may	be	 taken	 to	 recover	 real	solutions.	Again,	waves	of	 the	 type	(1.3)	 [or
(1.4)]	are	characteristic	of	linear	processes	and	linear	equations.
Not	 every	 wave	 propagates	 so	 that	 its	 profile	 remains	 unchanged	 or

undistorted;	a	 surface	wave	on	 the	ocean	 is	an	obvious	example.	Less	 familiar
perhaps,	but	just	as	common,	are	strong	stress	or	pressure	waves	that	propagate
in	 solids	 or	 gases.	To	 fix	 the	 idea	 and	 to	 indicate	 how	nonlinearity	 affects	 the
shape	 of	 a	 wave,	 let	 us	 consider	 a	 strong	 pressure	 wave	 propagating	 in	 air,
caused,	for	example,	by	an	explosion.	(This	 is	not	 the	case	of	acoustics,	where
sound	waves	propagate	at	relatively	small	pressure	changes.)	The	distortion	of	a
wave	profile	results	from	the	property	of	most	materials	to	transmit	signals	at	a
speed	that	increases	with	increasing	pressure.	Therefore	a	strong	pressure	wave
that	 is	 propagating	 in	 a	 medium	 will	 gradually	 distort	 and	 steepen	 until	 it
propagates	 as	 an	 idealized	 discontinuous	 disturbance,	 or	 shock	 wave.	 This	 is
what	also	occurs	in	sonic	booms.	Figure	7.3	shows	various	snapshots	of	a	stress
wave	propagating	into	a	material.	The	wave	steepens	as	time	increases	because
signals	or	disturbances	travel	faster	when	the	pressure	is	higher.	Thus	the	point	A
moves	 to	 the	 right	 faster	 than	 the	point	B.	The	 shock	 that	 forms	 in	pressure	 is
accompanied	 by	 discontinuous	 jumps	 in	 the	 other	 parameters,	 such	 as	 density,
particle	velocity,	temperature,	energy,	and	entropy.

Figure	7.3	Distortion	of	a	wave	into	a	shock.



Physically,	a	 shock	wave	 is	not	a	 strict	discontinuity	but	 rather	an	extremely
thin	 region	 where	 the	 change	 in	 the	 state	 is	 steep.	 The	 width	 of	 the	 shock	 is
small,	 usually	 of	 the	 order	 of	 a	 few	mean	 free	 paths,	 or	 average	 distance	 to	 a
collision,	of	the	molecules.	In	a	shock	there	are	two	competing	effects	that	cause
this	 thinness,	 the	nonlinearity	of	 the	material	 that	 is	causing	the	shock	to	form,
and	the	dissipative	effects	(e.g.,	viscosity)	that	are	tending	to	smear	the	wave	out.
Usually	these	two	effects	just	cancel	and	the	front	assumes	a	shape	that	does	not
change	in	time.	The	same	mechanism	that	causes	pressure	waves	to	steepen	into
shocks,	 that	 is,	 an	 increase	 in	 signal	 transmission	 speed	 at	 higher	 pressures,
causes	 release	 waves	 or	 rarefaction	 waves	 to	 form	 that	 lower	 the	 pressure.
Figure	 7.4	 shows	 a	 spreading	 rarefaction.	 Again,	 point	 A	 at	 higher	 pressure
moves	 to	 the	 right	 faster	 than	 point	B,	 thereby	 flattening	 the	wave.	 So	 far	we
have	mentioned	two	types	of	waves,	those	that	propagate	undistorted	at	constant
velocity	and	those	that	distort	because	the	speed	of	propagation	depends	on	the
amplitude	 of	 the	 wave.	 There	 is	 a	 third	 interesting	 phenomenon	 that	 is	 also
relevant,	 namely	 that	 of	 dispersion.	 In	 this	 case	 the	 speed	 of	 propagation
depends	 on	 the	 wavelength	 of	 the	 particular	 wave.	 So,	 for	 example,	 longer
waves	can	 travel	 faster	 than	shorter	ones.	Thus	an	observer	of	a	wave	at	 fixed
location	x0	may	see	a	different	 temporal	wave	pattern	from	another	observer	at
fixed	 location	 x1.	 Dispersive	 wave	 propagation	 arises	 from	 both	 linear	 and
nonlinear	models.

Figure	7.4	A	rarefaction	wave.



The	behavior	of	linear	partial	differential	equations	with	constant	coefficients
can	be	characterized	by	the	plane	wave	solutions	they	admit.	When	we	substitute
a	plane	wave	form	(1.4)	into	such	an	equation,	we	obtain	a	relation	between	the
frequency	and	the	wave	number,

This	equation	is	called	the	dispersion	relation.	We	say	the	equation	is	diffusive
if	ω(k)	is	complex,	and	dispersive	if	ω(k)	is	real	and	ω(k)/k	is	independent	of	k;
if	ω(k)	is	real	and	ω(k)/k	depends	on	k,	then	we	say	the	equation	is	hyperbolic.

Example	7.1
The	 reader	should	check	 that	 the	advection–diffusion	equation	ut	+	γux	 =	Duxx
has	complex	dispersion	relation	ω	=	γk	−	iDk2.	Therefore	the	advection-diffusion
equation	is	diffusive.	Plane	wave	solutions	are	given	by

The	factor	exp(ik(x	−	γt))	represents	a	periodic,	right-traveling	wave	with	wave
number	 k,	 and	 the	 factor	 exp(−Dk2t)	 represents	 a	 decaying	 amplitude.
Qualitatively,	two	conclusions	can	be	drawn:

(i)	 For	 waves	 of	 constant	 wavelength	 (k	 constant)	 the	 attenuation	 of	 the
wave	increases	with	increasing	D;	hence	D	is	a	measurement	of	diffusion.
(ii)	 For	 constant	 γ	 the	 attenuation	 increases	 as	 k	 increases;	 hence	 smaller
wavelengths	attenuate	faster	than	longer	wavelengths.
From	 this	example	 the	 reader	 should	note	 that	 the	diffusion	equation	 (γ	=	0)

has	plane	wave	solutions	 ,	which	are	not	traveling	waves,
but	stationary	waves	that	decay.



Example	7.2
Consider	the	partial	differential	equation

which	arises	 in	studying	 the	 transverse	vibrations	of	a	beam.	Substituting	(1.4)
into	this	equation	gives	the	dispersion	relation

which	is	real,	and	ω(k)/k	is	not	constant.	Hence	the	beam	equation	is	dispersive
and	 the	phase	velocity	 is	±√γk,	which	depends	on	 the	wave	number.	Therefore
shorter	wavelength	vibrations	travel	faster.
Generally,	 in	 the	dispersive	case	 the	plane	wave	solution	 takes	 the	form	of	a

right-traveling	wave,

The	wave	speed	ω(k)/k,	or	phase	velocity,	is	dependent	upon	the	wave	number	k.
Therefore,	 wave	 packets	 of	 different	 wavelength	 will	 propagate	 at	 different
speeds,	causing	a	signal	to	disperse.	Common	examples	of	dispersive	waves	are
water	waves,	vibrations	in	solids,	and	electromagnetic	waves	in	dielectrics.
We	may	 think	of	plane	wave	solutions	of	 the	 form	ei(kx-ω(k)t)	 as	being	a	one-

parameter	family	of	solutions,	with	k	 	 .	If	we	superimpose	them	over	all	wave
numbers,	we	obtain

Under	 reasonable	 conditions	we	expect	 this	 to	be	 a	 solution	of	 the	differential
equation	under	investigation.	If

is	an	initial	condition,	then

which	 is	 the	 Fourier	 transform	 of	 the	 unknown	 coefficient	 function	 a(k).
Therefore

and	 we	 have	 obtained	 a	 formal	 solution	 to	 a	 Cauchy	 problem	 for	 the	 partial
differential	equation	having	the	form



So,	 again,	 Fourier	 analysis	 is	 at	 the	 heart	 of	 the	 problem.	 In	 principle,	 this
integral	could	be	calculated	to	find	the	solution.



7.1.1	The	Advection	Equation
We	showed	that	the	simplest	wave	equation,	the	advection	equation,
(1.5)	

has	general	solution

(1.6)	
which	is	a	right-traveling	wave	propagating	at	constant	velocity	c,	where	f	is	an
arbitrary	function.	If	we	impose	the	initial	condition
(1.7)	

then	 it	 follows	 that	 f(x)	=	ϕ(x),	and	so	 the	solution	 to	 the	 initial	value	problem
(1.5)	and	(1.7)	is

(1.8)	
The	straight	lines	x	−	ct	=	constant,	which	are	called	characteristic	curves	 (or,
characteristics),	play	a	special	role	in	this	problem.	We	interpret	characteristics
as	 lines	 in	 space-time	 along	which	 signals	 are	 carried	 (see	 Fig.	 7.5),	 here	 the
signal	 being	 a	 constant	 value	 of	 the	 initial	 data.	 Furthermore,	 on	 these
characteristics,	 the	 partial	 differential	 equation	 (1.5)	 reduces	 to	 the	 ordinary
differential	equation	du/dt	=	0.	That	is	to	say,	if	C	is	a	typical	characteristic	x	=	ct
+	k	for	some	constant	k,	then	the	directional	derivative	of	u	along	that	curve	is

Figure	7.5	The	solution	surface	to	ut	+	cux	=	0,	c	>	0,	and	the	characteristic
curves	in	the	xt-plane.	The	solution	is	constant	on	a	characteristic	curve	and	the
curve	carries	that	constant	value	at	t	=	0	into	t	>	0.



which	 is	 the	 left	 side	 of	 (1.5)	 evaluated	 along	 C.	 Notice	 that	 the	 family	 of
characteristic	curves	x	−	ct	=	k	propagates	at	speed	c,	which	is	the	reciprocal	of
their	slope	in	the	xt	coordinate	system.
Now	 let	us	complicate	 the	partial	differential	 equation	 (1.5)	by	replacing	 the

constant	c	 by	 a	 function	of	 the	 independent	variables	 t	 and	x	 and	consider	 the
initial	value	problem

(1.9)	
where	c(x,	 t)	 is	a	given	function.	Let	C	be	 the	family	of	curves	defined	by	 the
differential	equation

(1.10)	
Then	along	a	member	of	C

Hence	u	 is	constant	on	each	member	of	C.	The	curves	C	defined	by	(1.10)	are
the	characteristic	curves.	Notice	 that	 they	propagate	at	 a	 speed	c(x,	 t),	 which
depends	on	both	time	and	the	position	in	the	medium.

Example	7.3
Consider	the	initial	value	problem

The	 characteristic	 curves	 are	 defined	 as	 solutions	 of	 the	 differential	 equation
dx/dt	=	2t.	We	obtain	the	family	of	parabolas

where	k	 is	a	constant.	Because	u	 is	constant	on	 these	characteristic	curves,	we
can	easily	find	a	solution	to	 the	initial	value	problem.	Let	(x,	t)	be	an	arbitrary
point	where	we	want	to	obtain	the	solution.	The	characteristic	curve	through	(x,
t)	passes	through	the	x	axis	at	(ξ,	0),	and	it	has	equation	x	=	t2	+	ξ	(see	Fig.	7.6).
Since	u	is	constant	on	this	curve



Figure	7.6	Characteristic	x	=	t2	+	ξ.

which	is	the	unique	solution	to	the	initial	value	problem.	The	speed	of	the	signal
at	(x,	t)	is	2t,	which	is	dependent	upon	t.	The	wave	speeds	up	as	time	increases,
but	it	retains	its	initial	shape.
The	 preceding	 equation	 is	 defined	 on	 an	 infinite	 spatial	 domain	 −∞	 <	 x	 <	 ∞.
Now,	suppose	there	are	boundaries	in	the	problem.	To	illustrate	the	basic	points
it	is	sufficient	to	study	the	simple	advection	equation

with	c	>	0.	Assume	an	initial	condition

On	 the	 unbounded	 interval	 (−∞,	 ∞)	 the	 solution	 is	 a	 unidirectional	 right-
traveling	 wave	 u	 =	 f(x	 −	 ct).	 On	 a	 bounded	 interval	 what	 kinds	 of	 boundary
conditions	can	be	imposed	at	x	=	0	and	x	−	1?	See	Fig.	7.7.	Because	u	is	given	by
the	 initial	 condition	 f(x)	 along	 the	 initial	 line	 t	 =	 0,	 0	<	x	 <	 1,	 data	 cannot	 be
prescribed	arbitrarily	on	the	segment	A	along	the	boundary	x	=	1.	This	is	because
the	characteristics	x	−	ct	=	constant	are	moving	 to	 the	 right	and	 they	carry	 the
initial	data	to	the	segment	A.	Boundary	data	can	be	imposed	along	the	line	x	=	0,
since	that	data	is	carried	along	the	forward-going	characteristics	to	the	segment
B	 along	 x	 =	 1.	 Then	 boundary	 conditions	 along	 B	 cannot	 be	 prescribed
arbitrarily.	Thus,	it	is	clear	that	the	problem

Figure	7.7	Characteristic	diagram.



is	properly	posed.	There	are	no	backward-going	characteristics	in	this	problem,
so	 there	 are	 no	 left-traveling	 waves.	 Thus	 waves	 are	 not	 reflected	 from	 the
boundary	x	=	1.	To	find	 the	solution	 to	 this	 initial	boundary	value	problem	we
must	separate	the	domain	into	two	portions,	0	<	x	<	ct	and	x	>	ct.	The	solution	in
x	 >	ct	 is	 determined	 by	 the	 initial	 data,	whereas	 the	 solution	 in	 0	 <	 x	 <	 ct	 is
determined	 by	 the	 boundary	 data.	 These	 two	 regions	 are	 separated	 by	 the
characteristic	x	 =	 ct;	 we	 refer	 to	 the	 region	 x	 >	 ct	 as	 the	 region	 of	 spacetime
ahead	 of	 this	 limiting	 characteristic,	 and	 the	 region	 0	 <	 x	 <	 ct	 as	 the	 region
behind	the	limiting	characteristic.
In	 summary,	 care	 must	 be	 taken	 to	 properly	 formulate	 and	 solve	 boundary

value	 problems	 for	 one-dimensional,	 unidirectional	 wave	 equations.	 The
situation	 is	 much	 different	 for	 second-order	 hyperbolic	 partial	 differential
equations	 like	utt	 −	 c2uxx	 =	 0.	 In	 this	 case	 both	 forward-	 and	 backward-going
characteristics	 exist,	 and	 so	 left-traveling	waves	are	 also	possible,	 as	well	 as	 a
mechanism	 for	 reflections	 from	 boundaries.	 This	 seems	 plausible	 because	 we
can	 factor	 the	 differential	 operator	 into	 a	 product	 of	 two	 advection-like
operators,	 	one	right-moving	and	one
left-moving.

Example	7.4
(Characteristic	 coordinates)	 This	 example	 presents	 an	 alternate	 method	 for
solving	advection	equations



Actually,	 it	 is	 the	 same	 thing	 as	 before,	 but	with	 a	 different	 interpretation	 and
strategy.	When	we	find	the	characteristic	curves	ξ(x,	 t)	=	ξ	=	const.	by	solving
the	 characteristic	 equation	 dx/dt	 =	 c(x,	 t),	 we	 can	 define	 a	 transformation	 of
spacetime	(x,	t)	→	(ξ,	τ)	by

The	ξ,	τ	are	called	characteristic	coordinates,	and	they	are	coordinates	that	ride
with	the	wave,	or	moving	coordinates.	If	we	transform	u	to	U	via	U(ξ,	τ)	=	u(x,
t),	then	the	chain	rule	gives

The	PDE	becomes,	upon	substitution,

But,	 differentiating	 ξ(x,	 t)	 =	 const.	 with	 respect	 to	 t	 gives	
	=	0.	So	the	PDE	reduces	 to	simply	Uτ	=	0,

independent	of	ξ.	This	is	plausible	because	‘ξ	is	riding	on	the	wave.’	Hence,	U(ξ,
τ)	=	F(ξ),	where	F	is	an	arbitrary	function.	This	means	u(x,	t)	=	F(ξ(x,	 t)	 is	 the
general	solution	to	the	original	problem.	The	basic	idea	is	that	under	a	change	to
characteristic	coordinates	the	advection	operator	transforms	to

Example	7.5
Use	the	method	of	the	last	example	to	solve	a	problem	with	a	source,

The	 characteristics	 are	 x	 −	 t2	 =	 const.,	 so	 the	 characteristic	 coordinates	 are	
.	Then	U(ξ,	τ)	satisfies	Uτ	=	−3U,	which	gives

Then	the	general	solution	is

Example	7.6
(Linear	systems)	We	can	treat	linear	systems	of	advection	equations	in	a	similar
fashion	as	linear	systems	of	ordinary	differential	equations.	Let	u(x,	t)	=	[u1(x,	t),
…,	un(x,	t)]T	be	a	vector	of	n	unknowns	and	consider	the	system	of	n	equations



where	 A	 is	 a	 real	 n	 ×	 n	 matrix	 with	 real,	 distinct	 eigenvalues.	 Then,	 A	 is
diagonalizable,	meaning	 there	 is	 an	 invertible	matrix	P	 such	 that	P−1	AP	 =	D,
where	D	is	a	diagonal	matrix	with	the	eigenvalues	on	the	diagonal;	the	columns
of	P	 are	 the	eigenvectors.	Note	 that	 the	 system	 is	coupled,	with	each	equation
containing	possibly	all	 the	uk(x,	t).	 If	we	 introduce	a	new	dependent	variable	v
defined	by

then	the	system	becomes

Thus,

Therefore	the	transformation	to	a	new	variable	v	decoupled	the	system.	The	kth
equation	in	this	system	is

which	 has	 general	 solution	 vk(x,	 t)	 =	 ϕk(x	 −	 λkt),	 a	 traveling	 wave	moving	 at
speed	λk	of	the	kth	eigenvalue.	Here,	v	 is	an	arbitrary	function.	The	solution	to
the	original	 system	 is	 then	u	 =	P−1v.	 Initial	 conditions	 determine	 the	 arbitrary
functions	v.	We	leave	examples	for	the	Exercises.

EXERCISES
1.	 For	 the	 following	 equations	 find	 the	 dispersion	 relation	 and	 phase
velocity.	Classify	as	diffusive,	dispersive,	or	hyperbolic.

a)	ut	+	cux	+	kuxxx	=	0.

b)	utt	−	c2uxx	=	0.
c)	utt	+	uxx	=	0.	(Note	that	this	is	an	elliptic	equation.)

2.	Verify	that	the	equation	ut+c(x,	t)ux	=	0	has	a	solution	u(x,	t)	=	f(a(x,	t))	for
an	arbitrary	differentiable	function	f,	where	a(x,	t)	=	constant	are	the	integral
curves	of	dx/dt	=	c(x,	t).
3.	 Solve	 the	 following	 initial	 value	 problems	 on	 t	 >	 0,	 x	 	 .	 Sketch	 the
characteristic	curves	and	several	time	snapshots	of	the	wave	in	each	case.

a)	ut	+	3ux	=	0,	u(x,	0)	=	 .



b)	ut	+	xux	=	0,	u(x,	0)	=	exp(−x).

c)	ut	−	x2tux	=	0,	u(x,	0)	=	x	+	1.
4.	On	the	domain	0	<	x	<	1,	t	>	0,	consider	the	problem

with	c	>	0.	Find	a	formula	for	the	solution,	and	sketch	a	graph	of	u(1,	t)	for	t
>	0	when	c	=	2.
5.	Solve	the	boundary	value	problem

in	the	region	x	>	0,	t	>	0,	x	<	t2.
6.	Solve	the	Cauchy	problem

7.	Solve	the	Cauchy	problem

where	the	data	is	given	along	t	=	1.
8.	Sometimes	data	is	given	along	a	curve	in	the	xt	plane.	Solve	the	problem

9.	Find	the	solution	and	sketch	a	characteristic	diagram

10.	Solve	the	linear	system

subject	to	the	initial	conditions	u1(x,	0)	=	f(x),	u2(x,	0)	=	g(x),	in	the	region	x	
	 ,	t	>	0.
11.	Consider	the	the	linearized	Korteweg–de	Vries	equation

a)	 Find	 the	 dispersion	 relation	 and	 determine	 how	 the	 phase	 velocity



depends	on	the	wave	number.
b)	 By	 superimposing	 the	 plane	 wave	 solutions,	 find	 an	 integral
representation	 for	 the	solution	 to	 the	Cauchy	problem	on	 .	Write	your
answer	in	terms	of	the	Airy	function

c)	Take	the	initial	condition	to	be	f(x)	=	e−x2	and	use	a	computer	algebra
system	to	plot	solution	profiles	when	t	=	0.5	and	t	=	1.



7.2	Nonlinear	Waves

7.2.1	Nonlinear	Advection
In	the	last	section	we	examined	the	two	simple	model	wave	equations,	ut+cux	=
0	and	ut	+	c(x,	 t)ux	=	0,	 that	 are	both	 first-order	and	 linear.	Now	we	study	 the
same	 type	 of	 equation	 when	 a	 nonlinear	 advection	 term	 is	 introduced.	 The
resulting	equation	is	often	called	the	kinematic	wave	equation.	In	particular	we
consider

(2.1)	
(2.2)	

where	c’(u)	>	0,	with	initial	condition	Using	the	guidance	of	the	earlier	examples
we	define	the	characteristic	curves	by	the	differential	equation

(2.3)	
Then	along	a	particular	characteristic	curve	x	=	x(t)	we	have

Therefore	 u	 is	 constant	 along	 the	 characteristics,	 and	 the	 characteristics	 are
straight	lines	since

In	 the	 nonlinear	 case,	 however,	 the	 speed	 of	 the	 characteristics	 as	 defined	 by
(2.3)	depends	on	the	value	u	of	the	solution	at	a	given	point.	To	find	the	equation
of	the	characteristic	C	through	(x,	t)	we	note	that	its	speed	is

(see	Fig.	7.8).	This	results	from	applying	(2.3)	at	(ξ,	0).	Hence,	after	integrating,

Figure	7.8	A	characteristic	diagram	showing	characteristics,	or	signals,	moving
at	different	speeds;	each	characteristic	carries	a	constant	value	of	u.



(2.4)	
gives	the	equation	of	the	desired	characteristic	C.	Equation	(2.4)	defines	ξ	=	ξ(x,
t)	implicitly	as	a	function	of	x	and	t,	and	the	solution	u(x,	t)	of	the	initial	value
problem	(2.1)	and	(2.2)	is	given	by

(2.5)	
where	ξ	is	defined	by	(2.4).
In	summary,	for	the	nonlinear	equation	(2.1):
1.	Every	characteristic	is	a	straight	line.
2.	The	solution	is	constant	on	each	such	line.
3.	The	speed	of	each	charactistic	is	equal	to	the	value	of	u(x,	t)	on	it.
4.	The	speed	c(u)	 is	 the	speed	that	signals,	or	waves,	are	propagated	in	the
system.

Example	7.7
Consider	the	initial	value	problem

The	initial	curve	is	sketched	in	Fig.	7.9.	Since	c(u)	=	u	 the	characteristics	are
straight	lines	emanating	from	(ξ,	0)	with	speed	c(ϕ(ξ))	=	ϕ(ξ).	These	are	plotted
in	Fig.	7.10.	For	x	<	0	the	lines	have	speed	2;	for	x	>	1	the	lines	have	speed	1;	for
0	≤	x	≤	1	the	lines	have	speed	2	−	x	and	these	all	intersect	at	(2,	1).	Immediately
one	observes	that	a	solution	cannot	exist	for	t	>	1,	since	the	characteristics	cross



beyond	that	time	and	they	carry	different	constant	values	of	u.	Figure	7.11	shows
several	 wave	 profiles	 that	 indicate	 the	 steepening	 that	 is	 occurring.	 At	 t	 =	 1
breaking	of	the	wave	occurs,	which	is	the	first	instant	when	the	solution	becomes
multiple	valued.	To	find	the	solution	for	t	<	1	we	first	note	that	u(x,	t)	=	2	for	x	<
2t	and	u(x,	t)	=	1	for	x	>	t	+	1.	For	2t	<	x	<	t	+	1	equation	(2.4)	becomes

Figure	7.9	Initial	wave	profile.

Figure	7.10	Characteristic	diagram	showing	colliding	characteristics.

Figure	7.11	Solution	surface	with	time	profiles.



which	gives

Equation	(2.5)	then	yields

This	 explicit	 form	 of	 the	 solution	 also	 indicates	 the	 difficulty	 at	 the	 breaking
time	t	=	1.
In	general	the	initial	value	problem	(2.1)–(2.2)	may	have	a	solution	only	up	to

a	finite	time	tb,	which	is	called	the	breaking	time.	Let	us	assume	in	addition	to
c’(u)	>	0	that	the	initial	wave	profile	satisfies	the	conditions

At	 the	 time	 when	 breaking	 occurs	 the	 gradient	 ux	 will	 become	 infinite.	 To
compute	ux	we	differentiate	(2.4)	implicitly	with	respect	to	x	to	obtain

Then	from	(2.5)

The	gradient	catastrophe	will	occur	at	the	minimum	value	of	t,	which	makes	the
denominator	zero.	Hence



In	Example	7.7	we	have	c(u)	=	u	and	ϕ(ξ)	=	2	−	ξ.	Hence	ϕ’(ξ)c’(ϕ(ξ))	=	(−1)(1)
=	−1	and	tb	=	1	is	the	time	when	breaking	occurs.
In	summary	we	have	observed	that	the	nonlinear	partial	differential	equation

propagates	the	initial	wave	profile	at	a	speed	c(u),	which	depends	on	the	value	of
the	solution	u	at	a	given	point.	Since	c’(u)	>	0,	large	values	of	u	are	propagated
faster	 than	 small	 values	 and	 distortion	 of	 the	 wave	 profile	 occurs.	 This	 is
consistent	 with	 our	 earlier	 remarks	 of	 a	 physical	 nature,	 namely	 that	 wave
distortion	 and	 shocks	 develop	 in	 materials	 because	 of	 the	 property	 of	 the
medium	 to	 transmit	 signals	more	 rapidly	at	higher	 levels	of	 stress	or	pressure.
Mathematically,	 distortion	 and	 the	 development	 of	 shocks	 or	 discontinuous
solutions	are	distinctively	nonlinear	phenomena	caused	by	the	term	c(u)ux	in	the
last	equation.

Example	7.8
(Implicit	 solution)	We	 have	 shown	 that	when	 the	 advection	 speed	 is	 constant,
that	is,	we	have

the	 general	 solution	 is	 given	 explicitly	 by	u	 =	F(x	 −	ct),	where	F	 is	 arbitrary.
Could	such	a	simple	form	of	the	solution	occur	for	the	nonlinear	equation

The	 answer	 is	 yes,	 and	 an	 implicit,	 general	 solution	 to	 this	 equation	 is	 easily
shown	to	be

when	it	exists.	(Use	the	chain	rule	and	substitute	into	the	equation.)	The	function
F	is	determined,	for	example,	by	an	initial	condition.	For	example,	consider	PDE

The	 general	 solution	 is	 given	 implicitly	 by	 u	 =	 F(x	 −	 u2t),	 which	 is	 easily
verified.	If	u(x,	0)	=	x,	then	F(x)	=	x	and	u	=	x	−	u2t.	Solving	for	u	gives



where	we	have	taken	the	positive	square	root	to	meet	the	initial	condition.	The
solution	is	valid	for	t	<	−1/4x.	(See	Exercise	5.)

Example	7.9
(Traffic	flow)	Everyone	who	drives	has	experienced	traffic	issues,	such	as	jams,
poorly	timed	traffic	lights,	high	road	density,	etc.	In	this	abbreviated	example	we
suggest	how	some	of	these	issues	can	be	understood	with	a	simple	model.	Traffic
moving	 in	 a	 single	 direction	 x	 with	 car	 density	 ρ(x,	 t),	 given	 in	 cars	 per
kilometer,	can	be	modeled	by	a	conservation	law

where	v	=	v(x,	 t)	 is	 the	 local	car	speed	(kilometers	per	hour),	and	ρv	 is	 the	 the
flux,	in	cars	per	hour.	Importantly,	we	are	making	a	continuum	assumption	about
cars,	surely	a	questionable	one.	As	always,	we	need	a	constitutive	assumption	to
close	 the	 system.	By	 experience,	 the	 speed	of	 traffic	 surely	 depends	 on	 traffic
density,	or,	v	=	F(ρ).	The	 simplest	model	 is	 to	 assume	 that	 the	 flux	ρv	 is	 zero
when	 ρ	 is	 zero,	 and	 is	 jammed	 (no	 flux)	when	 the	 density	 is	 some	maximum
value	ρJ.	Therefore,	we	take

where	 vM	 is	 the	 maximum	 velocity	 of	 cars.	 Note	 that	 this	 flux	 curve	 is	 a
parabola,	 concave	 down.	 The	 conservation	 law	 can	 then	 be	 written,	 after
rescaling,

This	 equation	 has	 the	 same	 form	 as	 the	 kinematic	 wave	 equation	 and	 can	 be
expanded	to

so	c(u)	=	vM(1	−	2u)	 is	 the	 speed	 that	 traffic	waves	move	 in	 the	 system.	 It	 is
different	 from	 the	 speed	 of	 cars!	 Because	 c’(u)	 <	 0,	 signals	 are	 propagated
backward	into	the	traffic	flow.



EXERCISES
1.	Consider	the	Cauchy	problem

Find	the	characteristics,	and	find	a	formula	that	determines	the	solution	u	=
u(x,	t)	implicitly	as	a	function	of	x	and	t.	Does	a	smooth	solution	exist	for	all
t	>	0?
2.	Consider	the	initial	value	problem

Sketch	the	characteristic	diagram.	At	what	time	tb	does	the	wave	break?	Find
a	formula	for	the	solution.
3.	Consider	the	initial	value	problem

Sketch	 the	 characteristic	 diagram	 and	 find	 the	 point	 (xb,	 tb)	 in	 space-time
where	the	wave	breaks.
4.	Consider	the	Cauchy	problem

Show	 that	 if	 the	 functions	 c(u)	 and	 f(x)	 are	 both	 nonincreasing	 or	 both
nondecreasing,	then	no	shocks	develop	for	t	≥	0.
5.	Consider	the	problem

Derive	the	solution

When	do	shocks	develop?	Verify	that	limt→0+	u(x,	t)	=	x.



6.	Consider	the	signaling	problem

where	c	and	g	are	given	functions	and	u0	is	a	positive	constant.	If	c’(u)	>	0,
under	what	conditions	on	 the	signal	g	will	no	shocks	 form?	Determine	 the
solution	in	this	case	in	the	domain	x	>	0,	t	>	0.
7.	In	the	traffic	flow	model	in	Example	7.9,	explain	what	occurs	if	the	initial
car	density	has	each	of	the	following	shapes:	(a)	a	density	bump	in	the	traffic
having	 the	 shape	 of	 a	 bell-shaped	 curve;	 (b)	 a	 density	 dip	 in	 the	 traffic
having	 the	 shape	 of	 an	 inverted	 bell-shaped	 curve;	 (c)	 a	 density	 that	 is
jammed	for	x	<	0,	with	no	cars	ahead	for	x	>	0	(a	stop	light);	(d)	a	density
that	 is	 shaped	 like	 a	 curve	 π/2	 +	 arctan	 x	 where	 the	 traffic	 ahead	 has
increasing	density.
In	each	case,	 sketch	a	qualitative	characteristic	diagram	and	sketch	several
density	profiles.	On	the	characteristic	diagram	sketch	a	sample	car	path.
8.	The	height	h	=	h(x,	t)	of	a	flood	wave	can	be	modeled	by

where	v,	the	average	stream	velocity,	is	v	=	a√h,	a	>	0	(Chezy’s	law).	Show
that	flood	waves	propagate	1.5	times	faster	than	the	average	stream	velocity.



7.2.2	Traveling	Wave	Solutions
One	 approach	 to	 analysis	 of	 partial	 differential	 equations	 is	 to	 examine	model
equations	to	gain	a	sense	of	the	role	played	by	various	terms	in	the	equation	and
how	 those	 terms	 relate	 to	 fundamental	 physical	 processes.	 In	 the	 preceding
paragraphs	we	observed	that	the	advection	equation
(2.6)	

propagates	 an	 initial	 disturbance	 or	 signal	 at	 velocity	c,	while	maintaining	 the
precise	form	of	the	signal.	On	the	other	hand,	the	nonlinear	equation
(2.7)	

propagates	signals	that	distort	the	signal	profile;	that	is,	the	nonlinear	advection
term	uux	 causes	 a	 shocking	up	or	 rarefaction	 effect.	We	know	 from	Chapter	 6
that	the	diffusion	equation
(2.8)	

which	 contains	 a	 diffusion	 term	Duxx,	 causes	 spreading	 of	 a	 density	 profile.
Insights	 can	 be	 gained	 about	 the	 nature	 of	 the	 various	 terms	 in	 an	 evolution
equation	by	attempting	to	find	either	traveling	wave	solutions

(2.9)	
or	plane	wave	solutions

(2.10)	
The	 latter	 is	 applicable	 to	 linear	 equations	with	 constant	 coefficients,	whereas
traveling	wave	may	be	characteristic	of	linear	or	nonlinear	processes.
In	 general,	 traveling	 wave	 solutions	 have	 no	 conditions	 at	 the	 boundaries

(plus	or	minus	infinity).	However,	there	are	often	boundary	conditions.	Traveling
wave	 solutions	 that	 approach	 constant	 states	 at	 ±∞	 are	 called	 wave	 front
solutions.	They	correspond	to	a	traveling	wave	moving	into	and	from	a	constant
state.	If	these	two	states	are	equal,	then	we	say	the	wave	front	is	a	pulse.

Example	7.10
(Burgers’	equation)	Consider	the	nonlinear	equation
(2.11)	

which	 is	 known	as	Burgers’	equation.	 The	 term	uux	will	 have	 a	 shocking	 up
effect	that	will	cause	waves	to	break,	and	the	term	Duxx	is	a	diffusion	term,	like



the	one	occurring	in	the	diffusion	equation	(2.8).	We	attempt	to	find	a	traveling
wave	solution	of	(2.11)	of	the	form
(2.12)	

where	 the	 wave	 profile	 U	 and	 the	 wave	 speed	 c	 are	 to	 be	 determined.
Substituting	(2.12)	into	(2.11)	gives

where

We	 interpret	 s	 as	 a	 moving	 coordinate.	 Noting	 that	 	 and
performing	an	integration	gives

where	B	is	a	constant	of	integration.	Hence

(2.13)	
where

We	 assume	 c2	 >	 −2B,	 and	 so	 f2	 >	 f1.	 Separating	 variables	 in	 (2.13)	 and
integrating	again	gives

Solving	for	U	yields

(2.14)	
where

For	large	positive	s	we	have	U(s)	→	f1,	and	for	large	negative	s	we	have	U(s)	→
f2.	It	is	easy	to	see	that	U’(s)	<	0	for	all	s	and	that	U(0)	=	 (f1	+	f2).	The	graph	of
U	is	shown	in	Fig.	7.12	for	different	values	of	D.	The	weaker	the	diffusive	effect
(small	D),	the	sharper	the	gradient	in	U.	The	traveling	wave	solution	to	(2.11)	is

Figure	7.12	Traveling	wave	front	solutions	to	Burgers’	equation.



where	the	speed	is	determined	from	the	definition	of	f1	and	f2	to	be

Graphically,	the	traveling	wave	solution	is	the	profile	U(s)	in	Fig.	7.12	moving
to	the	right	at	speed	c.	The	solution	of	Burgers’	equation,	because	 it	 resembles
the	actual	profile	of	a	shock	wave,	is	called	the	shock	structure	solution;	it	joins
the	 asymptotic	 states	 f1	 and	 f2.	Without	 the	Duxx	 term	 the	 solutions	 of	 (2.11)
would	shock	up	and	tend	to	break.	The	presence	of	the	diffusion	term	prevents
this	breaking	effect	by	countering	the	nonlinearity.	The	result	is	competition	and
balance	between	the	nonlinear	advection	term	uux	and	the	diffusion	term	−Duxx,
much	 the	same	as	occurs	 in	a	 real	 shock	wave	 in	 the	narrow	region	where	 the
gradient	 is	 steep.	 In	 this	 shock	 wave	 context	 the	 −Duxx	 term	 could	 also	 be
interpreted	as	a	viscosity	term,	as	will	become	clear	in	the	final	chapter.

Example	7.11
(Korteweg–de	 Vries	 equation)	 A	 perturbation	 analysis	 of	 the	 equations	 that
govern	 long	waves	 in	 shallow	water	 leads	 to	 another	 fundamental	 equation	 of
applied	mathematics,	the	Korteweg–de	Vries	equation	(KdV	equation	for	short)
(2.15)	

This	 equation	 is	 a	model	 equation	 for	 a	 nonlinear	 dispersive	 process.	 The	uux
term	causes	a	shocking-up	effect.	In	Burgers’	equation	this	effect	was	balanced
by	a	diffusion	term	−Duxx,	creating	a	shock	structure	solution.	Now	we	replace
this	 term	 by	 kuxxx,	 which	 is	 interpreted	 as	 a	 dispersion	 term	 (plane	 wave
solutions	of	the	linear	equation	ut	+	kuxxx	=	0	are	dispersive).	The	KdV	equation
and	modifications	of	it	arise	in	many	physical	contexts	(see	C.	S.	Gardner	et	al.,



SIAM	 Review,	 Vol.	 18,	 p.	 412	 (1976)).	 We	 follow	 the	 same	 reasoning	 as	 in
Burgers’	equation.	That	is,	we	assume	a	solution	of	the	form

(2.16)	
where	the	waveform	U	and	the	wave	speed	c	are	to	be	determined.	Substituting
(2.16)	into	(2.15)	gives

which	when	integrated	gives

Multiplying	by	U’	and	integrating	again	yields

One	can	then	write
(2.17)	

Since	ϕ(U)	is	a	cubic	polynomial,	there	are	five	possibilities:
(i)	ϕ	has	one	real	root	α.
(ii)	ϕ	has	three	distinct	real	roots	γ	<	β	<	α.
(iii)	ϕ	has	three	real	roots	satisfying	γ	=	β	<	α.
(iv)	ϕ	has	three	real	roots	satisfying	γ	<	α	=	β.
(v)	ϕ	has	a	triple	root	γ.
Clearly,	if	α	is	a	real	root	of	ϕ,	then	U	=	α	is	a	constant	solution.	We	seek	real,

nonconstant,	 bounded	 solutions	 that	 will	 exist	 only	 when	 ϕ(U)	 ≥	 0.	 On
examining	the	direction	field	 it	 is	easy	to	see	 that	only	unbounded	solutions	of
(2.17)	exist	for	cases	(i)	and	(iv).	We	leave	case	(v)	and	case	(ii)	 to	 the	reader.
Case	 (ii)	 leads	 to	 cnoidal	 waves.	 We	 examine	 case	 (iii)	 in	 which	 a	 class	 of
solutions	known	as	solitons	arise.	In	this	case	(2.17)	becomes

(2.18)	
Letting	U	=	γ	+	(α	−	γ)sech2ω	and	noting	dU	=	−2(α	−	γ)sech2ω	tanh	ω	dw,	 it
follows	that



Integrating	gives

and	therefore	a	solution	to	(2.18)	is	given	by

(2.19)	
Clearly	U(s)	→	γ	as	s	→	±∞.	A	graph	of	the	waveform	U	is	shown	in	Fig.	7.13.
It	is	instructive	to	write	the	roots	α	and	γ	in	terms	of	the	original	parameters.	To
this	end

Figure	7.13	Soliton	solution	to	the	KdV	equation.



Thus	the	wave	speed	c	is	given	by

and	we	can	write	the	solution	as

Let	us	note	several	features	of	this	wave	front	solution,	or	pulse.	The	velocity
relative	 to	 the	 asymptotic	 state	 at	 ±∞	 is	 proportional	 to	 the	 amplitude	 α.	 The
width	 of	 the	wave,	 defined	 by	 ,	 increases	 as	 k	 increases;	 that	 is,	 the
wave	disperses.	Finally,	the	amplitude	a	is	independent	of	the	asymptotic	state	at
±∞.	Such	a	waveform	is	known	as	a	soliton,	and	many	 important	equations	of
mathematical	 physics	 have	 soliton-like	 solutions	 (for	 example,	 the	Boussinesq
equation,	 the	 Sine-Gordon	 equation,	 the	 Born–Infeld	 equation,	 and	 nonlinear
Schrödinger-type	equations).	In	applications,	the	value	of	such	solutions	is	that	if
a	pulse	or	signal	travels	as	a	soliton,	then	the	information	contained	in	the	pulse
can	 be	 carried	 over	 long	 distances	 with	 no	 distortion	 or	 loss	 of	 intensity.
Solitons,	or	solitary	waves,	have	been	observed	in	canals	and	waterways.
Reaction–advection–diffusion	equations	of	the	form

form	an	important	class	of	equations	that	often	admit	traveling	wave	solutions.	If
we	assume	u	=	U(z),	z	=	x	−	ct,	then

For	wave	front	solutions	we	require	F(u±,	0)	=	0,	where	u±	are	the	constant	states
at	±∞.	This	equation	is	often	examined	in	the	UV	phase	plane	(see	Chapter	2),
where	V	=	U’.	Then

Showing	 the	 existence	 of	 traveling	 wave	 solutions	 then	 amounts	 to	 showing
there	is	an	orbit	connecting	the	critical	points	(u−,	0)	and	(u+,	0).



7.2.3	Conservation	Laws
We	 observed	 how	 nonlinear	 advection	 can	 cause	 solutions	 to	 ‘shock	 up’	 and
cease	 to	 exist	 as	 a	 smooth	 solution.	 In	 this	 section	we	 discover	what	 happens
after	the	gradient	catastrophe	occurs.
The	first-order	partial	differential	equation

(2.20)	
which	represents	a	 local	conservation	 law,	was	derived	under	 the	conditions	of
smoothness	of	the	density	and	flux.	If	there	are	discontinuities,	we	must	take	the
integral	form	of	the	conservation	law,

(2.21)	
which	holds	in	all	cases.

Example	7.12
The	model	nonlinear	equation

can	be	written	in	conservation	form	as

where	the	flux	is	J(u)	=	 u2.	The	integral	form	of	this	law	is

In	general	we	can	write	(2.20)	in	the	form
(2.22)	

where	 c(u)	 =	 J’(u).	We	 noted	 earlier	 that	 the	 initial	 value	 problem	 associated
with	(2.20)	does	not	always	have	a	solution	 for	all	 t	>	0.	We	showed	 that	u	 is
constant	 on	 the	 characteristic	 curves	 defined	 by	 dx/dt	 =	 c(u),	 and	 the	 initial
condition

is	propagated	along	straight	lines	with	speed	c(u).	If	c’(u)	>	0	and	f’(x)	<	0,	then
the	characteristics	 issuing	from	two	points	ξ1	and	ξ2	on	 the	x	axis	with	ξ1	<	ξ2
have	speeds	c(f(ξ1))	and	c(f(ξ2)),	 respectively.	 It	 follows	 that	c(f(ξ1))	>	c(f(ξ2)),



and	 therefore	 the	 characteristics	 must	 intersect	 (see	 Fig.	 7.14).	 Because	 u	 is
constant	on	characteristics,	the	solution	is	meaningless	at	the	value	of	t	where	the
intersection	occurs.	The	first	such	t,	denoted	earlier	by	tb,	is	the	breaking	time.	A
smooth	solution	exists	only	up	to	time	tb;	beyond	tb	something	else	must	be	tried.
The	key	to	continuing	the	solution	for	t	>	tb	is	to	take	a	hint	from	the	propagation
of	stress	waves	in	a	real	physical	continuum.	There,	under	certain	conditions,	a
smooth	wave	profile	evolves	into	a	shock	wave.	Hence,	it	is	reasonable	to	expect
that	 a	 discontinuous	 solution	 may	 exist	 and	 propagate	 for	 t	 >	 tb.	 This
discontinuous	 solution	 cannot	 satisfy	 the	 differential	 form	 (2.22)	 of	 the
conservation	law,	but	the	integral	form	(2.21)	remains	valid.	Therefore,	we	turn
to	 a	 study	 of	 the	 simplest	 kinds	 of	 such	 solutions	 in	 an	 effort	 to	 obtain	 a
condition	 that	 must	 hold	 at	 a	 discontinuity.	 Let	 J	 =	 J(u)	 be	 continuously
differentiable,	and	let	x	=	s(t)	be	a	smooth	curve	in	space-time	across	which	u	is
discontinuous.	Suppose	u	 is	 smooth	 on	 each	 side	 of	 the	 curve	 (see	Fig.	 7.15).
Next,	select	a	and	b	such	that	the	curve	x	=	s(t)	intersects	a	≤	x	≤	b	at	time	t	and
let	u0	and	u1	denote	the	right	and	left	limits	of	u	at	s(t),	respectively.	That	is,

Figure	7.14	Characteristics	determined	by	the	initial	condition.

Figure	7.15	Shock	path	in	space–time.



From	the	conservation	law	(2.21)	and	Leibniz’	rule	for	differentiating	integrals,

Because	ut	 is	bounded	 in	each	of	 the	 intervals	 [a,	s(t)]	and	[s(t),	b]	 separately,
both	integrals	tend	to	zero	in	the	limit	as	a	→	s(t)−	and	b	→	s(t)+.	Therefore

(2.23)	
Equation	 (2.23)	 is	 a	 jump	 condition,	 often	 called	 the	 Rankine–Hugoniot
condition,	 that	 relates	 the	 values	 of	 u	 and	 the	 flux	 in	 front	 of	 and	 behind	 the
discontinuity	to	the	speed	ds/dt	of	the	discontinuity.	Thus	the	integral	form	of	the
conservation	 law	 provides	 a	 restriction	 on	 possible	 jumps	 across	 a	 simple
discontinuity.	A	conventional	notation	for	(2.23)	is

where	[··]	indicates	the	jump	in	a	quantity	across	the	discontinuity.

Example	7.13
Consider	the	Cauchy	problem



The	 characteristic	 diagram	 is	 shown	 in	 Fig.	7.16.	 Lines	 emanating	 from	 the	 x
axis	have	speed	c(f(x))	=	f(x).	It	is	clear	from	the	geometry	that	tb	=	1	and	that	a
single	valued	solution	exists	for	t	<	1.	For	t	>	1	we	fit	a	shock	or	discontinuity
beginning	at	(1,1),	separating	the	state	u1	=	1	on	the	left	from	the	state	u0	=	0	on
the	 right.	 Thus	 [u]	 =	 1	 −	 0	 =	 1	 and	 .	 Therefore	 the
discontinuity	must	have	speed	 .	The	resulting	characteristic
diagram	is	shown	in	Fig.	7.17.	Therefore	we	have	obtained	a	solution	for	all	t	>
0	satisfying	the	conservation	law.

Figure	7.16	Characteristic	diagram.	Colliding	characteristics	indicate	formation
of	a	gradient	catastrophe	when	the	smooth	solution	ceases	to	exist.

Figure	7.17	Characteristic	diagram	showing	the	formation	of	the	shock	and	its
path.



EXERCISES
1.	Consider	the	problem

In	what	sense	are	u1(x,	 t)	=	1	−	H(t	−	2x)	and	u2(x,	 t)	=	1	−	H(t	−	x)	both
solutions	 to	 the	problem?	Which	one	 is	 the	appropriate	solution?	 (H	 is	 the
Heaviside	function.)
2.	Consider	the	equation	ut	+	c(u)ux	=	0,	x	 	 ,	t	>	0,	with	initial	data	u(x,	0)
=	u1	for	x	<	0,	and	u(x,	0)	=	u0	for	x	≥	0,	with	c’(u)	>	0.

a)	Find	a	nonsmooth	solution	in	the	case	u0	>	u1.
b)	Find	a	discontinuous	(shock)	solution	in	the	case	u0	<	u1.
c)	 Discuss	 (a)	 and	 (b)	 in	 the	 context	 of	 shock	 waves	 and	 rarefaction
waves.

3.	In	the	traveling	wave	solution	to	Burgers’	equation,	the	shock	thickness	is
defined	 by	 (f2	 −	 f1)/	 max	 |U’(s)|.	 Give	 a	 geometric	 interpretation	 of	 this
condition,	and	show	that	the	shock	thickness	is	given	by	8D/(f2	−	f1).
4.	Find	all	wave	front	solutions	of	the	reaction–advection	equation

5.	Consider	the	nonlinear	advection–diffusion	equation



a)	What	is	the	speed	c	of	right-traveling	wave	front	solutions	u	=	U(z),	z
=	x	−	ct,	that	satisfy	the	conditions	U(−∞)	=	1,	U(∞)	=	0?
b)	Determine	explicitly	the	right-traveling	wave	front	in	(a)	that	satisfies
the	condition	U(0)	=	 .

6.	 Show	 that	 Burgers’	 equation	 ut	 +	 uux	 =	 Duxx	 can	 be	 reduced	 to	 the
diffusion	 equation	 via	 the	 transformation	 u	 =	 −2Dϕx/ϕ	 (this	 is	 the	Cole–
Hopf	transformation).	If	the	initial	condition	u(x,	0)	=	f(x)	is	imposed,	derive
the	solution

where



7.3	Quasi-linear	Equations
A	 quasi-linear	 partial	 differential	 equation	 is	 an	 equation	 that	 is	 linear	 in	 its
derivatives.	Many	of	 the	equations	 that	occur	 in	applications	 (for	example,	 the
nonlinear	 equations	 of	 fluid	 mechanics	 that	 we	 will	 develop	 in	 a	 subsequent
section)	are	quasi-linear.	In	this	section	we	focus	on	the	initial	value	problem	for
first-order	equations	and	introduce	the	idea	of	the	general	solution.	Finally,	as	an
application,	we	introduce	age-structured	models	in	population	dynamics.
In	this	section	we	study	the	Cauchy	problem	for	the	quasi-linear	equation

(3.1)	
where	the	initial	condition	has	the	form

(3.2)	
Motivated	 by	 our	 earlier	 approach,	 we	 define	 a	 family	 of	 curves	 by	 the
differential	equation

(3.3)	
On	these	curves	u	is	no	longer	constant,	but	rather

(3.4)	
The	pair	of	differential	equations	(3.3)–(3.4)	is	called	the	characteristic	system
associated	with	(3.1).	The	initial	data	can	be	represented
(3.5)	

where	 ξ	 is	 a	 parameter	 representing	 an	 arbitrary	 value	 on	 the	 x	 axis.	We	may
interpret	equations	(3.3)–(3.4)	as	a	system	of	two	nonautonomous	equations	for
x	=	x(t)	and	u	=	u(t)	(the	values	of	x	and	u	along	the	characteristic	curves),	with
initial	 values	 given	 in	 (3.5).	 The	 general	 solution	 of	 (3.3)–(3.4)	 involves	 two
arbitrary	constants	and	has	the	form

The	 initial	 data	 imply	 ξ	 =	 F(0,	 c1,	 c2),	 ϕ(ξ)	 =	G(0,	 c1,	 c2),	 which	 gives	 the
constants	in	terms	of	ξ,	or	c1	=	c1(ξ),	c2	=	c2(ξ).	Therefore,	x	and	u	are	given	as
functions	of	t	and	their	initial	values,

(3.6)	



In	principle,	the	first	of	these	equations	can	be	solved	to	obtain	ξ	=	ξ(x,	t),	which
can	 then	 be	 substituted	 into	 the	 second	 equation	 to	 obtain	 an	 explicit
representation	u	=	u(x,	t)	to	the	solution	to	(3.1)–(3.2).

Example	7.14
Solve	the	IVP

The	characteristic	system	is

and	the	initial	condition	gives

The	general	solution	of	the	characteristic	system	is

Applying	the	initial	data	gives	ξ	=	−c1	+	c2	and	 	=	c1.	Therefore

Therefore	ξ	=	ξ(x,	t)	=	2x/(1	+	e−1),	and	so

We	have	carried	out	this	solution	process	formally.	In	most	problems	it	will	not
be	possible	to	solve	the	characteristic	system	or	the	resulting	algebraic	equations
that	 determine	 the	 constants	 c1	 =	 c1	 (ξ),	 c2	 =	 c2	 (ξ)	 as	 functions	 of	 ξ.	 As	 a
consequence,	 we	 often	 have	 to	 be	 satisfied	with	 the	 parametric	 representation
(3.6).	 In	 practice,	 numerical	 methods	 are	 usually	 applied	 to	 (3.3)–(3.4)	 to
advance	the	initial	conditions	forward	in	time.
In	 some	 contexts	 the	 general	 solution	 of	 the	 quasi-linear	 equation	 (3.1)	 is

needed,	in	terms	of	a	single,	arbitrary	function.	To	determine	the	general	solution
we	proceed	with	some	general	definitions	and	observations.	An	expression	 (x,
t,	u)	is	called	a	first	integral	of	the	characteristic	system	(3.3)–(3.4)	if	 (x,	t,	u)
=	k	(constant),	on	solutions	to	(3.3)–(3.4).	That	is,	 (X(t),	t,	U(t))	=	k	for	all	t	in
some	interval	I,	if	x	=	X(t),	u	=	U(t),	t	 	I,	is	a	solution	to	(3.3)–(3.4).	Taking	the



total	 derivative	 of	 this	 last	 equation	with	 respect	 to	 t	 and	 using	 the	 chain	 rule
gives
(3.7)	

where	each	of	the	terms	in	this	equation	are	evaluated	at	(X(t),	t,	U(t)).
Furthermore,	if	 (x,	t,	u)	is	a	first	integral	of	the	characteristic	system,	then	the

equation	 (x,	t,	u)	=	k	defines,	implicitly,	a	surface	u	=	u(x,	t),	on	some	domain
D	in	the	xt	plane,	provided	 u	≠	0.	Thus

Using	the	chain	rule,	we	can	calculate	the	partial	derivatives	of	u	as

or

Each	term	on	the	right	is	evaluated	at	(x,	t,	u(x,	t)).	Observe	also	that	the	curve
(X(t),	t,	U(t))	lies	on	this	surface	because	 (X(t),	t,	U(t))	=	k.
We	claim	 that	 this	 surface	u	 =	u(x,	 t)	 is	 a	 solution	 to	 the	 partial	 differential

equation	(3.1).	To	prove	this,	fix	an	arbitrary	point	(ξ,	τ)	in	D.	Then

(3.8)	
where	c	and	all	the	terms	on	the	right	side	are	evaluated	at	(ξ,	τ,	ω),	where	ω	=
u(ξ,	τ).	But	a	solution	curve	(X(t),	t,	U(t))	lies	on	the	surface	and	passes	through
the	point	(ξ	τ	ω)	at	t	=	τ.	That	is,	(ξ,	τ,	ω)	=	(X(τ),	τ,	U	(τ)).	Therefore,	the	right
side	of	(3.8)	may	be	evaluated	at	(X(τ),	τ,	U	(τ)).
In	 general,	 we	 expect	 to	 find	 two	 independent	 first	 integrals	 to	 the

characteristic	system,	 (t,	x,	u)	and	χ(t,	x,	u).	The	general	solution	 of	 (3.1)	 is
then

(3.9)	
where	H	is	an	arbitrary	function.	We	can	formally	solve	for	one	of	the	variables
and	write	this	as	 (t,	x,	u)	=	G(χ(t,	x,	u)),	where	G	 is	an	arbitrary	function.	We
leave	it	as	an	exercise	using	the	chain	rule	to	show	that	if	 (t,	x,	u)	and	χ(t,	x,	u)
are	 first	 integrals	 of	 the	 characteristic	 system,	 then	 (3.9)	 defines,	 implicitly,	 a
solution	u	=	u(x,	t)	to	(3.1)	for	any	function	H,	provided	H u	+	Hχχu	≠	0.

Example	7.15



Consider	the	equation

The	characteristic	system	is

The	first	equation	gives	first	integral	 	=	x	−	t2	=	c1.	Then	the	second	equation
becomes

Separating	 variables	 and	 integrating	 gives	 another	 first	 integral	
.	Therefore,	the	general	solution	is

where	H	 is	 an	 arbitrary	 function.	This	 expression	 defines	 implicit	 solutions.	 It
can	also	be	written

where	G	is	an	arbitrary	function.	This	quadratic	in	u	can	be	solved	to	determine
explicit	solutions.



7.3.1	Age-Structured	Populations
Elementary	population	models	in	biology	lump	the	total	population	at	time	t	into
a	single	number	p(t),	 regardless	of	 the	age	of	 the	 individuals.	We	have	studied
these	 models,	 e.g.,	 the	Malthus	 law	 and	 the	 logistics	 law,	 in	 earlier	 chapters.
However,	 because	 individuals	 may	 differ	 in	 their	 vital	 statistics	 (birth-	 and
deathrates,	fertility),	in	some	demographic	models	it	is	necessary	to	superimpose
an	 age	 distribution	 at	 each	 time.	 These	 models	 are	 called	 age-structured
models.
We	consider	a	population	of	females	whose	age	structure	at	time	t	=	0	is	f(a).

That	is,	f(a)	da	is	approximately	the	initial	number	of	females	between	age	a	and
a	+	da.	 Females	 are	usually	used	 in	demographic	models	 because	 they	have	 a
definite	beginning	and	end	to	their	reproductive	capacity.	And,	for	simplicity,	we
impose	 the	 age	 range	 to	 be	0	≤	a	 <	∞,	 even	 though	 the	 age	 at	 death	 is	 finite.
Given	the	mortality	and	fecundity	rates	of	females,	the	goal	is	to	determine	the
age	 structure,	 or	 population	 density,	 u(a,	 t)	 at	 time	 t,	 where	 u(a,	 t)	 da	 is
approximately	the	number	of	females	between	age	a	and	a	+	da	at	 time	 t.	The
total	number	of	females	at	time	t	is

We	can	derive	a	partial	differential	equation	for	the	density	by	accounting	for
the	 change	 in	 population	 over	 a	 small	 time	 dt,	 where	 members	 leave	 the
population	only	because	of	death.	In	the	time	interval	from	t	to	t+dt	all	females
of	age	a	become	females	of	age	a	+	da.	The	number	of	females	at	time	t	between
age	a	and	a	+	da	is	u(a,	 t)	da,	and	 the	number	between	a	+	da	and	a	+	2da	at
time	t	+	dt	is	u(a	+	da,	t	+	dt)	da.	The	difference	between	these	two	populations
is	the	number	that	die	during	the	time	interval.	If	λ	represents	the	mortality	rate,
or	the	fraction	that	die	per	unit	time,	then	the	number	that	die	from	time	t	to	t	+
dt	is	λ[u(a,	t)	da]	dt.	The	mortality	rate	λ	could	depend	upon	age	a,	time	t,	age
density	u,	or	even	 the	 total	population	N(t).	Consequently,	 to	 leading	order	we
have

By	Taylor’s	expansion,	u(a	+	da,	t	+	dt)	=	u(a,	t)	+	ut(a,	t)	dt	+	ua(a,	t)	da	+	···.
Therefore	ut(a,	t)	dt	+	ua(a,	t)	da	=	-λu(a,	t)	dt	+	···.	Dividing	by	dt,	using	da	=
dt,	and	taking	the	limit	as	dt	→	0	gives



(3.10)	
which	is	the	McKendrick–Von	Foerster	equation.	The	initial	condition	is

(3.11)	

Figure	7.18	Graphical	representation	of	an	age-structured	model	showing	age
profiles	at	time	t	=	0	(f(a))	and	at	time	t	(u(a,	t)).	The	boundary	condition	u(0,	t)
represents	the	number	of	newborns.

The	 boundary	 condition	 at	 age	 a	 =	 0	 is	 not	 as	 simple	 as	 it	 may	 first	 appear
because	u(0,	t)	=	B(t),	the	number	of	newborns	at	time	t,	is	not	known	a	priori.
Rather,	it	depends	upon	the	fertility	and	ages	of	the	reproducing	females	at	time
t.	To	formulate	the	boundary	condition	let	b(a,	t)	denote	the	average	number	of
offspring	per	female	of	age	a	at	time	t.	We	call	b	the	fecundity	rate	or	maternity
function.	We	 expect	 b	 to	 be	 zero	 up	 until	 the	 age	 of	 maturity	 and	 zero	 after
menopause.	 The	 total	 number	 of	 offspring	 produced	 by	 females	 in	 the	 age
interval	a	to	a	+	da	is	b(a,	t)u(a,	 t)	da.	Thus	 the	 total	number	of	offspring	B(t)
produced	at	time	t	is

(3.12)	
Therefore	 the	 boundary	 condition	 at	 a	 =	 0	 depends	 upon	 the	 solution	 to	 the
differential	equation.	Such	boundary	conditions	are	called	nonlocal	because	they
involve	an	integration	of	the	unknown	in	the	problem.	The	initial	boundary	value
problem	(3.10)–(3.12)	is	an	example	of	an	age-structured	model.	These	nonlocal,
nonlinear	models	can	be	complex,	and	thus	it	 is	common	to	make	assumptions
that	 lead	 to	 simplification	 and	 the	 possibility	 of	 a	 tractable	 problem.	 For
example,	we	assume	the	mortality	rate	λ	is	constant,	and	the	fecundity	rate	b	is



dependent	only	upon	age.	Then	we	obtain	 the	 simplified	 the	McKendrick–Von
Foerster	model

The	characteristic	system	for	the	partial	differential	equation	is

It	is	easy	to	find	the	first	integrals	a	−	t	=	c1	and	ueλt	=	c2.	Therefore	the	general
solution	to	the	pde	is

where	g	is	an	arbitrary	function.	In	the	domain	a	>	t	 the	solution	is	determined
by	the	initial	condition	at	t	=	0.	Therefore	g(a)	=	f(a)	and	we	obtain

In	 the	domain	0	<	a	<	 t	 the	 solution	 is	determined	by	 the	boundary	condition.
From	the	general	solution	we	have

which	determines	the	arbitrary	function,	g(t)	=	B(−t)e−λt.	Therefore

Hence,	we	will	have	determined	the	solution	once	the	function	B	is	found.
To	determine	B	we	use	the	nonlocal	boundary	condition	to	obtain

This	equation	is	a	nonhomogeneous	Volterra	integral	equation	for	B	and	it	can	be
written	in	the	form

(3.13)	



where	 .	 Equation	 (3.13)	 is	 called	 the
renewal	equation.	In	summary,	the	solution	to	McKendrick-Von	Foerster	model
has	been	reduced	to	the	solution	of	an	integral	equation.
We	show	how	an	asymptotic	solution	for	large	times	can	be	obtained.	For	large

t	 the	 nonhomogeneous	 term	 F(t)	 vanishes	 because	 the	 fecundity	 b	 is	 zero	 at
some	finite	age.	Thus,	the	renewal	equation	can	be	approximated	by

Note	 that	 we	 can	 replace	 the	 upper	 limit	 by	 infinity	 since	 the	 fecundity	 rate
vanishes	at	a	finite	age.	Let	us	assume	an	exponential	solution	of	the	form	B(t)	=
U0ert,	where	r	is	an	unknown	growth	rate.	Substituting	gives

(3.14)	
This	 is	 the	Euler–Lotka	 equation,	 and	 it	 determines	 the	 growth	 rate	 r.	 The
population	density	in	this	asymptotic	case	is

The	decaying	function	U(a)	=	e−(r+λ)a	is	called	the	stable	age	structure.
More	 extensive	material	 on	 age	 structured	 problems	 can	 be	 found	 in	Brauer

and	 Castillo-Chavez	 (2001)	 and	 Kot	 (2001).	 Age-structured	 problems	 are	 a
special	 case	 of	more	 general	 physiological	 structured	 problems	where	 the	 age
variable	a	can	be	replaced	by	length,	size,	weight,	development,	and	so	on.

EXERCISES
1.	Insofar	as	possible,	solve	the	following	pure	initial	value	problems:

a)	ut	+	ux	=	−2tu,	u(x,	0)	=	ϕ(x).
b)	ut	+	ux	=	g(x,	t),	u(x,	0)	=	ϕ(x).

c)	ut	+	xux	=	et,	u(x,	0)	=	ϕ(x).
2.	Use	characteristics	to	find	the	general	solution	to	the	following	equations:

a)	ut	+	ux	=	−u2.

b)	t2ut	+	x2ux	=	2xt.
c)	uut	=	x	−	t.

d)	tut	+	xux	=	xt(1	+	u2).



e)	tut	+	uux	=	x.
f)	u(ut	−	ux)	=	x	−	t.
g)	uut	+	xux	=	t.

3.	Consider	the	initial	value	problem

Find	the	time	tb	that	a	gradient	catastrophe	occurs	and	beyond	which	there	is
no	continuously	differentiable	solution.
4.	Consider	the	initial	value	problem

Derive	the	solution	u(x,	t)	=	(1	+	αt)−1.
5.	Consider	the	initial	value	problem

where	k	>	0.	Determine	the	values	of	k	for	which	the	solution	blows	up.
6.	Consider	the	initial	value	problem	for	the	damped	advection	equation,

where	α	>	0.	Show	that	the	solution	is	given	implicitly	by

Determine	a	condition	on	ϕ	that	guarantees	no	shocks	will	form.	If	a	shock
does	form,	show	that	the	breaking	time	is	greater	than	that	for	the	undamped
equation	when	α	=	0.
7.	Consider

For	what	values	of	k	does	breaking	occur?
8.	Solve	the	signaling	problem



9.	Consider	an	age-structured	female	population	where	u	=	u(a,	t)	is	the	age
density	 of	 females	 at	 age	 a	 at	 time	 t	 and	 where	 no	 individual	 survives
beyond	age	δ.	The	model	is

Find	 the	 solution	 on	 the	 given	 domain	 subject	 to	 the	 initial	 and	 boundary
conditions

where	f	and	B	are	given	functions.
10.	Consider	a	population	of	 female	organisms	whose	mortality	 rate	 is	λu,
with	 λ	 constant,	 and	whose	 fecundity	 is	 given	 by	 b(a)	 =	 ae−γa.	 From	 the
Euler–Lotka	 equation	 determine	 the	 growth	 rate	 r	 of	 the	 stable	 age
structured.population.
11.	Consider	the	age-structured	model

where	the	mortality	and	fecundity	rates	depend	upon	the	total	population
N(t),	with	b′(N)	≤	0,	λ’(N)	≥	0.
a)	Show	that	N’(t)	=	(b(N)	−	λ(N))N.
b)	 Assuming	 the	 differential	 equation	 in	 part	 (a)	 has	 a	 nonzero
equilibrium	N*,	show	that	there	is	an	equilibrium	population	density	u	=
U(a)	given	by

12.	In	the	McKendrick–Von	Foerster	model	assume	the	mortality	rate	λ	and
the	fecundity	rate	b	are	constant.

a)	Show	that	B’	=	(b	−	λ)B.
b)	Find	B(t)	and	the	population	density	u(a,	t).
c)	What	is	the	size	N(t)	of	the	population	at	time	t?



7.4	The	Wave	Equation
The	science	of	acoustics	is	the	study	of	sound	propagation	in	solids,	fluids,	and
gases.	The	 fundamental	 equation	 is	 the	wave	equation	 that	was	obtained	as	an
approximation	for	small-amplitude	signals.



7.4.1	The	Acoustic	Approximation
As	before,	we	imagine	a	gas	flowing	in	a	tube	of	constant	cross-sectional	area	A
in	such	a	way	that	the	physical	parameters	are	constant	in	any	cross	section.	We
fix	two	cross	sections	x	=	a	and	x	=	b.	The	principle	of	mass	conservation	states
simply	that	mass	is	neither	created	nor	destroyed.	Therefore,	the	rate	of	change
of	mass	inside	the	interval	a	≤	x	≤	b	equals	the	mass	flux	in	at	x	=	a	less	the	mass
flux	out	at	x	=	b.	In	symbols

(4.1)	
where	ρ(x,	t)	is	the	density	and	v(x,	t)	is	the	velocity.	The	quantity	Aρ(x,	t)v(x,	t)
gives	the	amount	of	fluid	that	crosses	the	location	x	per	unit	time	and	is	therefore
the	mass	flux.	Equation	(4.1)	can	be	written

Because	the	interval	a	≤	x	≤	b	is	arbitrary	it	follows	that
(4.2)	

which	is	the	continuity	equation,	or	the	partial	differential	equation	expressing
conservation	of	mass.
Momentum	balance	requires	that	the	rate	of	change	of	momentum	inside	[a,	b]

must	equal	the	transport	of	momentum	carried	into	and	out	of	the	region	at	x	=	a
and	x	=	b	plus	the	momentum	created	inside	[a,	b]	by	the	force	(pressure	times
area)	p	acting	at	a	and	b.	This	is,	of	course,	motivated	by	Newton’s	second	law
of	motion,	which	states	that	the	rate	of	change	of	momentum	is	the	force,	or	d/dt
(mv)	=	F.	In	mathematical	terms,
(4.3)	

The	term	Aρ(x,	t)v2(x,	t)	is	the	momentum	times	the	velocity	at	x	and	is	therefore
the	momentum	flux	at	x.	Bringing	the	time	derivative	into	the	integral	and	using
the	fundamental	theorem	of	calculus	turns	(4.3)	into



The	arbitrariness	of	the	interval	a	≤	x	≤	b	forces

(4.4)	
which	is	a	partial	differential	equation	expressing	conservation	of	momentum.
Both	(4.2)	and	(4.4)	are	of	the	form

and	are	in	conservation	form.
In	 the	 simplest	 gas	 dynamical	 calculations	 equations	 (4.2)	 and	 (4.4)	may	 be

supplemented	by	the	barotropic	equation	of	state

(4.5)	
which	gives	pressure	as	a	function	of	density	only.	It	is	convenient	to	introduce
the	local	sound	speed	c	defined	by

(4.6)	
Then	(4.2)	and	(4.4)	may	be	written

(4.7)	
(4.8)	

where	we	have	used	px	=	c2ρx	and	pt	=	c2ρt	 to	 rewrite	 (4.2),	and	we	have	used
(4.2)	to	replace	the	quantity	ρt	in	(4.4),	thereby	giving	(4.8).	Equations	(4.7)	and
(4.8)	 along	 with	 (4.5)	 provide	 a	 starting	 point	 for	 the	 study	 of	 flow	 of	 a	 gas
(Chapter	8).
The	equations	governing	the	adiabatic	flow	of	a	gas	are	nonlinear	and	cannot

be	 solved	 in	 general.	Rather,	 only	 special	 cases	 can	 be	 resolved.	The	 simplest
case,	 that	 of	 acoustics,	 arises	when	 the	deviations	 from	a	 constant	 equilibrium
state	v	=	0,	ρ	=	ρ0,	and	p	=	p0	are	assumed	to	be	small.	Therefore	we	consider	the
isentropic	equations
(4.9)	
(4.10)	

with	the	barotropic	equation	of	state

It	is	common	in	acoustics	to	introduce	the	condensation	δ	defined	by



which	 is	 the	 relative	 change	 in	 density	 from	 the	 constant	 state	 ρ0.	We	 assume
that	v,	δ,	and	all	their	derivatives	are	small	compared	to	unity.	Then	the	equation
of	state	can	be	expanded	in	a	Taylor	series	as

Whence

and	therefore	(4.9)	and	(4.10)	become

Discarding	 products	 of	 small	 terms	 gives	 a	 set	 of	 linearized	 equations	 for	 the
small	deviations	δ	and	v,	namely

(4.11)	
These	equations	are	known	as	the	acoustic	approximation.	Eliminating	v	from
(4.11)	gives

(4.12)	
where

(4.13)	
Equation	(4.12)	 is	 a	 second-order	 linear	 partial	 differential	 equation	 known	 as
the	wave	equation.	The	quantity	c	in	(4.13)	is	the	propagation	speed	of	acoustic
waves.	For	an	ideal	gas	p	=	F(ρ)	=	kργ,	and	therefore

is	 the	 speed	 that	 small-amplitude	 signals	 are	 propagated	 in	 an	 ideal	 gas.	 By
eliminating	δ	from	equations	(4.11)	we	note	that	the	small	velocity	amplitude	v
satisfies	the	wave	equation	as	well.
At	 this	point	 it	 is	worthwhile	 to	 test	 the	acoustic	approximation	 to	determine

its	 range	 of	 validity.	 Let	 U	 and	 Γ	 denote	 scales	 for	 the	 velocity	 v	 and
condensation	δ,	 respectively.	From	Chapter	1	we	know	that	such	scales	can	be
defined	as	the	maximum	value	of	the	quantity,	for	example,	U	=	max|v|	and	Γ	=
max	 |δ|.	 If	 L	 and	 τ	 denote	 length	 and	 time	 scales	 for	 the	 problem,	 then	 the
balance	of	the	terms	in	(4.11)	requires



Thus

In	 the	 approximation	 we	 assumed	 that	 the	 convective	 term	 vvx	 was	 small
compared	to	vt.	Consequently,	for	acoustics

or
(4.14)	

That	is,	the	acoustic	approximation	can	be	justified	when	the	maximum	particle
velocity	is	small	compared	to	the	speed	c	that	sound	waves	travel	in	the	medium.
The	ratio	U/c	 is	 called	 the	Mach	number	M	 and	 therefore	 acoustics	 are	 valid
when	 M	 	 1.	 For	 phenomena	 involving	 ordinary	 audible	 sounds	 the
approximation	is	highly	satisfactory,	but	for	flows	resulting	from	the	presence	of
high-speed	 aircraft	 the	 full	 nonlinear	 equations	 (4.9)	 and	 (4.10)	 would	 be
required	for	an	accurate	description.	In	the	theory	of	nonlinear	acoustics	a	 few,
but	not	all,	of	the	nonlinear	terms	are	retained	in	the	perturbation	equations.

Example	7.16
(Vibrations	of	a	guitar	string)	In	this	example	we	take	an	aside	to	mention	the
most	 common	 application	 of	 the	 wave	 equation,	 namely,	 the	 vibrations	 and
sounds	 produced	 by	 plucking	 a	 guitar	 string.	 A	 detailed	 derivation	 of	 the
governing	equation,	which	is	a	simple	application	of	Newton’s	second	law,	can
be	 found	 in	 any	 elementary	 partial	 differential	 equations	 text	 (e.g.,	 see	Logan,
2006,	 Strauss	 1992.).	 We	 envision	 a	 tightly	 stretched,	 perfectly	 elastic	 string
attached	 at	 two	 ends,	 x	 =	 0	 and	 x	 =	 L.	 This	 is	 the	 undisturbed	 equilibrium
configuration.	 The	 wave	 equation	 is	 a	 model	 that	 governs	 the	 vertical
displacements	 u	 =	 u(x,	 t)	 from	 equilibrium	 of	 the	 string	 in	 a	 plane	 at	 each
location	x	in	[0,	L]	and	for	each	t	>	0.	The	excitation	of	the	string	is	induced	by
initial	 conditions	 that	 specify	 the	 initial	 displacement	 u(x,	 0)	 and	 the	 initial
velocity	 ut(x,	 0).	 For	 example,	 the	 string	 could	 be	 plucked.	 The	 equation	 of
motion	plainly	states	that,	locally,	the	mass	times	the	acceleration	is	the	vertical
force.	Symbolically,

or



Here,	ρ	is	the	linear	density	(mass	per	length)	of	the	string,	and	T	is	the	constant
tension	in	the	string;	c(x)	is	the	wave	speed,	or	the	speed	of	propagation	on	the
string.	 Like	 acoustics,	 the	 wave	 equation	 governs	 small	 vibrations	 from
equilibrium.	Terms	representing	body	forces	(like	gravity)	or	damping	forces	can
be	added	to	the	right	side	of	the	equation.



7.4.2	Solutions	to	the	Wave	Equation
The	one-dimensional	wave	equation

(4.15)	
arises	naturally	in	acoustics	and	it	describes	how	small	amplitude	waves	(density
and	 particle	 velocity)	 propagate.	 There	 are	 many	 other	 physical	 situations
modeled	 by	 this	 important	 equation,	 for	 example,	 electromagnetism,	 wave	 on
taut	strings	(guitar	strings),	and	vibrations	in	elastic	media.	From	earlier	remarks
we	note	that	the	wave	equation	is	hyperbolic.	It	is	easy	to	see	(Exercise	2)	that
the	general	solution	of	the	wave	equation	is	given	by

(4.16)	
where	 f	 and	g	 are	 arbitrary	 functions;	 hence	 solutions	 are	 the	 superposition	 of
right-	 and	 left-traveling	 waves	 moving	 at	 speed	 c.	 The	 functions	 f	 and	 g	 are
determined	by	the	initial	and	boundary	data,	although	it	is	difficult	to	do	this	in
specific	cases.
The	Cauchy	problem	for	the	wave	equation	is

(4.17)	
where	 F	 and	 G	 are	 given	 functions,	 and	 it	 can	 be	 solved	 exactly	 by
D’Alembert’s	solution.

Theorem	7.17
In	(4.17)	let	F	 	C2( )	and	G	 	C1( ).	Then	the	solution	of	(4.17)	is	given	by

(4.18)	

Proof
The	 derivation	 of	 (4.18)	 follows	 directly	 by	 applying	 the	 initial	 conditions	 to
determine	the	arbitrary	functions	f	and	g	in	(4.16).	We	have

(4.19)	

(4.20)	
Dividing	(4.20)	by	c	and	integrating	yields



(4.21)	
where	A	 is	 a	 constant	of	 integration.	Adding	and	 subtracting	 (4.19)	 and	 (4.21)
yield	the	two	equations

from	which	(4.18)	follows.	Since	F	 	C2	and	G	 	C,	 it	follows	that	u	 	C2	and
satisfies	the	wave	equation.	The	solution	can	be	verified	using	Leibniz’	rule.
Much	insight	can	be	gained	by	examining	a	simple	problem.	Therefore	let	us

consider	the	initial	value	problem

By	(4.18)	the	solution	is

To	fix	the	idea,	suppose	F(x)	is	the	initial	signal	shown	in	Fig.	7.19.	At	time	t	>
0	we	 note	 that	 u	 is	 the	 average	 of	F(x	 −	 ct)	 and	F(x	 +	 ct),	 which	 is	 just	 the
average	of	the	two	signals	resulting	from	shifting	F(x)	to	the	right	ct	units	and	to
the	left	ct	units.	A	sequence	of	time	snapshots	at	t1	<	t2	<	t3	in	Fig.	7.20	shows
how	the	two	signals	F(x	−	ct)	and	F(x	+	ct)	are	averaged	to	produce	u.	The	initial
signal	splits	into	two	signals	moving	in	opposite	directions,	each	at	speed	c.	The
left-moving	 signal	 travels	 along	 the	 characteristics	 x	 +	 ct	 =	 constant,	 and	 the
right-moving	signal	travels	along	the	characteristics	x	−	ct	=	constant.	Therefore,
there	are	two	families	of	characteristic	lines	along	which	disturbances	propagate.
If	 the	initial	data	F	and	G	in	(4.17)	are	supported	in	an	interval	I	on	 the	x	axis
(i.e.,	F	and	G	are	zero	outside	I),	then	the	region	R	of	the	xt	plane	that	is	affected
by	the	disturbances	within	I	is	called	the	region	of	influence	of	I	(see	Fig.	7.21).
This	region	has	as	its	lateral	boundaries	the	two	characteristics	x	+	ct	=	constant
and	 x	 −	 ct	 =	 constant	 emanating	 from	 the	 left	 and	 right	 endpoints	 of	 I,
respectively.	 A	 signal	 in	 I	 can	 never	 affect	 the	 solution	 outside	 R;	 or	 stated
differently,	if	the	initial	data	are	supported	in	I,	then	the	solution	is	supported	in
R.	These	statements	follow	directly	from	(4.18).

Figure	7.19	Initial	signal,	a	triangular	wave.



Figure	7.20	Time	snapshots	showing	u(x,	t)	(solid)	as	the	average	of	two	profiles
F(x	+	ct)	and	F(x	−	ct)	(dashed).

Figure	7.21	Region	of	influence	R	of	an	interval	I.

We	also	pose	the	question	of	determining	which	initial	values	affect	the	value
of	u	at	a	given	point	(x0,	t0).	From	D’Alembert’s	solution,

Because	of	the	integrated	term,	u	will	depend	only	on	the	values	in	the	interval	I:



[x0	−	ct0,	x0	+	ct0].	This	interval,	called	the	interval	of	dependence,	is	found	by
tracing	the	characteristics	x	−	ct	=	x0	−	ct0	and	x	+	ct	=	x0	+	ct0	back	to	the	initial
t	=	0	line	(Fig.	7.22).

Figure	7.22	Domain	D	and	its	interval	of	dependence	J.

When	 boundary	 conditions	 are	 present	 the	 situation	 is	 more	 complicated
because	 waves	 are	 reflected	 from	 the	 boundaries.	 For	 example,	 consider	 the
mixed	initial	boundary	value	problem

where	F	 	C2[0,	 l],	G	 	C1[0,	 l],	 and	a,	 b	 	C2[0,	∞).	 If	 u(x,	 t)	 is	 a	 class	C2
solution	on	t	≥	0	and	0	≤	x	≤	l,	then	necessarily	the	compatibility	conditions	F(0)
=	a(0),	F(l)	=	b(0),	G(0)	=	a′(0),	g(l)	=	b(0),	a”(0)	=	c2F”(0),	and	b”(0)	=	c2F(l)
must	hold	at	the	corners	x	=	0,	x	=	l,	and	t	=	0.	This	problem	can	be	transformed
into	 one	 with	 homogeneous	 boundary	 conditions,	 which	 can	 be	 solved	 by
eigenfunction	expansions.
A	geometric	construction	of	the	solution	based	on	the	following	theorem	gives

insight	into	the	nature	of	the	solution	to	the	wave	equation.

Theorem	7.18
Let	u(x,	t)	be	of	class	C3	for	t	>	0	and	x	 	 .	Then	u	satisfies	the	wave	equation
(4.15)	if,	and	only	if,	u	satisfies	the	difference	equation
(4.22)	



for	all	h,	k	>	0.

Proof
Necessity	 follows	 easily	 from	 the	 fact	 that	 the	 general	 solution	 of	 the	 wave
equation	is	given	by	(4.16)	and	both	the	forward-	and	backward-going	waves	f(x
+	ct)	and	g(x	−	ct)	satisfy	 the	difference	equation.	Conversely,	 if	u	 satisfies	 the
difference	equation,	then	set	h	=	0,	add	−2u(x,	t)	to	both	sides	and	then	divide	by
c2k2	to	get
(4.23)	

By	Taylor’s	theorem

Substituting	these	quantities	into	(4.23)	gives

Taking	k	→	0	shows	that	u	satisfies	(4.15)	and	completes	the	proof.
Geometrically,	the	points	A:	(x−ck,	t−h),	B:	(x+ch,	t+k),	C:	(x+ck,	t+h),	and	D:

(x	−	ch,	t	−	k)	are	the	vertices	of	a	characteristic	parallelogram	ABCD	formed
by	two	pairs	of	characteristics,	one	forward-going	pair	and	one	backward-going
pair.	Then	(4.22)	may	be	written

This	 equation	 can	 be	 used	 to	 geometrically	 construct	 a	 solution	 to	 the	 initial
boundary	value	problem	as	 follows.	We	divide	 the	 region	0	<	x	<	 l,	 t	>	0	 into
regions	 I,	 II,	 III…,	 as	 shown	 in	 Fig.	 7.23,	 by	 drawing	 in	 the	 characteristics
emanating	 from	 the	 lower	 corners	 (0,	 0)	 and	 (l,	 0)	 and	 continually	 reflecting
them	from	the	boundaries.	The	solution	in	region	I	is	completely	determined	by
D’Alembert’s	 formula.	To	find	 the	solution	at	a	point	R	 in	 region	 II	we	sketch
the	 characteristic	 parallelogram	 PQRS	 and	 use	 Theorem	 ×	 to	 find	 u(R)	 =
u(S)+u(Q)−u(P).	The	quantity	u(S)	is	determined	by	the	boundary	condition	at	x
=	 0,	 and	 u(P)	 and	 u(Q)	 are	 known	 from	 the	 solution	 in	 region	 I.	 A	 similar
argument	 can	 be	made	 for	 points	 in	 region	 III.	 To	 determine	 the	 solution	 at	 a
point	M	 in	 region	 IV	 we	 complete	 the	 characteristic	 parallelogram	KLMN	 as



shown	in	the	diagram	and	use	Theorem	7.11	to	conclude	u(M)	=	u(L)	+	u(N)	−
u(K).	Again	 the	 three	quantities	on	 the	right	are	known	and	we	can	proceed	 to
the	next	step	and	obtain	u	in	the	entire	region	t	>	0,	0	<	x	<	l.

Figure	7.23	Geometrical	construction	of	the	solution	to	the	wave	equation.



7.4.3	Scattering	and	Inverse	Problems
By	a	scattering	problem	we	mean	the	following.	Consider	a	situation	where	an
object,	 called	 a	 scatterer,	 lies	 in	 some	 medium.	 An	 incoming	 incident	 wave
impinges	 on	 the	 scatterer	 and	 produces	 a	 reflected	 wave	 and	 a	 transmitted
wave	 (Fig.	7.24).	The	direct	 scattering	problem	 is	 to	determine	 the	 reflected
and	 transmitted	 waves	 (amplitude,	 wave	 number,	 frequency,	 etc.)	 if	 the
properties	 of	 the	 incident	 wave	 and	 the	 scatterer	 are	 known.	 The	 inverse
scattering	 problem	 is	 to	 determine	 the	 properties	 of	 the	 scatterer,	 given	 the
incident,	 reflected,	 and	 possibly	 the	 transmitted	 waves.	 Inverse	 scattering
problems	arise	in	a	number	of	physical	situations.	For	example,	in	radar	or	sonar
theory	a	known	incident	wave	and	observed	reflected	wave	are	used	to	detect	the
properties	 or	 presence	 of	 aircraft	 or	 submarine	 objects.	 In	 tomography,	X-rays
and	sound	waves	are	used	to	determine	the	presence	or	properties	of	tumors	by
detecting	density	variations;	 in	this	case	the	incident,	reflected,	and	transmitted
waves	are	all	known.	In	geologic	exploration,	explosions	may	be	set	off	on	the
earth’s	 surface	producing	waves	 that,	when	 reflected	 from	underground	 layers,
may	 indicate	 the	 presence	 of	 oil	 or	 other	 structures	 of	 geologic	 interest.	 In
nondestructive	 testing,	analysis	of	 reflected	and	 transmitted	waves	can	 indicate
flaws	 in	 a	 material,	 for	 example,	 the	 nose	 cone	 of	 a	 shuttle	 craft.	 Inverse
scattering	 theory	 is	 an	 active	 area	 of	 applied	 mathematics	 research.	 In	 the
succeeding	paragraphs	we	set	up	and	solve	a	simple	inverse	problem	involving
the	wave	equation.	We	assume	that	an	infinite	bar	−∞	<	x	<	∞	 is	composed	of
two	homogeneous	materials	separated	by	an	interface	at	x	=	0.	One	material	 in
region	I	(x	<	0)	has	constant	density	ρ1	and	stiffness	(Young’s	modulus)	y1	and
the	other	in	region	II	(x	>	0)	has	constant	density	ρ2	and	stiffness	y2.	The	sound
velocities	in	region	I	and	region	II	are	c1	and	c2,	respectively.	Recall	that	c2	=	y/
ρ.	The	inverse	scattering	problem	can	be	stated	as	follows:	Suppose	an	observer
at	 x	 =	 −∞	 sends	 out	 an	 incident	 right-traveling	 wave	 exp(i(x	 −	 c1t))	 of	 unit
amplitude	 and	 unit	wave	 number.	When	 the	wave	 impinges	 on	 the	 interface	 a
wave	is	reflected	back	into	region	I	and	another	wave	is	transmitted	into	region
II	(see	Fig.	7.25).	If	the	material	properties	ρ1	and	y1	of	region	I	are	known,	is	it
possible	 to	determine	the	properties	of	ρ2	and	y2	of	 region	II	by	measuring	 the
amplitude	and	wave	number	of	the	reflected	wave?	We	answer	this	question	in
the	context	of	small	displacement	 theory	where	 the	displacements	u1	and	u2	 in



region	I	and	region	II,	respectively,	satisfy	the	one-dimensional	wave	equation

Figure	7.24	Object	scattering	an	incident	wave.

Figure	7.25	The	interface	between	two	materials	scattering	an	incident	wave.

(4.24)	
At	 the	 interface	x	=	0	 the	displacements	must	be	continuous,	 since	we	assume
that	the	regions	do	not	separate.	Therefore

(4.25)	
Here	u1(0−,	 t)	denotes	 the	 limit	of	u1(x,	 t)	as	x	→	0−	 and	u2(0+,	 t)	 denotes	 the
limit	of	u2(x,	t)	as	x	→	0+.	Further,	we	require	that	the	force	across	the	interface
be	continuous	or

(4.26)	
Equations	(4.25)	and	(4.26)	are	called	the	 interface	conditions.	We	seek	u1	and
u2	 satisfying	 (4.24)	 subject	 to	 (4.25)	 and	 (4.26).	 A	 reasonable	 attempt	 at	 a
solution	 is	 to	 take	u1	 to	 be	 the	 incident	wave	 superimposed	with	 the	 reflected
wave	and	u2	to	be	the	transmitted	wave.	Hence	we	try	a	solution	of	the	form



The	quantities	A	and	α	denote	the	amplitude	and	wave	number	of	 the	reflected
wave	moving	at	speed	c1	in	region	I	to	the	left,	and	B	and	β	denote	the	amplitude
and	wave	number	of	the	transmitted	wave	moving	at	speed	c2	in	region	II	to	the
right.	Clearly	u1	and	u2	satisfy	the	wave	equation	with	c21	=	y1/ρ1	and	c22	=	y2/
ρ2,	 respectively.	 The	 inverse	 scattering	 problem	 can	 now	 be	 stated	 in	 analytic
terms	as	follows:	Given	A,	α,	ρ1,	and	y1,	can	ρ2	and	y2	be	determined?
The	 interface	 conditions	 (4.25)	 and	 (4.26)	 will	 yield	 relations	 among	 the

constants.	Condition	(4.25)	implies

which,	in	turn,	gives

(4.27)	
Therefore

An	application	of	(4.26)	forces

(4.28)	
A	 close	 examination	 of	 (4.27)	 and	 (4.28)	 yields	 the	 information	 we	 seek.
Knowledge	of	A,	y1,	and	c1	permits	the	calculation	of	the	ratio	 .
Consequently	 both	 y2	 and	 ρ2	 cannot	 be	 calculated,	 only	 their	 product.	 If,
however,	 there	 is	 means	 to	 measure	 the	 speed	 c2	 of	 the	 transmitted	 wave	 or
determine	 its	wave	 number	 β,	 then	 the	material	 properties	 of	 region	 II	 can	 be
found.
The	 direct	 scattering	 problem	 has	 a	 simple	 solution.	 If	 all	 of	 the	 material

parameters	 ρ1,	 y1,	 ρ2,	 and	 y2	 are	 known,	 relations	 (4.27)	 and	 (4.28)	 uniquely
determine	the	reflected	and	transmitted	waves.



7.4.4	The	Schrödinger	Equation
In	Chapter	 3	we	 introduced	 the	 Schrödinger	 equation,	 one	 of	 the	 fundamental
equations	of	modern	physics.	Chapter	5	gave	a	glimpse	of	eigenvalue	problems
associated	with	the	Schrödinger	equation,	in	particular,	determining	the	discrete
spectrum	 (eigenvalues)	 and	 eigenfunctions	 (bound	 states)	 for	 a	 potential	 well.
Now	we	have	the	machinery	to	discuss	some	additional	mathematical	problems
arising	 from	quantum	mechanics.	Our	 scope	 is	 limited;	we	 do	 not	 go	 into	 the
philosophy	of	quantum	mechanics,	about	which	much	has	been	written,	and	we
do	 not	 delve	 into	 detailed	 applications	 and	 interpretations	 in	 atomic	 physics;
these	issues	are	beyond	our	scope.	This	section	is	written	for	the	general	applied
mathematics	reader.	There	are	myriad	outstanding	texts	at	all	levels	that	can	be
consulted	 for	 additional	 understanding.	 For	 example,	 the	 elementary	 text	 by
Griffiths	 (2005)	 is	 highly	 readable;	 Messiah	 (1958)	 has	 a	 more	 advanced
perspective.
One	problem	was	mentioned	with	only	a	cursory	explanation:	the	continuous

spectrum.	In	this	section	we	discuss	the	meaning	in	more	detail	and	relate	it	 to
scattering	phenomena,	which	we	examined	in	the	last	section.
We	 work	 in	 one	 dimension	 and	 remind	 the	 reader	 that	 the	 fundamental

equation	of	quantum	mechanics	is	the	time-dependent	Schrödinger	equation

where	 	=	 (x,	t)	is	the	wave	function	and	V	=	V(x)	is	the	potential	energy.	This
is	 a	 second-order	 linear	 PDE	 that	 appears,	 if	 it	 does	 not	 contain	 the	 complex
constant	i,	to	be	diffusion-like.	For	the	special	case	of	constant	V	the	dispersion
relation	is

which	 is	 real;	 therefore	 Schrödinger	 equations	 are	 dispersive;	we	 expect	wave
speeds	 to	depend	on	wave	numbers.	Wave	numbers,	or	 spatial	 frequencies,	are
related	to	energy	levels.	A	simple	separation	of	variables	method,	assuming	 (x,
t)	=	g(t)y(x),	leads	to	solutions	of	the	form

where	y	=	y(x)	is	the	solution	to	the	time-dependent	Schrödinger	equation



which	 is	 a	 Sturm–Liouville	 differential	 equation	 for	 the	 steady-state	 wave
function	y(x);	the	separation	constant	E	is	the	energy.
There	are	two	interpretations	of	the	wave	function	 .	The	first	is	the	statistical

interpretation.	If	Xt	is	a	random	variable,	or	random	process,	for	the	location	of
the	 particle	 at	 time	 t,	 then	 the	 square	 of	 the	wave	 function	 * 	 =	 | |2	 is	 the
probability	distribution1	for	Xt,	meaning

In	particular,

This	 condition,	 that	 the	 particle	 is	 located	 somewhere,	 is	 a	 normalization
condition	 on	 wave	 functions	 y(x),	 which	 are	 solutions	 to	 the	 singular	 Sturm–
Liouville	problem

The	discrete	spectrum,	or	set	of	eigenvalues,	determines	the	allowed	energies	E.
For	notational	simplicity	in	the	sequel,	this	model	can	be	written	as

where

It	is	important	to	notice	that	if	λ	>	U(x),	then	we	expect	oscillatory	solutions;	if	λ
<	U(x)	 we	 expect	 exponential	 solutions.	 The	 first	 corresponds	 to	 a	 classical
particle	with	 energy	 higher	 than	 the	 potential	 energy;	 the	 second	 is	 classically
not	possible.

Example	7.19



(Particle	 in	 a	 box)	 The	 simplest	 case	 is	 a	 free	 particle	 (no	 force	 and	 zero
potential)	of	mass	m	trapped	in	a	finite	box	0	<	x	<	a	with	infinite	potential	at	x	=
0,	a.	Therefore	the	probability	of	the	particle	being	at	x	=	0	or	x	=	a	is	zero,	and
inside	the	box	we	have

This	is	a	regular	Sturm-Liouville	problem	we	have	solved	many	times.	There	are
infinitely	many	positive	eigenvalues	(energies)

with	corresponding	normalized	wave	functions	(bound	states)

(4.29)	
This	example	well	illustrates	the	common	statistical	interpretation.	The	particle

can	exist	with	only	certain	discrete	energies	En	 in	 bound	 states	yn.	The	 lowest
state	corresponding	to	n	=	1	is	called	the	ground	state,	and	the	states	for	which	n
>	1	are	excited	states.	With	 this	 interpretation,	we	can	answer	 the	question	of
the	 nature	 of	 the	 wave	 function—it	 resides	 in	 a	 Hilbert	 space,	 L2(0,	 a).	 The
probability	density	functions

determine	 the	 probability	 of	 finding	 the	 particle	 in	 the	 nth	 state.	 Because	 the
wave	 functions	 form	 an	 orthonormal	 basis	 for	 the	 Hilbert	 space,	 any	 time-
dependent	wave	 function	 (x,	 t)	 can	 be	written	 as	 a	 linear	 combination	 of	 the
basis	functions,	or

If	 (x,	0)	=	f(x)	is	the	wave	function	at	time	t	=	0,	then

and	 cn	 are	 Fourier	 coefficients,	 or	 the	 orthogonal	 projections	 of	 f	 on	 the	 nth

eigenspace	generated	by	yn(x);	that	is,	cn	=	 	sin	(λnx)	dx.	Thus,	 the

wave	 function	 (x,	 t),	 or	 the	 wave	 function-squared,	 defines	 how	 the	 initial
probability	density	|f(x)|2	for	position	evolves	over	time.



Let’s	 briefly	 review	 one	 aspect	 of	 the	 dynamics	 of	 a	 classical	 particle.
Newton’s	 second	 law	 for	 a	 particle	 of	 mass	 m	 in	 a	 conservative	 force	 field
having	 potential	V	 =	V(x)	 leads	 easily,	 as	 we	 have	 seen	 in	 Chapter	 1,	 to	 the
conservation	law

where	E	is	the	energy.	Thus,	the	particle	can	only	exist	in	the	region	where	E	≥
V(x).	Classically,	the	region	E	<	V(x)	is	forbidden.	The	contrast	with	a	quantum
mechanical	particle	is	both	revolutionary	and	exciting.
With	 all	 this	 in	 mind,	 we	 now	 we	 take	 up	 the	 concept	 of	 the	 continuous

spectrum	for	the	Schrödinger	equation.	This	leads	to	the	second	interpretation	of
the	 wave	 function.	 As	 preparation,	 we	 look	 at	 the	 discrete	 spectrum	 for	 an
infinite	potential	well.

Example	7.20
(Infinite	potential	well—discrete	spectrum)	Assume	the	potential	is	given	by	a
delta	 distribution	with	 pole	 at	 zero,	V(x)	 =	 −qδ(x).	 Thus	 there	 is	 an	 infinitely
deep	potential	well	at	x	=	0.	We	have	V(x)	=	0	for	x	≠	0,	and	using	the	notation	in
(4.29),	the	Schrödinger	equation	becomes

(4.30)	
We	impose	the	condition	y	 	L2( ),	which	implies

This	 is	 a	 distributional	 differential	 equation	 and	 therefore	 we	 use	 the	 same
method	as	we	used	in	Chapter	5	for	constructing	a	Green’s	function.	There	are
two	cases,	λ	<	0	and	λ	>	0.	To	examine	the	negative	energy	case	we	set	λ	=	−k2.
Then,	if	x	≠	0	we	have	y”	−	k2y	=	0,	x	 	 .	Bounded	solutions	y	are	given	in	x	<
0	and	x	>	0	by

Continuity	 at	x	 =	 0	 gives	A	 =	B.	These	 two	decaying	 solutions	 connect	 at	 the
origin	with	a	discontinuity	 in	 their	first	derivatives.	To	derive	the	condition	we
integrate	(4.30)	over	an	interval	(−η,	η)	about	the	origin	and	then	take	the	limit
as	η	→	0.	We	obtain



By	 continuity	 of	 y	 the	 last	 integral	 will	 be	 zero;	 the	 second	 integral	 can	 be
calculated	by	the	sifting	property	of	 the	delta	distribution,	and	the	first	 integral
can	be	found	by	the	fundamental	theorem	of	calculus.	We	obtain

Therefore,	 ,	which	gives	a	single	eigenvalue,	or	energy	level,

We	can	easily	find	A	by	normalization.	Here	again	we	get	a	discrete	spectrum,
the	surprise	being	that	there	is	only	one	eigenvalue	and	one	bound	state.

Example	7.21
(Potential	 well—continuous	 spectrum)	 We	 continue	 with	 the	 preceding
example,	but	now	assume	λ	=	k2	>	0.	With	the	same	notation,	we	obtain

For	x	≠	0	we	obtain	y″	+	k2y	=	0,	which	has	 sines	and	cosines	as	 independent
solutions.	This	 signals	 trouble	 for	eigenvalues	and	bound	states,	 as	well	 as	 the
statistical	interpretation	of	eigenfunctions.	If	these	are	the	solutions,	there	can	be
no	 way	 to	 normalize	 the	 wave	 functions.	 We	 can	 give	 up	 now,	 or	 we	 could
proceed.	Let’s	proceed	and	write	the	solution	in	complex	exponential	form	as

The	solutions	are	oscillatory	and	there	are	no	boundary	conditions	to	force	any
of	the	constants	to	be	zero.	Going	ahead,	let’s	apply	continuity	at	x	=	0,	giving

Now	 a	 jump	 condition.	 As	 in	 the	 preceding	 example	 we	 integrate	 the
distributional	equation	over	an	interval	(−η,	η)	and	take	the	limit	as	η	→	0.	We
obtain

Therefore

The	result	is	two	equations	for	the	four	unknown	coefficients	and	the	number	k,
which	 is	a	possible	eigenvalue.	 In	 summary,	we	arrived	at	 results	 that	 seem	 to
lead	nowhere.
Let	us	step	back	and	ask	what	we	have	in	terms	of	scattering	theory.	From	this

perspective,	 the	 spatial	 solution	 yL(x),	 for	 example,	 in	 x	 >	 0,	 arises	 from



separating	variables	and	leads	to	the	time-dependent	solution

This	expression	 is	 the	sum	of	a	 right-traveling	wave	and	a	 left-traveling	wave;
so,	as	in	scattering,	we	can	think	of	Aeikx	as	an	incident	right	traveling	wave	and
Be−ikx	 as	 a	 reflected	wave.	 Similar	 comments	 apply	 to	 the	 solution	 for	 x	 >	 0.
Thus,	we	can	regard	the	solution	as	a	scattering	experiment	where	a	‘stream’	of
particles	 coming	 in	 from	 the	 left	 (−∞)	 is	 scattered	 by	 the	 presence	 of	 the
potential	well	into	a	reflected	wave	and	a	transmitted	wave.	This	means	there	is
no	 incoming	wave	 from	 the	 right	 (+∞)	 and	we	 can	 set	D	 =	 0.	 It	makes	 sense
therefore	 to	 set	 A	 −	 1	 (fix	 the	 amplitude	 of	 the	 incoming	 wave),	 and	 so	 the
preceding	relations	yield

It	follows	that

Our	calculation	is	valid	for	each	value	of	k	>	0.	For	each	k	the	wave	function	is
(see	Fig.	7.26)

Figure	7.26	Schematic	of	a	scattering	solution	showing	an	incoming	incident
wave	and	the	transmitted	and	reflected	waves	from	an	infinite	potential	well	at
the	origin.



The	 spectrum,	 λ	 =	 k2,	 is	 continuous,	 and	 the	wave	 functions	 do	 not	 represent
bound	states,	but	rather	scattering	states.	At	this	point	the	whole	concept	of	the
actual	states	of	real	particles	and	their	probability	densities	is	now	in	question.

Example	7.22
(Reflection-transmission	coefficients)	There	is	an	interesting	addendum	to	the
result	of	the	last	example.	If	we	define

then	it	is	easily	to	show	that	 	+	 	=	1,	and	so	 	and	 	represent	probabilities.
These	 are	 the	 reflection	 and	 transmission	 probabilities.	 A	 unit	 amplitude
incoming	wave	 has	 a	 probability	 	 of	 being	 reflected	 and	 a	 probability	 	 of
being	 transmitted.	 Note	 that	 the	 probability	 of	 transmission,	 or	 penetration,
increases	 with	 energy	 E	 (k),	 and	 reflection	 decreases	 with	 the	 energy	 of	 the
wave.
We	have	 considered	 two	 interpretations	of	 the	wave	 functions:	 the	 statistical

interpretation	 and	 the	 scattering	 interpretation.	 In	 the	 latter	 case	 we	 make	 a
further	 intuitive	 argument	 for	 a	 particle	 interpretation	 in	 spite	 of	 the	 non-
normalizable	wave	functions	and	the	lack	of	bound	states.	We	noted	earlier	that	a
particle	is	not	localized	in	space.	One	way	to	think	about	it	is	in	terms	of	a	wave
packet,	which	 is	 a	 superposition	of	 a	 group	of	 closely	packed	plane	waves,	 or
scattering	 solutions,	 that	 have	 nearly	 the	 same	 frequency	 (energy).	 In	 such	 a
case,	the	wave	packet	can	be	written	as

where	A(k)	 represents	 a	 narrow	 envelop	 of	 amplitudes	 depending	 also	 on	 the
frequencies,	 and	 c(k)	 is	 the	 phase	 velocity.	 With	 further	 analysis	 (see	 the
references),	 it	 can	 be	 shown	 that	 this	 entire	 wave	 packet	 travels	 at	 a	 group
velocity	 that	 is	 twice	 the	 phase	 velocity,	which	 is	 consistent	with	 the	 classical
particle	speed.
In	the	exercises	below	we	use	the	notation	given	in	(4.29).

EXERCISES



1.	 Maxwell’s	 equations	 for	 a	 nonconducting	 medium	 with	 permeability	 μ
and	permittivity	ε	are

where	B	is	the	magnetic	induction	and	E	is	the	electric	field.	Show	that	the
components	 of	B	 and	E	 satisfy	 the	 three-dimensional	wave	 equation	utt	 −
c2(uxx	+	uyy	+	uzz)	=	0	with	propagation	speed	c	=	(εμ)−1/2,	where	u	=	u(t,	x,
y,	z).
2.	Show	that	the	transformation

transforms	the	wave	equation	(4.15)	into	the	partial	differential	equation

As	 a	 consequence,	 show	 that	 the	 general	 solution	 to	 (4.15)	 is	 given	 by
(4.16).
3.	Solve

4.	Solve

5.	Let	v	 	C2	satisfy	the	boundary	value	problem

a)	Prove	that	v	=	0	by	introducing	the	energy	integral

and	showing	that	E(t)	 	0	for	all	t	≥	0.
b)	Prove	that	solutions	to	the	boundary	value	problem



are	unique.
6.	Let	u	 =	u(x,	y)	 be	 a	 solution	 to	 the	 boundary	value	 problem	 in	 the	 unit
square	Ω	=	{(x,	y):	0	<	x,	y	<	1}:

Show	that	f	must	satisfy	the	relation	f(O)	+	f(P)	=	f(Q)	+	f(R),	where	O	=	(0,
0),	P	 =	 (1,	 1),	Q	=	 (1,	 0),	 and	R	 =	 (0,	 1).	Discuss	well-posedness	 for	 this
hyperbolic	equation.
7.	Use	Fourier	transforms	to	find	the	solution	to

where	G	vanishes	outside	some	closed,	bounded	interval.
8.	Consider	the	boundary	value	problem

Transform	 this	 problem	 to	 one	with	 a	 nonhomogeneous	 partial	 differential
equation	and	homogeneous	boundary	conditions.
9.	Consider	the	nonhomogeneous	problem

By	 integrating	over	 the	characteristic	 triangle	T	 bounded	by	characteristics
emanating	backward	from	the	point	(x0,	t0)	to	the	x	axis,	show	that

10.	Consider	a	bar	with	constant	 stiffness	y0	 and	density	ρ0	 occupying	 the
region	x	≤	0.	An	incident	small	displacement	wave	exp(i(x	−	c0t))	impinges
on	x	=	0	from	x	=	−∞.

a)	Find	the	reflected	wave	if	the	end	at	x	=	0	is	fixed.
b)	Find	the	reflected	wave	if	the	end	at	x	=	0	is	free.



c)	 Find	 the	 reflected	wave	 if	 a	mass	M	 is	 attached	 to	 the	 end	 at	x	 =	 0.
(Hint:	Show	that	the	boundary	condition	is	Mutt	+	y0ux	=	0.)

11.	Find	the	solution	to	the	outgoing	signaling	problem

(Hint:	There	are	no	boundaries	to	the	right,	so	attempt	a	right-traveling	wave
solution.)
12.	A	bar	of	constant	cross-sectional	area	is	composed	of	two	materials.	For
−∞	<	x	<	0	and	1	<	x	<	∞	the	material	parameters	are	y0	and	ρ0	and	for	0	<	x
<	1	the	parameters	are	y1	and	ρ1.	An	incident	displacement	wave	exp(i(x	−
c0t))	 impinges	on	the	system	from	−∞.	Assuming	the	linearized	theory	and
the	 fact	 that	 displacements	 are	 continuous	 across	 the	 discontinuities,	what
are	the	frequency	and	wave	number	of	the	transmitted	wave	in	the	region	x	>
1?
13.	In	three	dimensions	the	wave	equation	is

where	Δ	is	the	Laplacian.	For	waves	with	spherical	symmetry	u	=	u(r,	t)	and
Δu	=	urr	+	(2/r)ur.	By	introducing	the	variable	U	=	ru,	show	that	the	general
solution	for	the	spherically	symmetric	wave	equation	is

14.	Show	that	u(x,	t)	=	f(x	−	ct)	is	a	weak	solution	to	the	wave	equation	utt	−
c2uxx	=	0,	(x,	t)	 	 2,	for	any	locally	integrable	function	f	on	 .
15.	Use	D’Alembert’s	formula	to	formally	derive	the	solution	to

in	the	form

where	H	is	the	Heaviside	function.	Comment	on	the	physical	meaning.
16.	 Find	 an	 integral	 representation	 for	 the	 solution	 to	 the	 initial	 boundary
value	problem	for	u	=	u(x,	y,	t):



17.	Show	that	the	nonlinear	wave	equation

has	 solutions	 of	 the	 form	u(x,	 t)	=	F(θ),	where	 θ	 =	 kx	 −	 ωt,	 ω2	 >	 k2,	 and
where	F	 is	 a	 periodic	 function.	 (Hint:	 Transform	 to	 the	FF’-phase	 plane.)
Show	that	the	period	is	given	by

where	a	is	a	constant	characterizing	an	orbit.
18.	 For	 a	 particle	 in	 a	 box	 (Example	 7.19)	 find	 the	 expected	 value	 and
variance	of	the	position	when	the	particle	is	in	the	nth	bound	state.	Plot	the
density	|yn(x)|2	for	the	first	two	states	n	=	1,	2.
19.	 (Potential	 barrier)	 An	 incoming,	 right-traveling	 wave	 from	 −∞
encounters,	with	positive	energy	E,	encounters	an	infinite	potential	hill	given
by	a	delta	function	U(x)	=	qδ(x).	(a)	Find	the	reflected	and	transmitted	wave
scattered	 by	 the	 potential,	 and	 compute	 the	 reflection	 and	 transmission
coefficients.	(b)	What	 is	 the	probability	of	penetration	of	 the	barrier?	[This
quantum	scattering	phenomenon	is	called	tunneling,	which	cannot	occur	for
a	classical	particle	with	energy	less	than	the	maximum	potential	of	the	hill,
and	 its	 application	 to	 the	 electromagnetic	 properties	 of	 materials	 is	 far-
reaching.]
20.	Consider	a	step	potential	U(x)	=	q	>	0	for	x	>	0	and	U(x)	=	0	for	x	<	0.
For	positive	energies,	do	you	expect	the	system	to	have	bound	states	and	a
discrete	spectrum?	For	energies	between	0	and	q,	find	the	scattering	solution
for	the	Schrödinger	equation.	What	is	the	continuous	spectrum?	What	is	the
probability	that	an	incoming	wave	from	−∞	penetrates	the	barrier?
21.	On	the	region	x	≥	0	a	potential	function	is	given	by	U(x)	=	0	for	0	<	x	≤
1,	and	U(x)	=	q	>	0	 for	x	>	1.	At	x	=	0	 the	potential	 is	 infinite,	giving	 the
boundary	condition	y(0)	=	0.



a)	 Find	 the	 discrete	 spectrum	 and	 bound	 states.	 [Obtain	 an	 equation
giving	 the	 eigenvalues	 and	 show	 them	 graphically.]	 How	 many
eigenvalues	are	there?
b)	Find	the	scattering	states	for	an	incoming	wave	from	+∞.

22.	(Finite	potential	well)	Consider	a	finite	potential	well	U(x)	=	−q	for	−1	<
x	<1	and	U(x)	=	0	otherwise.	Find	the	discrete	spectrum	and	even	 (y(−x)	=
y(x))	bound	states.
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Chapter	8

Mathematical	Models	of	Continua

Continuum	mechanics	(fluid	dynamics,	elasticity,	gasdynamics,	etc.)	is	the	study
of	motion,	kinematics,	and	dynamics	of	continuous	systems	of	particles	such	as
fluids,	solids,	and	gases.	Out	of	these	subjects	evolve	some	of	the	most	important
partial	differential	equations	of	mathematical	physics	and	engineering	and	some
of	the	most	important	techniques	for	solving	applied	problems.	For	example,	the
origins	of	singular	perturbation	theory	lie	in	the	study	of	the	flow	of	air	around	a
wing	 or	 airfoil,	 and	 many	 of	 the	 problems	 of	 bifurcation	 theory	 have	 their
beginnings	 in	 fluid	 mechanics.	 More	 than	 any	 other	 area	 of	 engineering	 or
physics,	 continuum	 mechanics	 remains	 a	 paradigm	 for	 the	 development	 of
techniques	and	examples	in	applied	mathematics.
The	field	equations,	or	governing	equations,	of	continuum	mechanics	are	a	set

nonlinear	 partial	 differential	 equations	 for	 unknown	quantities	 such	 as	 density,
pressure,	displacement,	particle	velocity,	and	so	on,	which	describe	the	state	of
the	continuum	at	any	 instant.	They	arise,	as	 in	 the	case	of	 the	heat	conduction
equation	from	(a)	conservation	laws	such	as	conservation	of	mass,	momentum,
and	energy	and	(b)	assumptions	regarding	the	makeup	of	the	continuum,	called
constitutive	 relations	 or	 equations	 of	 state.	 In	 certain	 cases,	 say,	 when	 the
amplitude	 of	 waves	 is	 small,	 the	 equations	 reduce	 to	 some	 of	 the	 simpler
equations	of	applied	mathematics,	like	the	one-dimensional	wave	equation.
The	 equations	 are	 developed	 from	 the	 concept	 that	 the	 material	 under

investigation	is	a	continuum;	that	is,	it	exhibits	no	structure	however	finely	it	is
divided.	This	development	gives	 rise	 to	a	model	 in	which	 the	 fluid	parameters
are	 defined	 at	 all	 points	 as	 continuous	 functions	 of	 space	 and	 time.	 The
molecular	 aggregation	 of	 matter	 is	 completely	 extraneous	 to	 the	 continuum
model.	The	model	may	be	expected	to	be	invalid	when	the	size	of	the	continuum
region	 of	 interest	 is	 the	 same	 order	 as	 the	 characteristic	 dimension	 of	 the
molecular	 structure.	 For	 gases	 this	 dimension	 is	 on	 the	 order	 of	 10−7	 meters,
which	 is	 the	mean	free	path,	and	for	 liquids	 it	 is	on	 the	order	of	10−10	meters,



which	 is	 a	 few	 intermolecular	 spacings.	Thus	 the	continuum	model	 is	violated
only	in	extreme	cases.
In	 many	 ways,	 as	 we	 will	 see,	 describing	 the	 motion	 of	 solids	 requires	 a

different	strategy	from	that	in	fluids	and	gases.	For	example,	we	often	work	with
displacement	in	solids,	but	velocity	in	fluids	and	gases.	Moreover,	models	of	the
forces	and	stresses	in	solids	lead	to	complicated	constitutive	equations	that	take
the	 subject	 to	 a	 higher	 level	 and	 into	 subjects	 such	 as	 elasticity,	 viscoelastic
materials,	material	with	memory,	 and	 so	on.	Our	main	 focus	 in	 this	 text	 is	 the
kinematics	 and	 dynamics	 of	 gases	 and	 fluids.	 Finally,	 continuum	 mechanics,
perhaps	 more	 than	 other	 areas	 of	 applied	 mathematics,	 requires	 a	 good
knowledge	 of	 several	 areas	 of	 physics,	 particularly	 mechanics	 and
thermodynamics.	And,	the	properties	of	materials	and	their	behavior,	now	coined
material	science,	spans	into	electrodynamics,	quantum	and	atomic	physics,	and
other	areas	of	modern	physics.



8.1	Kinematics	and	Mass
Conservation

8.1.1	Description	of	Flow
The	continuum	assumption.	The	underlying	physical	model	to	which	we	apply
the	 general	 ideas	 is	 a	 one-dimensional	 continuum	 that	 can	 be	 thought	 of	 as	 a
solid	cylindrical	 tube,	or	a	cylinder	through	which	a	fluid	is	flowing.	The	fluid
may	be	 a	 liquid	 or	 gas	 and	 the	 lateral	wall	 of	 the	 pipe	 is	 assumed	 to	 have	 no
effect	 on	 the	 flow	 parameters.	 Throughout	 the	motion	we	 assume	 each	 cross-
section	 remains	 planar	 and	 moves	 longitudinally	 down	 the	 cylinder	 with	 no
variation	of	any	of	the	flow	parameters	in	any	cross	section.	It	is	this	assumption,
that	 the	 only	 variation	 is	 longitudinal,	 that	 gives	 the	 description	 a	 one-
dimensional	 character.	 The	 situation	 is	 the	 same	 as	 in	 the	 one-dimensional
models	studied	in	Chapters	6	and	7.
To	 understand	 how	 physical	 quantities	 are	 defined	 we	 consider	 a	 thought

experiment	 to	 observe	 how	 the	 density	 of	 a	 fluid	 is	 related	 to	 its	 molecular
structure.	At	time	t	we	consider	a	disk	D	of	fluid	of	width	α	centered	at	x0	and
having	cross-sectional	area	A.	See	Fig.	8.1.	The	average	density	of	the	fluid	in	D
is	ρα	=	Mα/αA,	where	Mα	is	the	mass	of	fluid	in	D.	To	define	the	density	ρ(x0,	t)
we	examine	what	happens	as	α	approaches	zero.	The	graph	in	Fig.	8.2	 records
the	 results	 of	 the	 experiment.	 In	 region	 II,	 because	 there	 are	 many	 particles
(molecules)	inside	D,	one	would	expect	that	the	average	density	ρα	would	vary
very	little.	If,	however,	α	were	on	the	order	of	molecular	distances,	say	α	=	10−9
meters,	 there	 may	 be	 only	 a	 few	 molecules	 in	D	 and	 we	 might	 expect	 large
fluctuations	 in	 ρα	 even	 for	 small	 changes	 in	 α.	 Such	 rapid	 fluctuations	 are
depicted	 in	 region	 I.	 It	 seems	unreasonable,	 therefore,	 to	 define	ρ(x0,	 t)	 as	 the
limiting	value	of	ρα	as	α	→	0.	Rather,	ρ(x0,	t)	should	be	defined	as

Figure	8.1	A	fluid	disk	D	with	width	α,	centered	at	x0.



Figure	8.2	Plot	of	the	average	density	ρα	vs.	the	disk	of	width	α	(meters).

where	α*	is	 the	value	of	α	where	density	nonuniformities	begin	to	occur;	here,
for	example,	α*	=	10−9	meters.	In	a	similar	fashion	other	physical	quantities	can
be	 considered	 as	 point	 functions	 in	 continuously	 distributed	 matter	 without
regard	 to	 its	 molecular	 or	 atomistic	 structure.	 This	 continuum	 assumption	 is
often	 phrased	 as	 follows—the	 fluid	 is	 composed	 of	 small	 regions	 or	 fluid
elements	 that	 can	 be	 idealized	 as	 points	 at	 which	 the	 flow	 variables	 become
continuous	 functions	 of	 position	 and	 time,	 but	 they	 are	 not	 so	 small	 that
discernable	fluctuations	of	these	quantities	exist	within	the	element.
Kinematics	of	motion.	We	now	discuss	the	kinematics	of	fluid	motion,	meaning
how	motion	 is	 described.	Dynamics,	 or	 the	 cause	 of	motion,	 comes	 later.	 In	 a
one-dimensional	moving	fluid	or	solid	there	are	two	coordinate	systems	used	to
keep	track	of	the	motion.	For	example,	suppose	water	is	flowing	in	a	stream	and
one	wishes	 to	measure	 the	 temperature.	One	 can	 stand	 on	 the	 bank	 at	 a	 fixed
location	 x,	 measured	 from	 some	 reference	 position	 x	 =	 0,	 and	 insert	 a
thermometer,	thereby	measuring	the	temperature	θ(x,	t)	as	a	function	of	time	and
the	fixed	position	x.	The	coordinate	x	is	called	a	spatial	(laboratory)	or	Eulerian
coordinate.	On	 the	 other	 hand,	 one	 can	measure	 the	 temperature	 from	 a	 boat
riding	with	the	flow.	In	this	case,	at	time	t	=	0	each	particle	(section)	is	labeled
with	 a	 particle	 label	 h,	 and	 each	 particle	 always	 retains	 its	 label	 as	 it	 moves
downstream.	 The	 result	 of	 the	 measurement	 is	 the	 temperature	 Θ(h,	 t)	 as	 a



function	of	time	t	and	the	Lagrangian	or	material	coordinate	h.	The	variable	x
is	 a	 fixed	 spatial	 coordinate,	 and	 the	 representation	 of	 the	 field	 functions	 or
physical	 variables	 (temperature,	 density,	 pressure,	 etc.)	 as	 functions	 of	 t	 and	 x
gives	a	Eulerian	description	of	 the	flow.	A	representation	 in	 terms	of	 t	and	 the
material	 variable	 h	 gives	 a	 Lagrangian	 description	 of	 the	 flow.	 For	 physical
variables	we	reserve	lowercase	letters	for	Eulerian	quantities	and	capital	 letters
for	Lagrangian	 quantities.	 Thus,	 f(x,	 t)	 denotes	 the	measurement	 of	 a	 physical
quantity	 in	 Eulerian	 coordinates,	 and	 F(h,	 t)	 denotes	 the	 corresponding
description	in	terms	of	Lagrangian	coordinates.
Now	let	I	be	an	interval	along	the	axis	of	the	cylinder	where	the	fluid	begins

its	 motion.	 At	 time	 t	 =	 0	 we	 label	 all	 of	 the	 particles.1	 with	 a	 Lagrangian
coordinate	h	such	that

where	x	is	a	fixed	Eulerian	coordinate	in	I.	By	a	fluid	motion	or	flow,	we	mean
a	twice	continuously	differentiable	mapping	ϕ	I	×	[0,	t1]	→	 	defined	by

(1.1)	
which	is	 invertible	for	each	 t	 	[0,	t1].	Rather	 than	write	ϕ	in	(1.1),	we	use	 the
symbol	x	and	write
(1.2)	

The	convention	of	using	x	 to	denote	both	a	spatial	coordinate	and	a	function	is
common	and	often	preferred	over	 (1.1).	 In	words,	 (1.2)	gives	 the	position	x	at
time	t	of	the	particle,	or	cross	section,	labeled	h.	For	a	fixed	h	=	h0	the	curve

defines	the	particle	path	of	the	particle	labeled	h0.
The	invertibility	assumption	on	ϕ	guarantees	that	(1.2)	can	be	solved	for	h	 to

obtain
(1.3)	

This	 equation	 determines	 the	 particle,	 or	 cross	 section,	 at	 position	 x	 at	 time	 t.
Since	(1.2)	and	(1.3)	are	inverses,
(1.4)	

and
(1.5)	

Consequently,	if	f(x,	t)	is	a	physical	quantity	in	Eulerian	form,	then
(1.6)	



gives	the	Lagrangian	description.	Conversely,	if	F(h,	t)	is	a	Lagrangian	quantity,
then
(1.7)	

gives	its	description	in	Eulerian	form.	The	duality	principle	expressed	by	(1.6)
and	 (1.7)	 is	 physically	meaningful;	 for	 example,	 (1.7)	 states	 that	 the	 Eulerian
measurement	 f	 made	 by	 an	 individual	 at	 x	 at	 time	 t	 coincides	 with	 the
measurement	F	made	by	one	moving	on	the	particle	h,	at	the	instant	t,	when	h	is
at	x.
The	chain	rule	shows	that	the	derivatives	are	related	by
(1.8)	

and
(1.9)	

where	 fx(x(h,	 t),	 t)	 means	 fx(x,	 t)	 evaluated	 at	 x	 =	 x(h,	 t),	 for	 example.	 Good
notation	 in	 fluid	 dynamics	 is	 essential.	 Here	 we	 have	 indicated	 explicitly	 the
points	 at	which	 the	derivatives	 are	 evaluated.	Shortcuts	 can	 sometimes	 lead	 to
confusing	 and	 little	 understood	 expressions	 and	 equations,	 and	writing	 out	 the
general	formulas	in	detail	at	least	once	can	dismiss	much	of	the	confusion.
We	are	now	prepared	to	introduce	displacement,	velocity,	and	acceleration,	the

key	 kinematical	 descriptors	 in	 classical	 mechanics.	 If	 x	 =	 h	 at	 t	 =	 0,	 the
displacement	U	=	U(h,	t)	of	the	section	h	is	defined	by

That	 is,	displacement	 is	where	 it	 is	now	minus	where	 it	was	at	 t	=	0.	This	 is	a
Lagrangian	 definition.	 The	 Eulerian	 form	 of	 displacement	 can	 be	 found	 by
substituting	h	=	h(x,	t):

As	in	classical	mechanics	we	define	the	velocity	of	a	particle	or	cross	section	h
as	the	time	rate	of	change	of	its	position,	or

which	 is	 the	 same	 as	V(h,	 t)	 =	Ut(h,	 t).	 The	 Eulerian	 form	 of	 the	 velocity	 is
defined	by

which	gives	the	velocity	of	the	cross	section	now	at	location	x.	The	acceleration
of	the	cross	section	labeled	h	is

Therefore,	 the	 acceleration	 of	 the	 cross	 section	 now	 at	 location	 x	 is	 given	 in



Eulerian	form	by

(1.10)	
From	(1.9)	it	follows	that

The	 time	 rate	 of	 change	 of	 a	 physical	 quantity	 following	 a	 cross	 section	 or
particle	h	 that	is	now	located	at	x,	such	as	occurs	on	the	right	side	of	(1.10),	 is
called	the	material	derivative	of	that	quantity.	Precisely,	the	material	derivative
of	f(x,	t)	is	defined	by

(1.11)	
where	on	the	right	we	have	explicitly	noted	that	the	derivative	is	taken	before	the
evaluation	 at	 h(x,	 t)	 is	 made.	 The	 quantity	 Df/Dt	 is	 interpreted	 as	 the	 time
derivative	of	F	following	the	cross	section	h,	frozen	at	the	instant	h	is	located	at
x.	From	(1.9)	it	easily	follows	that

(1.12)	
Therefore,	in	Eulerian	coordinates,	the	acceleration	can	be	written

Another	kinematic	relation	that	plays	an	important	role	in	the	derivation	of	the
governing	equations	is	the	time	rate	of	change	of	the	Jacobian	of	the	mapping	ϕ
defining	the	flow.	The	Jacobian	is	defined	by

Hence

or
(1.13)	

Equation	(1.13)	is	the	Euler	expansion	formula.	To	obtain	its	Eulerian	form,	we
let	h	=	h(x,	t),	so

where	j(x,	t)	=	J(h(x,	t),	t).

Example	8.1



At	t	=	0	let	0	≤	h	≤	1	and	define	a	fluid	motion	x(h,	t)	=	(1	+	t2)h.	The	inverse	is
h(x,	t)	=	x/(1	+	t2).	The	displacements	are

Where	are	the	cross	sections	when	t	=	2?	Clearly,	0	≤	x	≤	5.	The	velocities	are

If	 θ(x,	 t)	 =	 xt3	 is	 the	 laboratory	 temperature	 measured	 at	 time	 t,	 then	 the
Lagrangian	temperature,	riding	along	on	section	h,	is

The	 Eulerian	 acceleration	 can	 be	 computed,	 for	 example,	 by	 the	 material
derivative,	that	is,

Of	course,	 the	 latter	could	be	computed	easier	using	A(h,	 t)	=	Vt(h,	 t)	=	2h,	 so
that

Finally,	the	particle	paths	are	the	family	of	parabolas	x	=	(1	+	t2)h	in	the	tx	plane,
where	h	is	a	parameter	with	0	≤	h	≤	1.

Remark	8.2
Finally,	 for	 reference	we	 record	 a	 few	more	 kinematical	 relationships	 that	 are
useful	 in	 the	 sequel.	Let	 f(x,	 t)	 be	 a	Eulerian	measurement	with	 corresponding
Lagrangian	measurement	F(h,	t).	Then

1.	
2.	
3.	
4.	
5.	
6.	

The	proofs	of	these	identities	can	be	carried	out	by	the	chain	rule	and	are	left	as



exercises.



8.1.2	Mass	Conservation
The	 field	 equations	 that	 govern	 the	 motion	 of	 a	 one-dimensional	 continuous
medium	 express	 conservation	 of	 mass,	 momentum,	 and	 energy,	 and	 they	 are
universal	in	that	they	are	valid	for	any	medium.	In	this	section	we	derive	the	first
of	these,	mass	conservation.
The	derivation	is	based	on	a	Lagrangian	approach.	First,	we	find	the	analytic

implications	 of	 the	 fact	 that	 the	 mass	 in	 an	 arbitrary	 material	 portion	 of	 the
cylinder	at	t	=	0	does	not	change	as	 that	portion	of	material	moves	 in	 time.	At
time	t	=	0	we	consider	an	arbitrary	portion	of	fluid	between	x	=	a	and	x	=	b	(see
Fig.	8.3),	and	after	time	t	we	suppose	that	this	portion	of	fluid	has	moved	to	the
region	between	x	 =	a(t)	 =	 x(a,	 t)	 and	 x	 =	b(t)	 =	 x(b,	 t).	 If	 ρ(x,	 t)	 denotes	 the
density	of	the	fluid,	then	the	amount	of	fluid	between	a(t)	and	b(t)	is

Figure	8.3	A	material	quantity	of	fluid	at	t	=	0	and	at	t	>	0.

Mass	conservation	requires

(1.14)	
Using	 Leibniz’s	 formula	 for	 differentiating	 integrals	 with	 variable	 limits,	 we
could	proceed	directly	and	compute	the	left	side	of	(1.14)	to	get	a	local	form	of
the	law;	but	we	save	this	as	an	exercise.	We	prefer	instead	a	method	that	easily
generalizes	to	higher	dimensions	and	is	more	in	the	spirit	of	techniques	in	fluid
dynamics.	We	change	variables	in	(1.14)	according	to	x	=	x(h,	t).	Then	dx	=	J(h,
t)	dh,	and	(1.14)	becomes

(1.15)	



where	R(h,	t)	(read	as	an	uppercase	ρ)	is	the	Lagrangian	density	defined	by	R(h,
t)	=	ρ(x(h,	t),	t).	Note	that	(1.14)	has	been	changed	to	an	integral	with	constant
limits	so	that	the	derivative	may	be	brought	directly	under	the	integral	because	R
and	J	are	continuously	differentiable.	Consequently,

where	we	used	the	Euler	expansion	formula	(1.13).	Because	a	and	b	are	arbitrary
and	J	is	nonzero,	we	conclude	that
(1.16)	

from	which	we	get

or

(1.17)	
This	 is	 the	 conservation	of	mass	 law	 in	Lagrangian	 form.	The	Eulerian	 form
can	be	obtained	directly	from	(1.16)	by	substituting	h	=	h(x,	t).	We	get

(1.18)	
or
(1.19)	

Equation	(1.18),	or	(1.19),	is	known	as	the	continuity	equation,	and	it	is	one	of
the	fundamental	equations	of	one-dimensional	flow.	It	 is	a	first-order	nonlinear
partial	 differential	 equation	 in	 terms	 of	 the	 density	 ρ	 and	 velocity	 v.	 The
corresponding	Lagrangian	form	(1.17)	is	an	equation	involving	the	density	R	and
displacement	U.	 (Note	 V	 =	 Vt.)	 To	 close	 the	 system	 we	 need	 an	 additional
equation,	and	that	comes	from	momentum	balance.	We	record	the	main	result:

Remark	8.3
We	 can	 easily	 derive	 an	 alternate	 form	 of	 mass	 conservation	 in	 material
coordinates	by	writing	(1.17)	in	the	form



and	integrating	to	get

Special	 types	 of	 flows	 can	 be	 identified	 with	 corresponding	 simplifying
assumptions.

Definition	8.4
A	fluid	motion	is	said	to	be	incompressible	if

A	fluid	motion	is	steady	if	ρ	and	v	are	independent	of	t.
If	the	flow	is	incompressible,	then	it	easily	follows	that	vx	=	0,	or	Vh	=	0.	For

steady	flows,	(ρv)x	=	0,	or	Vh	=	0.

EXERCISES
1.	A	one-dimensional	flow	is	defined	by

a)	Sketch	the	particle	paths	on	xt	and	ht	diagrams.
b)	Find	V(h,	t)	and	v(x,	t).
c)	Verify	the	Eulerian	expansion	formula.
d)	Verify	that	Dv/Dt	=	vt	+	vvx.

e)	 If	 the	density	 is	R(h,	 t)	=	h2,	 find	 the	density	 that	an	observer	would
measure	at	x	=	1.

2.	Repeat	(a)	through	(e)	for	a	fluid	motion	defined	by .
3.	Repeat	(a)	through	(e)	for	a	fluid	motion	defined	by	 .
4.	Use	the	chain	rule	to	verify	(1.8)	and	(1.9).
5.	Show	that	 .
6.	For	a	valid	flow,	state	why	ux	<	1	and	Uh	>	−1.
7.	Show	 that	 the	material	derivative	operator	D/Dt	 is	 additive	and	satisfies
the	product	rule.	Show	that

8.	 The	 reciprocal	 W	 of	 the	 Lagrangian	 density	 R	 is	 called	 the	 specific
volume,	or	volume	per	mass.	If	at	time	t	=	0	the	density	is	a	constant,	R(h,	0)



=	ρ0,	prove	that	conservation	of	mass	and	momentum	can	be	expressed	as

9.	Show	that	the	Jacobian	J(h,	t)	is	given	by

and	therefore	measures	the	ratio	of	the	initial	density	to	the	density	at	time	t.
Interpret	 the	 meaning	 of	 the	 Jacobian	 when	 it	 is	 written	 in	 terms	 of	 the
specific	volume,

10.	Derive	the	continuity	equation	(1.19)	directly	by	calculating

using	Leibniz’	formula.
11.	Prove	that

for	 any	 sufficiently	 smooth	 function	g,	where	a(t)	≤	x	 ≤	 b(t)	 is	 a	material
region.
12.	 Write	 the	 differential	 equation	 Ft	 +	F2Fh	 =	 0,	 where	 F	 =	 F(h,	 t),	 in
Eulerian	form.



8.2	Momentum	and	Energy

8.2.1	Momentum	Conservation
In	 classical	 mechanics,	 a	 particle	 of	 mass	 m	 having	 velocity	 v	 has	 linear
momentum	mv.	 Newton’s	 second	 law	 asserts	 that	 the	 time	 rate	 of	 change	 of
momentum	of	 the	particle	 is	 equal	 to	 the	net	 external	 force	 acting	upon	 it.	To
generalize	this	law	to	one-dimensional	continuous	media	we	assume	the	balance
of	linear	momentum	principle,	which	states	that	the	time	rate	of	change	of	linear
momentum	 of	 any	 portion	 of	 the	 fluid	 equals	 the	 sum	 of	 the	 external	 forces
acting	upon	it.	The	linear	momentum	at	time	t	of	material	in	the	material	region
a(t)	≤	x	≤	b(t)	is	defined	by

where	i	is	the	unit	vector	in	the	positive	x	direction,	v(x,	t)	is	the	velocity,	and	A
is	the	cross-sectional	area.
The	 precise	 characterization	 of	 the	 forces	 acting	 on	 a	 material	 region	 in	 a

continuous	 medium	 was	 the	 result	 of	 ideas	 evolving	 from	 works	 of	 Newton,
Euler,	 and	 Cauchy.	 Basically,	 there	 are	 two	 types	 of	 forces	 that	 act	 on	 the
material	region,	body	forces	and	surface	forces.	Body	forces	are	forces	such	as
gravity,	or	an	electric	or	magnetic	field.	Such	a	force	is	assumed	to	act	on	each
cross	section	of	the	region	and	it	is	represented	by

The	 units	 of	 f	 are	 force	 per	 unit	mass,	 and	 the	 total	 body	 force	 acting	 on	 the
region	a(t)	≤	x	≤	b(t)	is	therefore

Surface	 forces	 are	 forces	 like	 pressure	 that	 act	 across	 sections	 in	 the	 fluid
medium.	More	 specifically,	 consider	 a	 cross	 section	 at	 time	 t	 located	 at	 x.	 By
σ(x,	t,	i)	we	denote	the	force	per	unit	area	on	the	material	on	the	negative	(left)
side	of	 the	 cross	 section	due	 to	 the	material	 on	 the	 positive	 (right)	 side	 of	 the
section.	 Similarly	 σ(x,	 t,	 −i)	 denotes	 the	 force	 per	 unit	 area	 exerted	 on	 the
material	on	 the	 right	 side	of	 the	 section	by	 the	material	 on	 the	 left	 side	of	 the



section.	By	convention,	 the	 third	argument	 in	σ,	here	either	 i	or	−i,	 is	 a	vector
that	 points	 outward	 and	normal	 from	 the	 surface	on	which	 the	 force	 is	 acting.
The	vectors	σ(x,	t,	i)	and	σ(x,	t,	−i)	are	called	surface	tractions	or	stress	vectors.
Figure	 8.4	 depicts	 a	 geometric	 description	 of	 these	 notions.	 Before	 a	 cross
section	 is	 indicated,	 no	 stress	 is	 defined;	 however,	 once	 a	 cross	 section	 x	 is
indicated,	the	forces	Aσ(x,	t,	i)	and	Aσ(x,	t,	−i),	which	are	exerted	on	the	shaded
and	 unshaded	 portions,	 respectively,	 are	 defined.	 In	 anticipation	 of	 what	 we
prove	 later,	 we	 have	 drawn	 these	 forces	 opposite	 and	 equal	 in	 Fig.	 8.4.	 At
present	 it	 is	not	known	 in	which	direction	 these	point.	And	we	emphasize	 that
the	third	argument	in	σ,	either	i	or	−i,	does	not	define	the	direction	of	the	stress
but	serves	only	to	indicate	the	orientation,	or	normal	direction,	of	the	surface	of
the	 section.	We	 can	 now	write	 a	 quantitative	 description	 of	 the	 balance	 of	 the
linear	momentum	principle	for	a	material	region	a(t)	≤	x	≤	b(t),

Figure	8.4	Stress	vectors.

(2.1)	
In	words,	 the	 time	 rate	of	change	of	momentum	of	 the	material	 region	 [a(t),

b(t)]	 equals	 the	 total	 body	 force	 plus	 the	 surface	 forces	 on	 [a(t),	 b(t)].	 A
schematic	of	 the	 forces	 is	 shown	 in	Fig.	8.5.	To	 put	 (2.1)	 in	 a	more	workable
form	we	calculate	the	left	side	in	a	similar	manner	as	was	done	for	the	integral
form	of	 the	 conservation	 of	mass	 equation	 in	 the	 preceding	 section.	Changing
variables	to	the	Lagrangian	coordinate	h	and	using	the	Euler	expansion	formula
gives



Figure	8.5	Forces	on	a	fluid	element.

From	the	mass	conservation	equation	(1.18)	it	follows	that

Hence,

(2.2)	
and	(2.1)	can	be	written

(2.3)	
This	equation	can	be	further	simplified	using	the	following	result,	which	is	 the
continuum	 mechanical	 version	 of	 the	 action–reaction	 principle	 expressed	 in
Newton’s	third	law.

Theorem	8.5
The	balance	of	linear	momentum	principle	expressed	by	(2.3)	implies
(2.4)	

for	any	cross	section	x.

Proof
Let	x0	be	arbitrary	with	a(t)	<	x0	<	b(t).	Applying	(2.3)	to	the	region	between	a(t)
and	x0	and	to	the	region	between	x0	and	b(t),	we	get



and

Adding	these	two	equations	and	then	subtracting	(2.3)	from	the	result	gives

which,	because	of	the	arbitrariness	of	x0,	proves	(2.4).
This	 result	 permits	 us	 to	 define	 the	 scalar	 stress	 component	 σ(x,	 t)	 by	 the

equation

Therefore	(2.3)	becomes

Because	the	interval	[a(t),	b(t)]	is	arbitrary,	we	have

(2.5)	
which	is	the	Eulerian	form	expressing	balance	of	linear	momentum.
It	 is	 straightforward	 to	 write	 the	 momentum	 equation	 in	 Lagrangian

coordinates.	We	use	T(h,	t)	to	denote	the	Lagrangian	stress;	so,	T(h,	t)	=	σ(x(h,	t),
t).	With	appropriate	evaluation	of	the	terms,	equation	(2.5)	is	clearly

or

Now	we	use	mass	conservation	in	the	form	(8.3)	to	get
(2.6)	
In	summary,	the	momentum	equations	are:

Conservation	of	mass	and	momentum	are	valid	in	a	general	sense,	but	they	do



not	account	for	the	differences	in	materials,	e.g.,	gases,	fluids,	solids,	etc.	And,
as	 yet,	 they	 are	 under-determined	 with	 more	 variables	 than	 equations.	 This
brings	us	 to	a	discussion	of	constitutive	 relations,	or	equations	 that	 specify	 the
stresses	in	a	material.

Example	8.6
(Barotropic	gas)	A	familiar	and	simple	form	of	the	equations	can	be	written	if
we	 take	 the	 stress	 to	 be	 σ(x,	 t)	 =	 −p(x,	 t),	 where	p	 is	 the	pressure.	 Then	 the
momentum	equation	(2.5)	with	no	body	forces	becomes

(2.7)	
If	we	further	impose	that	the	pressure	is	a	function	of	density	alone,	p	=	F(ρ),	the
mass	and	momentum	equations	become

which	 are	 the	 the	 equations	 for	 barotropic	 flow.	 Upon	 linearization	 about	 a
uniform	state,	these	equations	lead	to	the	acoustical	equations,	and	ultimately	the
wave	equation.



8.2.2	Stress	Waves	in	Solids
The	 general	 conservation	 laws	 for	 mass	 and	 momentum	 in	 continuous	 media
also	 hold	 for	 solid	 mechanics.	 Our	 physical	 model	 is	 a	 solid	 cylindrical	 bar
where	 we	 seek	 to	 describe	 longitudinal	 vibrations,	 that	 is,	 the	 motion	 of	 the
planar	 cross	 sections	 of	 the	 bar.	 Because	 we	 want	 to	 keep	 track	 of	 the
displacements	of	these	sections,	we	write	the	governing	equations	in	Lagrangian
form	with	displacement	as	a	dependent	quantitiy,	or
(2.8)	
(2.9)	

To	close	the	system	we	need	a	constitutive	relation	for	the	stress	T(h,	t)	in	terms
of	the	remaining	dependent	variables.	Unfortunately,	this	greatly	depends	on	the
type	of	material	we	are	considering,	e.g.,	a	metal,	a	crystal	lattice,	an	elastomer
with	interwoven	polymer	chains,	a	viscoelastic	material,	and	so	on.	The	internal
forces	differ	tremendously	in	these	materials.
Here	 we	 focus	 on	 elastic	 materials	 and	 attempt	 to	 formulate	 a	 constitutive

assumption	relating	the	distortion	(compression	or	elongation)	the	bar	undergoes
subject	to	an	applied	stress.	To	define	the	distortion	we	consider	at	time	t	=	0	a
small	portion	of	 the	bar	between	h	and	h	+	Δh0	At	 time	 t	 >	 0	 this	material	 is
located	between	x(h,	t)	and	x(h	+	Δh,	t).	The	distortion	is	the	fractional	change
given	by

We	define	 the	 strain	E	 to	be	 the	 lowest-order	 approximation	of	 the	distortion,
that	is,

If	U(h,	t)	denotes	the	displacement	of	a	cross	section	h	at	time	t,	then	x(h,	t)	=	h
+	U(h,	t)	and

(2.10)	



The	constitutive	relation	is	an	equation	that	gives	the	Lagrangian	stress	T(h,	t)
as	a	definite	function	of	 the	strain	E(h,	 t).	Quite	generally,	 the	graph	may	 look
like	 the	stress-strain	curve	T	=	g(E)	shown	in	Fig.	8.6.	 If,	however,	only	small
strains	 are	 of	 interest,	 then	 the	 stress-strain	 curve	 can	 be	 approximated	 by	 a
straight	line	by	a	linear	equation

Figure	8.6	Stress	T	vs.	strain	E.	The	strain	is	E	=	Uh	and	Y	is	Young’s	modulus.

(2.11)	
The	 constant	 proportionality	 factor	 Y	 is	 called	 Young’s	 modulus2	 or	 the
stiffness,	and	the	linear	stress–strain	relation	(2.11)	is	called	Hooke’s	law,3.	We
are	assuming	that	Y	does	not	depend	on	time	t;	time-dependent	materials	are	said
to	have	memory.	With	this	assumption,	the	momentum	equation	(2.9)	becomes
(2.12)	

which	 is	 a	 one-dimensional	 wave	 equation	 for	 the	 displacement	U.	 Once	 this
equation	is	solved	for	U,	then	the	mass	balance	equation	(2.8)	gives	the	density
R(h,	t).
Generally,	a	rod	of	finite	extent,	0	≤	h	≤	l,	is	subject	to	boundary	conditions	at

its	ends	h	=	0,	h	=	l.	For	definiteness	we	focus	on	the	end	h	=	l.	Clearly	if	the	end
is	held	fixed,	then

If	the	end	is	free,	or	no	force	acts	on	the	face	at	h	=	l,	then	T(l,	t)	=	0	or	Y(l)E(l,
t)>=	0,	or

Other	conditions	are	possible.	For	example,	if	the	left	end	is	fixed,	for	example,
attached	to	a	rigid	wall,	and	the	right	end	is	attached	to	a	Hookean	spring	that	is



attached	to	a	wall,	having	spring	constant	k,	then	the	boundary	conditions	are

where	A	is	the	area	of	the	face,	and	k	is	given	in	force	per	length.

Remark	8.7
(Units)	From	a	practical	 viewpoint,	we	note	 that	Young’s	modulus	 is	 given	 in
GPa	 (giga	Pascals),	an	mks	unit	 for	 stress.	A	Pascal	 is	one	Newton	per	meter-
squared,	 and	 the	 prefix	 giga	 means	 109.	 So,	 Young’s	 modulus	 is	 large.	 For
example,	common	materials	are	diamond	(1000	GPa),	stainless	steel	(200	GPa),
and	rubber	(0.007	GPa).

Example	8.8
(Elongation	of	an	elastic	cord)	Consider	a	long,	thin	elastic	cord	(say,	a	bungee
cord)	 that	 has	 natural	 length	L0,	 constant	modulus	Y,	 and	 constant	 density	R0.
Then	the	cord	is	hung	vertically	and	stretches	under	the	force	of	gravity	g.	How
much	 does	 it	 stretch?	 We	 wait	 until	 the	 system	 is	 in	 steady	 state,	 so	 the
governing	equation	is

Using	T	=	0	at	h	=	L0	after	integration	gives

Finally,	substituting	T	=	YUh	and	then	integrating	again	gives

Setting	h	=	L0	gives	the	final	hanging	length

Eulerian	 formulation.	 In	 Eulerian	 coordinates,	 the	 constitutive	 assumption
becomes
(2.13)	

where	σ(x,	t)	=	T(h(x,	t),	t),	y(x,	t)	=	Y(h(x,	t)),	and	ε(x,	t)	=	E(h(x,	t),t).	Using	the
relation



where	u	is	the	Eulerian	displacement,	Hooke’s	law	(2.13)	can	be	written

(2.14)	
Then,	σ	can	be	eliminated	from	the	momentum	equation	(2.8)	to	obtain

(2.15)	
In	summary,	this	momentum	equation	(2.15)	and	the	mass	conservation	equation
(2.16)	

give	two	equations	for	the	three	unknowns	v,	u,	and	ρ.	The	third	equation	is	the
defining	relationship	between	u	and	v,

(2.17)	
The	Eulerian	equations	(2.15),	(2.16),	and	(2.17)	are	nonlinear	equations,	and

the	constitutive	equation	(2.14)	is	nonlinear	as	well.	This	 is	 in	stark	contrast	 to
the	 Lagrangian	 equations.	 Thus,	 linearity	 in	 one	 formulation	 does	 not	 imply
linearity	in	the	other.
Further,	 equations	 (2.15),	 (2.16),	 and	 (2.17)	 cannot	 be	 resolved	 analytically.

However,	 as	 was	 the	 case	 in	 the	 acoustic	 approximation,	 we	 can	 obtain	 a
linearized	 theory	 for	 small	 displacements	 u.	 To	 this	 end,	 consider	 a	 bar	 with
initial	 density	 ρ0(x)	 and	 stiffness	 (Young’s	 modulus)	 y0(x).	 For	 a	 small
displacement	 theory	assume	u	 and	 its	 derivatives	 are	 small	 compared	 to	 unity.
From	(2.17),

and

Let	 	denote	a	small	deviation	from	the	initial	density	ρ0(x);	that	is,

Then,	using	the	mean	value	theorem,

where	0	<	ť	<	t	and	x	<	 	<	x	−	u.	Hence	the	deviation	 	is	small	provided	that	u
and	 t	 are	 small	 and	 that	 the	 derivatives	 Rh	 and	 Rt	 are	 bounded.	 A	 similar



calculation	shows	that	if	y(x,	t)	=	y0(x)	+	 (x,	t),	then	the	deviation	 	satisfies	the
equality	 | (x,	 t)|	 =	 |Yh( )u|,	 and	 therefore	 	 is	 small	 if	 u	 is	 small	 and	 Yh	 is
bounded.
With	this	information,	the	momentum	equation	can	be	written	(taking	f	=	0)

Retaining	 the	 lowest-order	 terms	 gives	 the	 linearized,	 small	 displacement
equation

(2.18)	
Subject	 to	 the	 assumptions	 in	 the	 last	 paragraph	 we	 may	 expect	 (2.18)	 to

govern	small	longitudinal	vibrations	of	a	bar	of	density	ρ0(x)	and	stiffness	y0(x).
Notice	that	the	unknown	density	dropped	out	of	(2.15)	and	could	be	replaced	by
the	initial	density	ρ0(x).	Therefore	(2.18)	is	one	equation	in	the	single	unknown
u;	the	conservation	of	mass	equation	is	then	a	consistency	relation.
If	ρ0(x)	=	ρ0	and	y0(x)	=	y0,	where	ρ0	and	y0	are	constants,	then	(2.18)	reduces

to	the	classical	wave	equation

If	the	extent	of	the	rod	is	0	≤	x	≤	l,	then	the	wave	equation	is	accompanied	by
boundary	conditions.	For	a	fixed	endpoint,	say	at	x	=	l,	then

If	the	end	is	free	(no	stress),	then

A	properly	posed	problem	for	determining	 the	small	displacements	u(x,	 t)	 of	 a
bar	 of	 length	 l	 with	 stiffness	 y0(x)	 and	 density	 ρ0(x)	 consists	 of	 the	 partial
differential	equation	(2.18)	along	with	boundary	conditions	at	x	=	0	and	x	 =	 l,
and	with	initial	conditions	of	the	form

where	 u0(x)	 and	 v0(x)	 are	 the	 given	 initial	 displacement	 and	 velocity,
respectively.

EXERCISES



1.	 Derive	 the	 conservation	 of	 mass	 and	 momentum	 equations	 for	 one-
dimensional	flow	in	a	cylinder	of	variable	(Lagrangian)	cross-sectional	area
A(h,	t).	Assume	A(h,	t)	=	A(h,	0)	for	all	t	>	0.	Specifically,	show

where	a(x,	t)	=	A(h(x,	t),0).
2.	A	rubber	cord	of	natural	length	15	meters	is	hung	vertically	from	a	bridge.
Its	density	is	1200	kg	per	cubic	meter,	and	its	modulus	is	0.007	GPa.	What	is
it	hanging	length?
3.	A	time-periodic	solution	of	the	wave	equation

of	the	form

subject	to	boundary	conditions	at	x	=	0	and	x	=	l,	is	called	a	standing	wave.
The	 set	 of	 values	 ω	 and	 the	 corresponding	 spatial	 distributions	 ω(x)	 are
called	 the	 fundamental	 frequencies	 and	 normal	 modes	 of	 vibration,
respectively.	Determine	the	fundamental	frequencies	and	normal	modes	for
the	following	wave	equations.

a)	

b)	

c)	

d)	



8.2.3	Thermodynamics	and	Energy
Conservation
The	Euler	equations	of	motion	 for	a	one-dimensional	continuum	with	no	body
forces	are
(2.19)	

(2.20)	
This	 is	a	pair	of	 first-order	nonlinear	partial	differential	equations	for	 the	 three
unknowns	ρ,	v,	and	p.	 Intuition	 tells	us	 that	a	 third	equation	is	needed.	Further
reflection	dictates	that	particular	physical	properties	of	the	medium	must	play	a
role,	and	such	properties	are	not	included	in	(2.19)–(2.20),	which	are	completely
general	 and	 hold	 for	 any	 continuum.	 Equations	 that	 specify	 properties	 of	 the
medium	 are	 known	 as	 equations	 of	 state	 or	 constitutive	 relations.	 Such
equations	give	relations	between	observable	effects	and	the	internal	constitution
of	 the	material,	 and	 they	 are	 generally	 expressible	 in	 terms	 of	 thermodynamic
variables	such	as	density,	pressure,	energy,	entropy,	temperature,	and	so	on.

Example	8.9
(Barotropic	gas)	In	Example	8.6	we	introduced	a	simple	barotropic	equation	of
state	where	the	pressure	depends	only	upon	the	density,	or
(2.21)	

where	 F	 is	 a	 given	 differentiable	 function	 and	 F′(ρ)	 >	 0.	 For	 example,	 the
barotropic	equation	of	state

is	a	law	used	for	many	gases,	called	γ-law	gases	(e.g.,	air	is	a	gamma	law	gas).
Implicit	 in	 (2.21)	 is	 the	 assumption	 that	 other	 thermodynamic	 variables,	 e.g.,
temperature,	are	not	involved.	The	barotropic	gas	describes	only	certain	classes
of	flows.
Therefore,	 in	contrast	 to	(2.21),	 it	 is	more	often	 the	case	 that	 the	equation	of

state	 introduces	 yet	 another	 unknown	 variable	 in	 the	 problem,	 such	 as	 the
temperature.	 If	 that	 is	 the	case,	 then	still	another	equation	 is	 required.	Such	an
equation	 must	 come	 from	 energy	 conservation.	 For	 general	 fluid	 motions	 a
complete	 set	 of	 field	 equations	 usually	 consists	 of	 conservation	 equations	 for



mass,	momentum,	and	energy,	as	well	as	one	or	more	constitutive	 relations.	A
discussion	of	 energy	 conservation	naturally	 entails	 development	of	 some	basic
concepts	in	equilibrium	thermodynamics.
Classic	 thermodynamics	 deals	 with	 relations	 between	 equilibrium	 states	 of

uniform	matter	 and	 the	 laws	 that	 govern	 changes	 in	 those	 states.	 It	 is	 implicit
that	the	changes	occur	through	a	sequence	of	uniform	equilibrium	states,	and	the
usual	 results	 of	 equilibrium	 thermodynamics	 apply.	 (It	 is	 possible	 to	 imagine
processes	 that	 take	 place	 so	 rapidly	 that	 local	 fluid	 elements	 are	 incapable	 of
establishing	 instantaneous	 equilibrium.	 Such	 processes	 belong	 to	 the	 study	 of
nonequilibrium	 fluid	 dynamics.)	 Each	 thermodynamic	 quantity,	 such	 as
temperature,	 pressure,	 and	 so	 on,	 is	 assumed	 to	 be	 a	 function	 of	 position	 and
time,	 and	 thermodynamical	 relations	 are	 assumed	 to	 hold	 locally.	 To	 illustrate
this	 principle,	 consider	 a	 hypothetical	 gas	 in	 a	 container	 and	 let	P,	 R,	 and	 Θ
denote	 its	 pressure,	 density,	 and	 temperature,	 respectively.	 It	 is	 observed
experimentally	 that	 the	 ratio	 of	 pressure	 to	 density	 is	 proportional	 to	 the
temperature,	or

(2.22)	
where	 	 is	 the	 constant	 of	 proportionality,	 characteristic	 of	 the	 gas.	 Equation
(2.22)	is	a	Lagrangian	statement	because	it	holds	for	a	material	volume	of	gas.
The	assumption	of	local	thermodynamic	equilibrium	allows	us	to	assume	that

where	 p,	 ρ,	 and	 the	 temperature	 θ	 are	 the	 local	 Eulerian	 quantities	 that	 are
functions	of	x	and	t.

Example	8.10
(Ideal	gas)	Under	normal	conditions	most	gases	obey	the	ideal	gas	law
(2.23)	
(2.24)	

where	p	is	pressure,	ρ	is	density,	θ	is	temperature,	and	e	is	the	internal	energy	per
unit	mass	 (or	 specific	 internal	 energy).	 The	 constant	 cv	 is	 the	 specific	 heat	 at
constant	 volume	 and	 .	 is	 the	 gas	 constant	 for	 the	 particular	 gas.	 A	 gas
satisfying	(2.23)	and	(2.24)	is	called	an	ideal	gas	and	many	compressible	fluids
of	 practical	 interest	 can	 be	 treated	 approximately	 as	 ideal	 gases.	Hence	 (2.23)
and	 (2.24)	 describe	 a	 wide	 range	 of	 phenomena	 in	 fluid	 dynamics.	 These



equations	coupled	with	 (2.19)	 and	 (2.20)	 give	 only	 four	 equations	 for	 the	 five
unknowns	 p,	 v,	 ρ,	 θ,	 and	 e,	 so	 it	 is	 again	 evident	 that	 another	 equation	 is
required.
A	 common	 statement	 of	 the	 first	 law	 of	 thermodynamics	 is	 that	 energy	 is

conserved	 if	heat	 is	 taken	 into	 account.	Thus,	 the	 first	 law	of	 thermodynamics
provides	a	concise	statement	of	energy	conservation.	It	comes	from	considering
the	consequences	of	adding	a	small	amount	of	heat	to	a	unit	mass	of	a	material
substance	in	a	way	that	equilibrium	conditions	are	established	at	each	step.	Some
of	 the	 energy	 will	 go	 into	 the	 work	 pd(1/ρ)	 done	 in	 expanding	 the	 specific
volume	 1/ρ	 by	 d(1/ρ),	 and	 the	 remainder	 will	 go	 into	 increasing	 the	 specific
internal	energy	e	by	de.	The	precise	relationship	is

(2.25)	
where	 the	 differential	 form	 q	 is	 the	 heat	 added.	 For	 an	 equilibrium	 process
equation	(2.25)	is	the	first	law	of	thermodynamics.	In	general,	q	is	not	an	exact
differential,	that	is,	there	does	not	exist	a	state	function	Q	for	which	q	=	dQ.	If	q
=	0,	then	the	process	is	called	adiabatic.

Example	8.11
(Equations	of	state)	For	an	ideal	gas	described	by	equations	(2.23)	and	(2.24),
we	have

(2.26)	
From	(2.26)	we	notice	that	θ−1	is	an	integrating	factor	for	the	differential	form	q.
Therefore

where
(2.27)	

is	the	entropy.	Consequently,	for	an	ideal	gas	the	first	law	(2.25)	takes	the	form

(2.28)	
Equation	(2.27)	may	also	be	written	in	terms	of	the	pressure	as

(2.29)	
where



and	k	 is	a	constant.	Combining	(2.23)	and	(2.24)	gives	yet	another	 form	of	 the
equation	of	state,	namely

(2.30)	
Finally,	in	some	contexts,	particularly	in	studying	chemical	reactions,	it	is	useful
to	 introduce	 the	enthalpy	h	 defined	by	h	 =	e	 +	p/ρ.	For	 an	 ideal	gas	h	 =	cpθ,
where	cp	=	 	+	cv	is	the	specific	heat	at	constant	pressure.	Hence	γ	=	cp/cv	is	the
ratio	 of	 specific	 heats.	 For	 air,	 γ	 =	 1.4,	 and	 for	 a	 monatomic	 gas,	 .
Generally,	γ	>	1.

Example	8.12
Other	equations	of	state	have	been	proposed	to	include	various	effects.	The	Abel
or	Clausius	equation	of	state,

introduces	a	constant	covolume	α	to	account	for	the	size	of	the	molecules.	The
van	der	Waals	equation	of	state

contains	 the	 term	 βρ2	 to	 further	 account	 for	 intermolecular	 forces.	 The	 Tait
equation

where	 	and	B	are	constants,	has	been	used	to	model	the	behavior	of	liquids	at
high	pressures.
We	now	formulate	a	partial	differential	equation	governing	the	flow	of	energy

in	a	system.	The	approach	is	consistent	with	the	earlier	development	of	balance
laws	in	integral	form.	Let	[a(t),	b(t)]	be	a	one-dimensional	material	region	with
cross-sectional	area	A.	We	define	the	kinetic	energy	of	the	fluid	in	the	region	by

and	the	internal	energy	in	the	region	by



By	the	general	conservation	of	energy	principle	the	time	rate	of	change	of	the
total	energy	equals	the	rate	that	the	forces	do	work	on	the	region	plus	the	rate
that	heat	flows	into	the	region.	There	are	two	forces,	the	body	force	f(x,	t)	acting
at	each	cross	section	of	the	region,	and	the	stress	σ(x,	t)	acting	at	the	two	ends.
Since	force	times	velocity	equals	the	rate	work	is	done,	the	total	rate	that	work
is	done	on	the	region	is

The	rate	that	heat	flows	into	the	region	is	AJ(a(t),	t)	−	AJ(b(t),	t),	where	J(x,	t)
is	the	heat	flux	in	energy	units	per	unit	area	per	time.	Therefore,	we	postulate	the
balance	of	energy	law

or

Assuming	sufficient	smoothness	of	the	state	variables	and	using	the	arbitrariness
of	the	interval	[a(t),	b(t)],	we	have	the	following	Eulerian	differential	form	of	the
conservation	of	energy	law:

(2.31)	
Equation	(2.31)	 can	 be	 recast	 into	 various	 forms.	 First,	multiplication	 of	 the

momentum	balance	equation	(2.5)	by	v	gives

Subtracting	this	from	(2.31)	gives	an	equation	for	the	rate	of	change	of	internal
energy

(2.32)	
An	alternate	approach	 to	energy	conservation	comes	 from	an	examination	of

the	 first	 law	 of	 thermodynamics	 (2.25).	 The	 second	 law	 of	 thermodynamics



states	that	the	differential	form	q	in	general	has	integrating	factor	θ−1	and	θ−1q	=
ds,	where	s	is	the	entropy	and	θ	is	the	absolute	temperature.	Thus

This	 combined	 form	 of	 the	 first	 and	 second	 laws	 of	 thermodynamics	 can	 be
reformulated	 as	 a	 partial	 differential	 equation.	 Because	 it	 refers	 to	 a	 given
material	region,	we	postulate

(2.33)	
which	is	another	local	form	of	the	conservation	of	energy	principle.	Noting	that
Dρ−1/Dt	=	 -(1/ρ2)Dρ/Dt	=	 -(1/ρ)vx	 and	putting	σ	=	−p,	equation	(2.33)	may	be
subtracted	from	(2.32)	to	obtain

which	relates	the	entropy	change	to	the	heat	flux.	If	we	assume	the	constitutive
relation	J	=	−Kθx,	which	is	Fourier’s	law,	then	the	energy	equation	(2.33)	can	be
expressed	as

(2.34)	

Example	8.13
(Adiabatic	flow)	 In	adiabatic	 flow	θDs/Dt	=	0,	and	 the	energy	equation	(2.33)
becomes

(2.35)	
Equations	(2.19),	(2.20),	and	(2.35),	along	with	a	thermal	equation	of	state	p	=
p(ρ,	θ)	and	a	caloric	equation	of	state	e	=	e(ρ,	θ),	give	a	set	of	five	equations	for
the	unknowns	ρ,	v,	p,	e,	and	θ.

Example	8.14
(Ideal	gas)	For	adiabatic	flow	of	an	ideal	gas,	expression	(2.30)	for	the	energy
can	be	substituted	into	(2.35)	to	obtain

(2.36)	
Equations	(2.19),	(2.20),	and	(2.36)	give	three	equations	for	ρ,	v,	and	p.	Because



Ds/Dt	=	0,	 the	 entropy	 is	 constant	 for	 a	given	 fluid	particle	 (cross	 section);	 in
Lagrangian	form	S	=	S(h).	 In	 this	case	 the	equations	governing	adiabatic	 flow
are	often	written

along	 with	 the	 equation	 of	 state	 (2.29),	 giving	 p	 =	 p(s,	 ρ).	 If	 the	 entropy	 is
constant	initially,	that	is,	S(h,	0)	=	s0	for	all	h,	then	s(x,	t)	=	S0	for	all	x	and	t,	and
the	resulting	adiabatic	flow	is	called	isentropic.	This	case	reduces	to	barotropic
flow	as	discussed	earlier.
In	general,	for	nonadiabatic	flow	involving	heat	conduction,	equations	(2.19),

(2.20),	 and	 (2.34),	 along	with	 thermal	 and	 caloric	 equations	 of	 state	 give	 five
equations	for	ρ,	v,	p,	e,	and	θ.	If	there	is	no	motion	(v	=	0)	and	s	=	cv	ln	θ+	const.,
then	(2.34)	reduces	to	the	classic	diffusion	equation

EXERCISES
1.	By	introducing	the	enthalpy	h	=	e	+	p/ρ	into	the	energy	equation	De/Dt+
pD(ρ−1)/Dt	=	0,	show	that	for	steady	flow

Prove	that

2.	Derive	(2.29)	and	(2.33).
3.	Show	 that	 the	equations	governing	 the	one-dimensional,	 time-dependent
flow	of	a	compressible	fluid	under	constant	pressure	are

Subject	to	initial	conditions	v(x,	0)	=	f(x),	ρ(x,	0)	=	g(x),	and	e(x,	0)	=	h(x),
where	f,	g,	and	h	are	given	smooth	functions	with	nonnegative	derivatives,
derive	the	solution	v	=	f(x	−	vt)	and

Here,	e	is	measured	in	energy	per	unit	volume.



8.3	Gas	Dynamics

8.3.1	Riemann’s	Method
Heretofore	 there	 has	 been	 little	 discussion	 of	 how	 fluid	 motion	 begins.	 It	 is
common	in	gas	dynamics,	or	compressible	fluid	dynamics,	to	imagine	the	flow
being	 induced	 by	 the	 motion	 of	 a	 piston	 inside	 the	 cylindrical	 pipe.	 Such	 a
device	is	not	as	unrealistic	as	it	may	first	appear.	The	piston	may	represent	 the
fluid	on	one	side	of	the	valve	after	it	is	opened	or	it	may	represent	a	detonator	in
an	 explosion	 process;	 while	 in	 aerodynamics	 it	 may	 represent	 a	 blunt	 object
moving	into	a	gas.
Accordingly,	we	set	up	and	solve	a	simple	problem	using	Riemann’s	method,

which	is	used	in	more	general	problems	in	gas	dynamics.	We	consider	a	gas	in	a
tube	initially	in	the	constant	state
(3.1)	

with	equation	of	state
(3.2)	

To	 initiate	 the	 motion	 a	 piston	 located	 initially	 at	 x	 =	 0	 is	 withdrawn	 slowly
according	to
(3.3)	

where	X	is	given	function	(see	Fig.	8.7).	The	problem	is	to	determine	v,	p,	c,	and
ρ	for	all	t	>	0	and	X(t)	<	x	<	∞.	We	may	regard	this	as	a	boundary	value	problem
where	initial	conditions	are	given	along	the	positive	x	axis	and	v	is	given	by	the
piston	 velocity	 along	 the	 piston	 path	 (see	Fig.	8.8).	The	method	 of	 solution	 is
motivated	by	 the	study	of	 the	simple	nonlinear	model	equation	ut	+	c(u)ux	=	0
from	 Chapter	 7.	 There	 we	 were	 able	 to	 define	 a	 family	 of	 curves	 called
characteristics	 along	 which	 signals	 propagated	 and	 along	 which	 the	 partial
differential	equation	reduced	to	an	ordinary	differential	equation.	In	the	case	of
this	model	equation	du/dt	=	0	along	dx/dt	=	c(u).	We	follow	a	similar	strategy	for
the	 nonlinear	 acoustic	 equations	 in	 Chapter	 7,	 equations	 (4.7)	 and	 (4.8),	 and
attempt	 to	 find	 characteristic	 curves	 along	 which	 the	 partial	 differential
equations	 reduce	 to	 simpler	 equations.	To	 this	 end	we	multiply	 (4.7)	 by	 c	 and
then	add	and	subtract	it	from	(4.8)	to	obtain



Figure	8.7	Piston	problem.	A	receding,	decelerating	piston

Figure	8.8	Space-time	diagram	of	the	piston	problem.

(3.4)	
(3.5)	

Hence,	along	the	families	of	curves	C+	and	C−	defined	by

(3.6)	

(3.7)	
we	have

(3.8)	

(3.9)	
Equations	(3.8)	and	(3.9)	may	be	rewritten	as

Integrating	gives

(3.10)	



(3.11)	
The	left	sides	of	(3.10)	and	(3.11)	are	called	the	Riemann	invariants;	 they	are
quantities	that	are	constant	along	the	characteristic	curves	C+	and	C−	defined	by
(3.6)	and	(3.7).	If	the	equation	of	state	is	defined	by	(3.2),	then

and

Therefore,	the	Riemann	invariants	are

(3.12)	

(3.13)	
We	 have	 enough	 information	 from	 the	 Riemann	 invariants	 to	 determine	 the

solution	of	the	piston	withdrawal	problem.	First	consider	the	C−	characteristics.
Since	c	=	c0	when	v	=	0	 the	characteristics	 that	begin	on	 the	x	axis	 leave	with
speed	−c0	 and	 the	 constant	 in	 (3.13)	 has	 valued	 2c0/(γ	 −	 1).	Hence	 on	 the	C−

characteristics

(3.14)	
Since	 the	 last	 equation	 must	 hold	 along	 every	C−	 characteristic	 it	 must	 hold
everywhere	and	therefore	r-	is	constant	in	the	entire	region	t	>	0,	X(t)	<	x	<	∞.
The	C−	characteristics	must	end	on	the	piston	path,	since	their	speed	vp	−	cp	at
the	piston	 is	more	negative	 than	 the	 speed	vp	 of	 the	piston	 (see	Fig.	8.9).	 It	 is
easy	to	see	that	the	C+	characteristics	are	straight	lines.	Adding	and	subtracting
(3.14)	and	(3.12)	shows

Figure	8.9	C+	and	C−	characteristics.	The	C+	characteristics	are	slowly	fanning
out.



We	have	used	 the	 fact	 that	 (3.14)	 holds	 everywhere.	The	 speed	v	 +	c	 of	 a	C+
characteristic	 is	 therefore	 constant	 and	 thus	 the	 characteristic	 is	 a	 straight	 line.
The	C+	characteristics	emanating	from	the	x	axis	have	speed	c0	(since	v	=	0	on
the	x	axis)	and	carry	the	constant	state	v	=	0,	c	=	c0,	p	=	p0,	ρ	=	ρ0	into	the	region
x	>	c0t.	This	is	just	the	uniform	state	ahead	of	the	signal	x	=	c0t	beginning	at	the
origin	traveling	at	speed	c0	into	the	constant	state.	This	signal	indicates	the	initial
motion	of	the	piston.
A	C+	characteristic	beginning	on	the	piston	at	(T	(τ),	τ)	and	passing	through	(x,

t)	has	equation
(3.15)	

The	 speed	v	 +	c	 can	 be	 calculated	 as	 follows.	 Clearly	 v	 =	X’(t),	 which	 is	 the
velocity	of	the	piston.	From	(3.14)

and	hence

Thus

(3.16)	
is	the	equation	of	the	desired	C+	characteristic	(see	Fig.	8.10).	The	fact	that	v,	c,
p,	and	ρ	are	constant	on	the	C+	characteristics	gives	the	solution



Figure	8.10	Positive	characteristic	carrying	information	from	the	piston	path.

where	τ	is	given	implicitly	by	(3.16).	Obviously

The	 quantities	 p	 and	 ρ	 may	 be	 calculated	 from	 the	 equation	 of	 state	 and	 the
definition	 of	 c2.	 Qualitatively	 we	 think	 of	 C−	 characteristics	 as	 carrying	 the
values

from	 the	 constant	 state	 back	 into	 the	 flow.	 The	 C+	 characteristics	 carry
information	from	the	piston	forward	into	the	flow.	Whenever	one	of	the	Riemann
invariants	 is	 constant	 throughout	 the	 flow,	 we	 say	 that	 the	 solution	 in	 the
nonuniform	 region	 is	 a	 simple	 wave.	 It	 can	 be	 shown	 that	 a	 simple	 wave
solution	 always	 exists	 adjacent	 to	 a	 uniform	 state	 provided	 that	 the	 solution
remains	smooth.	A	complete	analysis	is	given	in	Courant	and	Friedrichs	(1948).
In	 the	 piston	withdrawal	 problem	 previously	 discussed	we	 assumed	 that	 the

piston	path	x	=	X(t)	satisfied	the	conditions	X’(t)	<	0	and	X″(t)	<	0,	which	means
the	 piston	 is	 always	 accelerating	 backward.	 If	 there	 is	 ever	 an	 instant	 of	 time
when	 the	piston	 slows	down,	 that	 is,	X″(t)	>	0,	 then	 a	 smooth	 solution	 cannot
exist	for	all	 t	>	0,	for	two	distinct	C+	characteristics	emanating	from	the	piston
will	 cross.	 Suppose,	 for	 example,	 that	 τ1	 and	 τ2	 are	 two	 values	 of	 t	 in	 a	 time
interval	where	X″(t)	>	0.	The	speed	of	characteristics	leaving	the	piston	is

If	τ1	<	τ2,	then	X′	(τ1)	<	X′	(τ2)	and	it	follows	that	v	+	c	at	τ1	is	smaller	than	v	+	c



at	τ2.	Therefore	 the	characteristic	emanating	from	(X	 (τ2),	τ2)	 is	 faster	 than	 the
characteristic	 emanating	 from	 (X	 (τ1),	 τ1).	 Thus	 the	 two	 characteristics	 must
cross	(see	Fig.	8.11).

Figure	8.11	Colliding	positive	characteristics.

Example	8.15
Beginning	at	time	t	=	0	a	piston	located	at	x	−	0	moves	forward	into	a	gas	under
uniform	conditions	with	equation	of	state	given	by	(3.2).	Its	path	is	given	by	X(t)
=	at2,	a	>	0.	We	determine	the	first	instant	of	time	that	two	characteristics	cross
and	the	wave	breaks.	For	this	problem	the	preceding	analysis	remains	valid	and
the	C+	characteristics	emanating	from	the	piston	have	equation	(3.16)	or

or

(3.17)	
Along	such	a	characteristic	v	is	constant	and	hence

where	τ	=	τ(x,	t)	is	to	be	determined	from	(3.17).	To	solve	(3.17)	for	τ	requires
by	the	implicit	function	theorem	that	Fτ(x,	t,	τ)	≠	0.	Since	Fτ	=	2γaτ	+	(c0	−	(γ	+
1)at),	the	first	instant	of	time	t	that	(3.17)	cannot	be	solved	for	τ	is

That	is,	the	breaking	time	tb	will	occur	along	the	first	characteristic	(indexed	by
τ)	where	Fτ	=	0.	The	characteristic	diagram	is	shown	in	Fig.	8.12	in	the	special
case	a	=	c0	=	1	and	γ	=	3.



Figure	8.12	The	positive	characteristics	emanating	from	the	piston	path	and
forming	an	envelope.	The	characteristics	intersect	in	the	region	between	the
envelope	and	the	curve	x	=	c0t.	The	shock	begins	at	time	tb



8.3.2	Rankine–Hugoniot	Conditions
As	 we	 observed	 earlier	 smooth	 solutions	 break	 down	 when	 characteristics
intersect,	since	constant	values	are	carried	along	the	characteristics.	The	solution
that	develops	is	a	discontinuous	one	and	it	propagates	as	a	shock	wave.	We	now
determine	what	 conditions	 hold	 across	 such	 a	 discontinuity.	We	 proceed	 as	 in
Section	8.1	where	conservation	laws	are	discussed.
The	integral	form	of	the	conservation	of	mass	law,	namely

(3.18)	
holds	in	all	cases,	even	when	the	functions	ρ	and	v	are	not	smooth.	In	Chapter	7
we	derived	the	jump	condition	across	a	shock,	which	we	briefly	review.	Let	x	=
s(t)	be	a	smooth	curve	in	space–time	that	intersects	the	interval	a	≤	x	≤	b	at	time
t,	 and	 suppose	 v,	 ρ,	 and	 p	 suffer	 simple	 discontinuities	 along	 the	 curve.
Otherwise	v,	ρ,	and	p	are	assumed	to	be	C1	functions	with	finite	limits	on	each
side	of	x	=	s(t).	Then,	by	Leibniz’	rule,

Both	 integrals	on	 the	 right	 side	approach	zero	as	a	→	s(t)−	and	b	→	 s(t)+	and
therefore	from	(3.18)	it	follows	that

(3.19)	
If	the	values	(one-sided	limits)	of	ρ	and	v	on	the	right	and	left	sides	of	x	=	s(t)
are	denoted	by	the	subscripts	zero	and	one,	respectively,	for	example,

then	(3.19)	can	be	written

(3.20)	
In	a	similar	fashion	the	condition



(3.21)	
can	be	obtained	 from	 the	 integral	 form	of	 the	conservation	of	momentum	 law.
The	 two	 conditions	 (3.20)	 and	 (3.21)	 are	 known	 as	 the	 Rankine–Hugoniot
jump	conditions;	 they	relate	 the	values	ρ0,	v0,	p0	ahead	of	 the	discontinuity	 to
the	speed	s′	of	the	discontinuity	and	to	the	values	ρ1,	v1,	and	p1	behind	it.	If	the
state	ahead	is	at	rest,	that	is,	v0	=	0,	then	the	conditions	become

(3.22)	

(3.23)	
Supplemented	with	the	equation	of	state
(3.24)	

the	equations	can	be	regarded	as	three	equations	in	the	four	unknowns	ρ1,	v1,	P1,
and	 s’.	 If	 any	 one	 of	 these	 quantities	 is	 known,	 the	 remaining	 three	 may	 be
determined.
It	 is	 helpful	 to	 picture	 the	 information	 contained	 in	 (3.22)–(3.24)	 on	 a	 pρ

diagram	as	shown	in	Fig.	8.13.	The	solid	curve	 is	 the	graph	of	 the	equation	of
state	p	=	f(ρ).	It	is	known	as	the	Hugoniot	curve;	and	all	states,	both	initial	and
final,	must	lie	on	this	curve.	The	straight	line	connecting	the	state	ahead	(ρ0,	P0)
to	 the	 state	 behind	 (ρ1,	 p1)	 is	 the	Rayleigh	 line.	 If	 (3.23)	 is	 rewritten	 using
equation	(3.22)	as

Figure	8.13	The	Hugoniot	diagram.

then	it	is	clear	that	the	slope	of	the	Rayleigh	line	is	given	by



These	 ideas	 extend	 beyond	 this	 simple	 case	 to	 more	 general	 problems	 in
gasdynamics	(see	Courant	and	Friedrichs	(1948)).

EXERCISES
1.	Derive	the	jump	condition	(3.21).
2.	Discuss	the	piston	withdrawal	problem	when	the	piston	path	is	given	by	x
=	−V0t,	where	V0	is	a	positive	constant.	Assume	an	equation	of	state	p	=	kργ

with	uniform	conditions	v	=	0,	p	=	p0,	ρ	=	ρ0,	c	=	c0	ahead	of	the	piston	at	t	=
0.
3.	At	t	=	0	the	gas	in	a	tube	x	≥	0	is	at	rest.	For	t	>	0	a	piston	initially	located
at	x	=	0	moves	according	to	the	law	x	=	X(t),	where	X(t)	is	small.	Show	that
in	the	acoustic	approximation	the	motion	induced	in	the	gas	is

and	find	the	corresponding	density	variation.
4.	A	sphere	of	initial	radius	r0	pulsates	according	to	r(t)	=	r0	+	A	sin	ωt.	In
the	linearized	theory	find	the	motion	of	the	gas	outside	the	sphere.



8.4	Fluid	Motions	in	 3
In	the	early	sections	the	equations	governing	fluid	motion	were	developed	in	one
spatial	 dimension.	This	 limitation	 is	 severe,	 however,	 because	most	 interesting
fluid	phenomena	occur	in	higher	dimensions.	In	this	section	we	derive	the	field
equations	for	fluid	dynamics	in	three	dimensions,	with	the	two-dimensional	case
being	 an	 obvious	 corollary.	 Our	 use	 of	 vector	 notation	 makes	 this	 higher
dimensional	case	appear	very	clean	compared	to	the	detail	written	out	earlier	in
the	one-dimensional	case;	moreover,	much	of	the	road	work	has	been	done	and
the	key	ideas	have	been	presented.	The	result	is	a	section	that	may	appear	more
like	a	formal	mathematical	treatment,	rather	than	a	physical	one.



8.4.1	Kinematics
Let	Ω0	be	an	arbitrary	closed	bounded	set	in	 3.	We	imagine	that	Ω0	is	a	region
occupied	by	a	fluid	at	time	t	=	0.	By	a	fluid	motion	we	mean	a	mapping	ϕt:	Ω0
→	Ωt	 defined	 for	 all	 t	 in	 an	 interval	 I	 containing	 the	 origin,	 which	maps	 the
region	Ω0	into	Ωt	=	ϕt(Ω0),	the	latter	being	the	region	occupied	by	the	same	fluid
at	time	t	(see	Fig.	8.14).	We	assume	that	ϕt	is	represented	by	the	formula

Figure	8.14	Fluid	motion.

(4.1)	
where	h	=	(h1,	h2,	h3)	is	in	Ω0	and	x	=	(x1,	x2,	x3)	=	(x,	y,	z),	with

Thus	h	is	a	Lagrangian	coordinate	or	particle	label	given	to	each	fluid	particle	at
t	=	0,	and	x	is	the	Eulerian	coordinate	representing	the	laboratory	position	of	the
particle	 h	 at	 time	 t.	 We	 further	 assume	 that	 the	 function	 x(h,	 t)	 is	 twice
continuously	 differentiable	 on	 its	 domain	 Ω0	 ×	 I	 and	 that	 for	 each	 t	 	 I	 the
mapping	ϕt	has	a	unique	inverse	defined	by

Hence

By	 convention,	 functions	 of	 h	 and	 t	 that	 represent	 the	 results	 of	 Lagrangian
measurements	will	 be	 denoted	 by	 capital	 letters,	 and	 functions	 of	x	 and	 t	 that
represent	 the	 results	 of	 a	 fixed	 laboratory	 measurement	 will	 be	 denoted	 by
lowercase	letters.	The	measurements	are	connected	by	the	formulas



In	 the	 sequel	we	often	use	 the	notation	F|x	and	 f|h	 to	 denote	 the	 right	 sides	 of
these	equations,	respectively.
For	a	given	fluid	motion	(4.1),	the	fluid	velocity	is	defined	by

Then

V(h,	 t)	 =	 V1(h,	 t),	V2(h,	 t),	V3(h,	 t) 	 is	 the	 actual	 velocity	 vector	 of	 the	 fluid
particle	h	 at	 time	 t,	whereas	v(x,	 t)	=	 v1(x,	 t),	v2(x,	 t),	 v3(x,	 t) 	 is	 the	 velocity
vector	measured	by	a	fixed	observer	at	 location	x.	 If	h0	 is	a	 fixed	point	 in	Ω0,
then	the	curve	x	=	x(h0,	t),	t	 	I,	is	called	the	particle	path	of	the	particle	h0.	The
following	theorem	states	that	knowledge	of	the	Eulerian	velocity	field	v(x,	t)	 is
equivalent	to	knowledge	of	all	the	particle	paths.

Theorem	8.16
If	the	velocity	vector	field	v(x,	t)	is	known,	then	all	of	the	particle	paths	can	be
determined,	and	conversely.

Proof
First	we	prove	the	converse.	If	each	particle	path	is	given,	then	the	function	x	=
x(h,	t)	is	known	for	all	h	 	Ω0.	Consequently,	h	=	h(x,	t)	can	be	determined	and
v	can	be	calculated	from

Now	assume	v(x,	t)	is	given.	Then

or

(4.2)	
where	explicit	dependence	on	h	has	been	dropped.	Equation	(4.2)	is	a	first-order
system	of	differential	equations	for	x.	Its	solution	subject	to	the	initial	condition

gives	the	particle	paths	x	=	x(h,	t).



It	is	interesting	to	contrast	the	particle	paths	with	the	so-called	streamlines	of
the	flow.	The	latter	are	integral	curves	of	the	vector	field	v(x,	t0)	frozen	at	some
fixed	but	arbitrary	instant	t0	of	time.	Thus	the	streamlines	are	found	by	solving
the	system

(4.3)	
where	x	=	x(s)	and	s	 is	 a	parameter	along	 the	curves.	 If	v	 is	 independent	of	 t,
then	 the	 flow	 is	 called	 steady	 and	 the	 streamlines	 coincide	 with	 the	 particle
paths.	In	a	time-dependent	flow	they	need	not	coincide.

Example	8.17
Consider	the	fluid	motion

Then

Inverting	the	motion,

Therefore

and	 thus	 the	 motion	 is	 not	 steady.	 The	 streamlines	 at	 time	 t0	 are	 given	 by
solutions	to	(4.3),	or

Hence

where	c1,	c2,	and	c3	are	constants.
As	in	the	one-dimensional	case	we	define	the	material	derivative	by

where	 f	 and	 F	 are	 the	 Eulerian	 and	 Lagrangian	 representations	 of	 a	 given
measurement,	 respectively.	 A	 straightforward	 calculation	 using	 the	 chain	 rule
shows	that



Evaluating	at	h	=	h(x,	t)	gives

(4.4)	
If	f	=	 f1,	f2,	f3 	is	a	vector	function,	then	componentwise,

and	we	write

Here	v	·	∇	is	a	special	notation	for	the	operator	 .
The	material	derivative	Df/Dt	at	(x,	t)	is	a	measure	of	the	time	rate	of	change	of
the	quantity	F	moving	with	the	particle	h	frozen	at	the	instant	the	particle	is	at	x.
Another	 kinematical	 result	 is	 the	 three-dimensional	 analog	 of	 the	 Euler

expansion	theorem.	It	gives	the	time	rate	of	change	of	the	Jacobian

of	the	transformation	ϕt.	We	record	this	as	a	theorem.

Theorem	8.18
In	Lagrangian	and	Eulerian	form,	respectively,

where	j(x,	t)	=	J(h(x,	t),	t).
Details	of	the	proof,	based	on	the	formula	for	differentiating	a	determinant,	are

left	 as	 an	 exercise.	 The	 reader	 will	 be	 asked	 to	 show	 the	 result	 for	 two
dimensions.
In	the	one-dimensional	case	the	derivation	of	many	of	the	results	depends	on



knowing	the	time	derivative	of	an	integral	over	the	moving	material	region.	For
three	dimensions	we	state	this	as	a	fundamental	theorem.

Theorem	8.19
(The	 convection	 theorem)	 Let	 g	 =	 g(x,	 t)	 be	 a	 continuously	 differentiable
function.	Then

(4.5)	

Proof
The	region	of	integration	Ωt	of	the	integral	on	the	left	side	of	(4.5)	depends	on	t,
and	 therefore	 the	 time	 derivative	 cannot	 be	 brought	 under	 the	 integral	 sign
directly.	 A	 change	 of	 variables	 in	 the	 integral	 from	 Eulerian	 coordinates	 x	 to
Lagrangian	coordinates	h	will	transform	the	integral	to	one	over	the	fixed,	time-
independent	volume	Ω0.	The	derivative	may	then	be	brought	under	the	integral
sign	and	the	calculation	can	proceed.	Letting	x	=	x(h,	t),	we	have

Here	 we	 have	 used	 the	 familiar	 formula	 for	 changing	 variables	 in	 a	 multiple
integral	where	the	Jacobian	enters	as	a	factor	in	the	new	volume	element.	Then,
also	using	Theorem	8.10,

where	 in	 the	 last	 step	 we	 transformed	 back	 to	 Eulerian	 coordinates	 and	 used
(4.4).
The	following	important	corollary	follows	immediately.

Corollary	8.20
(Reynold’s	transport	theorem)	We	have



(4.6)	
where	n	is	the	outer	unit	normal	to	the	surface	∂Ωt.

Proof
The	integrand	on	the	right	side	of	(4.5)	is

Thus

An	application	of	the	divergence	theorem	yields

and	the	corollary	follows.
The	interpretation	is	straightforward.	Prom	calculus	we	recall	that	the	integral

ƒ∂Ωt	gv	·	n	dA	represents	the	flux	of	the	vector	field	gv	through	the	surface	∂Ωt.
Hence	(4.6)	states	that	the	time	rate	of	change	of	the	quantity	 ,	where	both
the	 integrand	 and	 the	 region	 of	 integration	 depend	 on	 t,	 equals	 the	 integral,
frozen	 in	 time,	of	 the	change	 in	g	plus	 the	flux	or	convection	of	g	 through	 the
boundary	 ∂Ωt.	 Equation	 (4.6)	 is	 the	 three-dimensional	 version	 of	 Leibniz’
formula.
Mass	Conservation.	With	 all	 this	machinery,	 it	 is	 a	 simple	matter	 to	 obtain	 a
mathematical	 expression	of	mass	conservation.	We	 take	 it	 as	 a	physical	 axiom
that	 a	given	material	volume	of	 fluid	has	 the	 same	mass	as	 it	 evolves	 in	 time.
Symbolically

where	ρ(x,	t)	is	the	Eulerian	density.	Thus

and	Theorem	8.11	gives,	upon	taking	g	=	ρ,

(4.7)	



because	 the	volume	Ωt	 is	arbitrary.	The	first-order	nonlinear	partial	differential
equation	(4.7)	is	the	continuity	equation,	and	it	is	a	mathematical	expression	for
conservation	of	mass.
An	 important	 class	 of	 fluid	 motions	 are	 those	 in	 which	 a	 material	 region

maintains	 the	 same	 volume.	 Thus	 we	 say	 a	 fluid	 motion	 ϕt:	 Ω0	 →	 Ωt	 is
incompressible	if

As	earlier,	we	denote	the	Lagrangian	density	by	R(h,	t)	=	ρ(x(h,	t),	t).

Theorem	8.21
The	following	are	equivalent:

(i)	ϕt	is	incompressible,
(ii)	Δ	·	v	=	0,
(iii)	Rt	=	0,
(iv)	Dρ/Dt	=	0.

Proof
The	proof	 is	 straightforward.	By	definition,	 (iii)	 and	 (iv)	 are	 equivalent,	while
(ii)	and	(iv)	are	equivalent	by	conservation	of	mass	(4.7).	Finally	(i)	and	(ii)	are
equivalent	by	setting	g	=	1	in	the	convection	theorem.



8.4.2	Dynamics
The	nature	of	the	forces	on	a	fluid	element	was	presented	in	Section	8.1	for	one-
dimensional	flows.	The	idea	in	three	dimensions	is	again	to	generalize	Newton’s
second	law,	which	states	for	a	particle	of	mass	m	that	dp/dt	=	F,	or	the	time	rate
of	change	of	momentum	is	the	total	force.	For	a	material	region	Ωt	of	fluid	we
define	the	momentum	by

The	forces	on	the	fluid	region	are	of	two	types,	body	forces,	which	act	at	each
point	of	the	region,	and	surface	forces	or	tractions,	which	act	on	the	boundary	of
the	region.	Body	forces	will	be	denoted	by	f(x,	t),	which	represents	the	force	per
unit	mass	acting	at	the	point	x	at	time	t.	Thus	the	total	body	force	on	the	region
Ωt	is

At	each	point	x	on	the	boundary	∂Ωt	of	the	given	region	Ωt	we	assume	that	there
exists	a	vector	σ(x,	t;	n)	called	the	stress	vector,	which	represents	the	force	per
unit	area	acting	at	x	at	time	 t	on	the	surface	∂Ωt	by	the	material	exterior	 to	Ωt.
We	note	that	the	stress	at	x	depends	on	the	orientation	of	the	surface	through	x.
Simply	 put,	 different	 surfaces	will	 have	 different	 stresses	 (see	 Fig.	 8.15).	 The
dependence	of	σ	upon	the	orientation	of	the	surface	is	denoted	by	the	argument	n
in	σ(x,	t;	n),	where	n	is	the	outward	unit	normal	to	the	surface.	We	think	of	n	as
pointing	toward	the	material	that	is	causing	the	stress.	Therefore	the	total	surface
force	or	traction	on	the	region	Ωt	is	given	by

Figure	8.15	Diagram	showing	the	dependence	of	the	stress	vector	σ	on	the	unit
normal	n.	At	x,	the	material	on	the	right	is	exerting	a	force	on	the	material	to	the
left;	the	stress	vector	σ(x,	t;	n)	indicates	the	direction	of	the	force.



We	now	postulate	the	balance	of	momentum	principle,	also	called	Cauchy’s
stress	principle,	which	states	that	for	all	material	regions	Ωt

(4.8)	
In	words,	the	time	rate	of	change	of	momentum	equals	the	total	force.	Because

we	may	write	(4.8)	as

(4.9)	
At	 a	 given	 point	x	 in	 a	 fluid	 on	 a	 surface,	 defined	 by	 the	 orientation	n,	 the

stress	on	the	fluid	exterior	 to	Ωt	caused	by	 the	fluid	 interior	 to	Ωt	 is	equal	and
opposite	 to	 the	 stress	 on	 the	 interior	 caused	 by	 the	 fluid	 exterior	 to	Ωt.	 More
precisely,	see	the	following	theorem.

Theorem	8.22
(Action–reaction)	The	stress	vector	satisfies	the	condition
(4.10)	

Proof
Let	Ωt	 be	 a	 material	 region	 and	 divide	 it	 into	 two	 regions	 Ω1

t	 and	 Ω2
t	 by	 a



surface	 S	 that	 passes	 through	 an	 arbitrary	 point	 x	 in	 Ωt	 (refer	 to	 Fig.	 8.16).
Applying	(4.9)	to	Ω1

t	and	Ω2
t,	we	obtain

Figure	8.16	Action-reaction	principle.

(4.11)	

(4.12)	
Subtracting	(4.9)	from	the	sum	of	(4.11)	and	(4.12)	gives

where	n	 is	 the	 outward	 unit	 normal	 to	 Ω1
t.	 The	 integral	mean	 value	 theorem

implies
(4.13)	

where	z	is	some	point	on	S	and	n1	is	the	outward	unit	normal	to	Ω1
t	at	z.	Taking

the	limit	as	the	volume	of	Ωt	goes	to	zero	in	such	a	way	that	the	area	of	S	goes	to
zero	and	x	 remains	on	S	we	get	z	→	x	and	n1	→	n,	 and	 so	 (4.13)	 implies	 the
result.
As	it	turns	out,	the	stress	vector	σ(x,	t;	n)	depends	in	a	very	special	way	on	the

unit	 normal	 n.	 The	 next	 theorem	 is	 one	 of	 the	 fundamental	 results	 in	 fluid
mechanics.

Theorem	8.23
(Cauchy	theorem)	Let	σi(x,	t;	n),	i	=	1,	2,	3,	denote	the	three	components	of	the
stress	 vector	 σ(x,	 t;	 n),	 and	 let	 n	 =	 (n1,	 n2,	 n3).	 Then	 there	 exists	 a	 matrix



function	σji(x,	t)	such	that

(4.14)	
In	fact
(4.15)	

where	ej,	 j	=	1,	 2,	 3,	 denote	 the	unit	 vectors	 in	 the	direction	of	 the	 coordinate
axes	x1,	x2,	and	x3,	respectively.

Proof
Let	t	be	a	fixed	instant	of	time	and	let	Ωt	be	a	tetrahedron	at	x	as	shown	in	Fig.
8.17	with	the	three	faces	S1,	S2,	and	S3	parallel	to	the	coordinate	planes	and	the
face	S	is	the	oblique	face.	Using	the	integral	mean	value	theorem,	we	have

Figure	8.17	Proof	of	Cauchy’s	theorem.

where	zi	is	a	point	on	Si	and	z	is	a	point	on	S.	Here	A	denotes	the	area	function
and	n	is	the	outer	normal	to	S.	Because

(we	have	defined	l	to	be	√A(S)),	it	follows	that



where	Theorem	8.22	has	been	applied.	Taking	the	limit	as	l	→	0	gives

We	now	show	that

(4.16)	
To	this	end,	it	follows	from	(4.9)	that

where	the	last	inequality	results	from	the	boundedness	of	the	integrand.	Dividing
by	l2	and	taking	the	limit	as	l	→	0	proves	(4.16).	Consequently

(4.17)	
or	in	component	form

Defining	the	σji

by	gives	the	final	result.
The	nine	quantities	σji	are	the	components	of	the	stress	tensor.	By	definition,

σji	is	the	ith	component	of	the	stress	vector	on	the	face	whose	normal	is	ej.	For
example,	σ21,	σ22,	 and	σ23	 are	 shown	 in	Fig.	8.18.	Equation	(4.17)	 shows	 that
σ(x,	t;	n)	can	be	resolved	into	a	linear	combination	of	σ(x,	t;	e1),	σ(x,	t;	e2),	and
σ(x,	t,	e3),	that	is,	into	three	stresses	that	are	the	stresses	on	the	coordinate	planes
at	x.	These	stresses	are	shown	in	Fig.	8.19.	The	components	of	the	three	vectors
shown	are	the	σji.

Figure	8.18	The	stress	vector	σ(x,	t,	e2)	and	its	three	stress	components.



Figure	8.19	Stress	tensor	components.

With	 the	 aid	 of	 Theorem	 8.23	 a	 vector	 partial	 differential	 equation	 can	 be
formulated	 that	expresses	 the	momentum	balance	 law	(4.9).	This	calculation	 is
facilitated	by	adopting	a	notational	convention	that	saves	in	writing	summation
signs	 in	 complicated	 expressions.	 This	 practice	 is	 called	 the	 summation
convention	and	it	assumes	that	a	sum	is	taken	over	any	repeated	index	in	a	given
term.	Thus

and

The	range	of	the	summation	index	(or	indices)	is	determined	from	context.	For
example	(4.14)	may	be	written	σi	=	σjinj	with	a	sum	over	j	=	1	to	j	=	3	assumed
on	the	right	side.	Any	index	not	summed	in	a	given	expression	is	called	a	free
index.	Free	indices	vary	over	their	appropriate	ranges;	for	example,	in	(4.14)	the
index	i	is	free	and	ranges	over	i	=	1,	2,	3.	In	(4.15)	both	i	and	j	are	free	with	i,	j	=
1,	2,	3.	In	terms	of	this	convention	the	divergence	theorem	may	be	expressed



(4.18)	
where	 f	 =	 (f1,	 f2,	 f3)	 and	 n	 =	 (n1,	 n2,	 n3).	 On	 both	 sides	 of	 the	 equation	 i	 is
assumed	to	be	summed	from	i	=	1	to	i	=	3.
In	component	form	(4.9)	is

(4.19)	
But	the	right	side	is

where	we	have	used	(4.14)	and	(4.18).	Then	(4.19)	becomes

Because	of	the	arbitrariness	of	the	region	of	integration

(4.20)	
Equations	(4.20)	 are	 the	Cauchy	equations	 or	equations	of	motion,	 and	 they
represent	balance	of	linear	momentum.	Along	with	the	continuity	equation	(4.7)
we	have	 four	 equations	 for	ρ,	 the	 three	components	vi	 of	 the	 velocity,	 and	 the
nine	 components	 σji	 of	 the	 stress	 tensor.	 What	 remains,	 which	 is	 the	 most
difficult	issue	of	all,	is	specification	of	the	stress	tensor.
There	is	a	common	way	to	write	the	Cauchy	stress	principle	in	terms	of	a	fixed

laboratory	volume	Ω1.	It	is	expressed	by	the	following	theorem.

Theorem	8.24
Cauchy’s	stress	principle	(4.8)	is	equivalent	to

(4.21)	
where	Ω1	is	any	fixed	region	in	 3.

Proof
Using	Corollary	8.12	with	g	 	ρvi	gives



Therefore

Now	let	Ω1	be	the	volume	that	coincides	with	Ωt	at	t	=	t1.	Then

Applying	(4.9)	gives	(4.21).

Example	8.25
(Force	 on	 an	 object)	As	 an	 application	 of	 (4.21)	we	 compute	 the	 force	 on	 a
stationary	object	in	a	steady	fluid	flow.	Suppose	S1	is	the	boundary	of	the	object
and	 let	 S	 be	 an	 imaginary	 surface	 that	 contains	 the	 object	 (see	 Fig.	 8.20).
Assume	the	flow	is	steady	and	that	there	is	no	body	force	(f	=	0).	Letting	Ω1	be
the	region	in	between	S	and	S1	and	applying	the	vector	form	of	(4.21)	gives

Figure	8.20	Flow	around	an	obstacle	with	boundary	S1.	S	is	the	boundary	of	any
region	containing	the	obstacle.

or

where	the	fact	that	v	·	n	=	0	on	S1	has	been	used.	But	the	force	F	on	the	obstacle
is



This	is	a	useful	result	since	it	permits	the	calculation	of	F	at	a	control	surface	at
a	distance	from	the	obstacle;	it	may	be	virtually	impossible	to	obtain	the	stresses
on	the	surface	of	the	obstacle	itself.



8.4.3	Energy	and	Constitutive	Theory
The	 four	 equations,	 mass	 and	 momentum	 conservation	 exhibited	 in	 (4.7)	 and
(4.20),	 clearly	 do	 not	 represent	 a	 complete	 determined	 system	 for	 all	 of	 the
unknowns.	At	this	point	in	the	one-dimensional	case	we	introduced	an	equation
of	 state	 or	 constitutive	 relation.	 In	 the	 present	 case	 specification	 of	 the	 stress
tensor	σij	is	required	to	close	the	system.
For	a	fluid	(gas	or	liquid)	in	a	motionless	state	it	is	clear	that	the	stress	vector	σ

at	a	point	on	a	surface	in	the	fluid	is	always	normal	to	the	surface,	that	is,	it	is	in
the	direction	of	the	unit	normal	n	(or	−n).	This	is	not	true	for	solids,	since	they
can	 sustain	 complicated	 shear	 or	 tangential	 stresses	 and	 not	 undergo	 motion.
This	normality	property	extends	to	fluids	in	uniform	motion	where	the	velocity
field	is	constant	over	some	time	interval.

Example	8.26
(Inviscid	fluid)	One	of	the	simplest	classes	of	general	nonuniform	fluid	motions
is	 that	class	of	motions	termed	 inviscid	where	the	normality	assumption	holds,
namely
(4.22)	

Hence,	for	inviscid	flow	the	stress	across	a	surface	is	proportional	to	the	normal
vector	 where	 the	 proportionality	 factor	 p	 is	 the	 pressure.	 The	 concept	 of	 an
inviscid	fluid	is	highly	useful	in	technology,	since	many	real	fluids	are	actually
modeled	by	(4.22)	and	the	calculations	are	far	simpler	using	(4.22)	than	for	more
complicated	 constitutive	 relations.	 From	 (4.22)	 it	 is	 easy	 to	 calculate	 the
components	σij	of	the	stress	tensor.	We	have

(4.23)	
where	δij	is	the	Kronecker	delta	symbol	defined	by	δij	=	1	if	i	=	j	and	δij	=	0	if	i	≠
j.	 Finally,	 if	we	 denote	 the	 stress	matrix	T	 =	 z(σij),	 then	 (4.22)	 can	 be	written
simply	as

where	I	is	the	identity	matrix.
From	this	last	example,	it	follows	that



we	may	write	the	Cauchy	equations	(4.20)	as

or	in	vector	form	as

(4.24)	
Equation	 (4.24)	 is	 called	 the	 Euler	 equation.	 Equations	 (4.7)	 and	 (4.24)
represent	 four	 equations	 for	 the	 five	 unknowns	 ρ,	 v,	 and	p.	 Supplemented	 by
equations	 of	 state	 and	 an	 energy	 conservation	 equation,	 a	 complete	 set	 of
equations	can	be	found.	For	inviscid	fluids	the	discussion	now	follows	the	one-
dimensional	analysis	presented	in	Section	8.2.

Example	8.27
(Ideal	 fluid)	An	 ideal	 fluid	 is	 an	 inviscid	 fluid	 undergoing	 an	 incompressible
motion,	and	much	of	the	literature	in	fluid	mechanics	deals	with	ideal	fluids.	The
ideal	fluid	equations	consist	of	the	Euler	equations	(4.24)	and	∇	·	v	=	0.
Equation	(4.23)	suggests	 that	 in	 the	most	general	case	 the	stress	 tensor	 takes

the	form
(4.25)	

where	 p	 is	 identified	 with	 the	 thermodynamic	 pressure	 and	 τij	 define	 the
components	of	the	oblique,	or	non-normal,	stresses	across	a	fluid	surface.	These
oblique	stress	are	partly	caused	by	viscous	forces	where	adjacent	fluid	elements
undergo	 shear	 stresses	 across	 surfaces	 separating	 them.	 The	 τij	 define	 the
components	of	the	viscous	stress	tensor.	.	As	one	may	imagine,	it	is	a	difficult
task	to	specify	how	these	components	relate	to	the	other	flow	variables.
Energy	 balance.	 As	 in	 the	 one-dimensional	 case,	 we	 postulate	 a	 balance	 of
energy	law:
(4.26)	

where	 Ωt	 is	 an	 arbitrary	 material	 region	 with	 exterior	 unit	 normal	 n	 and	 q
represents	the	heat	flux	density.	In	words,	the	time	rate	of	change	of	the	kinetic
plus	internal	energy	in	Ωt	equals	the	rate	work	is	done	by	the	body	forces	f,	plus
the	rate	work	is	done	by	the	surface	stresses	σ,	plus	the	rate	heat	flows	into	the
region.	A	differential	form	of	the	energy	balance	law	can	be	easily	obtained	by



appealing	 to	 the	 arbitrariness	 of	 Ωt	 after	 an	 application	 of	 the	 divergence
theorem	 and	 Cauchy’s	 theorem.	 We	 record	 the	 result,	 leaving	 the	 standard
argument	for	the	reader.

Theorem	8.28
If	the	functions	are	sufficiently	smooth,	equation	(4.26)	implies

(4.27)	

Theorem	8.29
The	change	in	internal	energy	is	given	by

(4.28)	

Proof
Multiplying	the	momentum	balance	law	(4.20)	by	vi	and	summing	over	i	=	1,	2,
3	gives

Subtracting	from	(4.27)	yields	(4.28)	and	hence	the	result.
From	the	combined	form	of	the	first	and	second	laws	of	thermodynamics,

(4.29)	
we	 can	 obtain	 an	 expression	 for	 how	 the	 entropy	 of	 a	 fluid	 particle	 changes.
Combining	(4.28)	and	(4.29)	and	using	Dρ−1/Dt	=	-ρ−2Dρ/Dt	=	ρ−1	∇.	v,	we	get
the	following	theorem.

Theorem	8.30
The	energy	balance	equation	is	equivalent	to

(4.30)	
We	can	interpret	the	preceding	energy	equation	as	follows.	The	left	side	is	the

heat	added;	the	term	-∇	·	q	on	the	right	represents	the	heat	flux	into	the	system,



and	 therefore	 the	 sum	 of	 the	 other	 two	 terms,	
	must	represent	 the	heat	generated	due	to

work	 done	 by	 the	 forces	 to	 deform	 the	 system.	 The	 function	 	 is	 called	 the
dissipation	function,	and,	more	precisely,	it	is	the	rate	per	unit	volume	at	which
mechanical	energy	is	dissipated	into	heat.
With	this	notation,	the	energy	equation	(4.30)	may	be	written

(4.31)	
We	 can	 obtain	 some	 important	 conclusions	 from	 these	 results.

Thermodynamics	also	requires	that	the	entropy	increase	equal	or	exceed	the	heat
added	divided	by	the	absolute	temperature.	Thus	we	postulate	the	inequality

The	differential	form	of	this	axiom	is	called	the	Clausius–Duhem	inequality:

(4.32)	
Equations	(4.31)	and	(4.32)	may	be	combined	to	get
(4.33)	

Sufficient	conditions	for	(4.33)	are

That	 is,	 (i)	deformation	does	not	 convert	heat	 into	mechanical	 energy,	and	(ii)
heat	flows	against	the	temperature	gradient.
Viscous	stress.	To	proceed	 further,	 some	 assumption	 is	 required	 regarding	 the
form	of	the	viscous	stress	tensor	τij.	A	Newtonian	fluid	is	one	in	which	there	is	a
linear	dependence	of	τij	on	the	rate	of	deformation

That	is,

where	the	coefficients	Cijrs	may	depend	on	the	local	thermodynamic	states	θ	and
ρ.	Arguments	of	symmetry	and	invariance	of	the	stress	tensor	under	translations
and	rotations	lead	to	(see,	e.g.,	Segel	and	Handelman	(1977)	for	an	enlightening
treatment)

where	μ	and	λ	are	coefficients	of	viscosity.	Generally	μ	and	λ	may	depend	on



temperature	 or	 density,	 but	 here	 we	 assume	 they	 are	 constant.	 The	 previous
assumption	forces	the	stress	tensor	to	have	the	form

and	therefore	the	momentum	law	(4.20)	becomes

(4.34)	
for	i	=	1,	2,	3.
In	the	incompressible	case	where

(4.34)	reduces	in	vector	form	to

(4.35)	
which	are	the	Navier–Stokes	equations.	These	last	two	equations	are	among	the
most	studied	equations	in	fluid	mechanics,	and	still	many	unanswered	questions
regarding	 them	are	yet	 to	be	proved.	Exact	 solutions	of	 (4.35)	 in	special	cases
are	given	in	the	exercises.
Finally,	 for	 viscous	 flows	 it	 is	 generally	 assumed	 that	 the	 fluid	 adheres	 to	 a

rigid	boundary.	This	leads	to	the	adherence	boundary	condition

where	xb	 is	a	point	on	a	rigid	boundary	and	v(xb)	 is	 the	known	velocity	of	 the
boundary.

EXERCISES
1.	 Prove	 the	 Euler	 expansion	 when	 n	 =	 2.	 Hint:	 Recall	 the	 rule	 for
differentiating	a	determinant:

2.	Let	R(h,	t)	be	the	Lagrangian	density.	Show	that

3.	Derive	the	Lagrangian	form	of	the	mass	conservation	law

4.	Prove	that	if	mass	conservation	holds,	then



for	any	continuously	differentiable	function	g.	Show	that	the	scalar	function
g	can	be	replaced	by	a	vector	function	g.
5.	If	σ(x,	t;	n)	=	−p(x,	t)n,	prove	that	 .
6.	A	two-dimensional	fluid	motion	is	given	by

a)	Find	V	and	v.
b)	Find	the	streamlines	and	show	they	coincide	with	the	particle	paths.
c)	If	ρ(x,	t)	=	x1x2,	show	that	the	motion	is	incompressible.

7.	The	Eulerian	velocity	of	a	two-dimensional	fluid	flow	is

Find	 the	 streamlines	 passing	 through	 the	 fixed	 point	 (a0,	b0)	 and	 find	 the
particle	path	of	 the	particle	 (h1,	h2)	=	 (a0,	b0).	Does	 the	 particle	 path	 ever
coincide	with	a	streamline	at	any	time	t0?
8.	A	steady	flow	in	two	dimensions	is	defined	by

Find	 the	particle	paths.	Compute	 the	acceleration	measured	by	an	observer
located	at	the	fixed	point	(3,	4).
9.	A	 flow	 is	 called	potential	 on	 a	 region	D	 if	 there	 exists	 a	 continuously
differentiable	function	ϕ(t,	x)	on	D	for	which	v	=	∇	ϕ,	and	a	flow	is	called
irrotational	on	D	if	∇	×	v	=	0.

a)	Prove	that	a	potential	flow	is	irrotational.
b)	Show	that	an	irrotational	flow	is	not	always	potential	by	considering

c)	 Show	 that	 if	 D	 is	 simply	 connected	 then	 irrotational	 flows	 are
potential.

10.	a)	Show	that

b)	Prove	Bernoulli’s	theorem:	For	a	potential	flow	of	an	inviscid	fluid,
suppose	 there	exists	a	 function	 (t,	x)	 for	which	 f	 =	 -∇ .	Then	 for	 any
path	C	connecting	two	points	a	in	b	in	a	region	where	v	=	∇ϕ,



(Hint:	Integrate	the	equation	of	motion	and	use	(a).)
11.	 In	 a	 region	D	 where	 a	 flow	 is	 steady,	 irrotational,	 and	 incompressible
with	constant	density	ρ,	prove	that

where	 .
12.	For	a	fluid	motion	with	σij	=	σji	prove	that

where	K(Ωt)	 	 	ƒΩt	ρv	·	v	dx	 is	the	kinetic	energy	of	Ωt.	This	result	 is	 the
energy	transport	theorem.
13.	For	an	ideal	fluid	prove	that	K(Ω)	=	constant,	where	Ω	is	a	fixed	region
in	 3	and	v	is	parallel	to	∂Ω	(see	Exercise	12).
14.	The	alternating	symbol	εijk	is	defined	by

A	permutation	(ijk)	is	an	even	(odd)	permutation	of	(123)	if	it	takes	an	even
(odd)	number	of	 switches	of	adjacent	elements	 to	get	 it	 to	 the	 form	(123).
For	example,

so	(321)	is	an	odd	permutation	of	(123).	Show	that	if	a	=	 a1,	a2,	a3 	and	b	=	
b1,	b2,	b3 ,	then	the	kth	component	of	the	cross	product	a	×	b	is	given	by

15.	(Conservation	of	Angular	Momentum)	A	particle	of	mass	m	moving	in
	 with	 velocity	 vector	 v	 has	 linear	 momentum	 p	 =	 mv	 and	 angular

momentum	about	 the	origin	0	given	by	L	=	x	×	p,	where	x	 is	 its	 position
vector.	If	F	is	a	force	on	the	particle,	then	F	=	dp/dt	by	Newton’s	second	law.
Show	that	N	=	dL/dt,	where	N	=	x	×	F	 is	 the	 torque	(or	moment	of	 force)
about	0.	For	a	continuum	argue	that	one	should	postulate



(4.36)	
where	Ωt	 is	any	material	region.	Write	(4.36)	in	component	form	using	the
alternating	 symbol	 εijk.	 Note	 that	 (4.36)	 does	 not	 account	 for	 any	 internal
angular	momentum	of	 the	fluid	particles	 that	would	occur	 in	a	 fluid	where
the	particles	are	rotating	rods;	such	fluids	are	called	polar.
16.	 Prove	 that	 (4.36)	 of	 Exercise	 15	 is	 equivalent	 to	 the	 symmetry	 of	 the
stress	tensor	σij	(i.e.,	σij	=	σji).	Hint:

Use	the	equation	of	motion	and

followed	by	an	application	of	 the	divergence	theorem.	This	 theorem	shows
that	balance	of	 angular	momentum	 is	 equivalent	 to	 symmetry	of	 the	 stress
tensor.	Thus,	of	the	nine	components	of	σij	only	six	are	independent.
17.	Let	Γ	⊆	Ω0	be	a	simple	closed	curve	and	let	Γt	=	ϕt(Γ),	where	ϕt	 is	an
isentropic	 fluid	 motion.	 The	 circulation	 about	 Γt	 is	 defined	 by	 the	 line
integral	CΓt	=	ƒΓt	v	·	dl.	Prove	Kelvin’s	theorem,	which	asserts	that	CΓt	is	a
constant	in	time.
18.	 The	 vorticity	 ω	 of	 a	 flow	 is	 defined	 by	 ω	 =	∇	 ×	 v.	 Determine	 the
vorticity	of	the	following	flows	and	sketch	the	streamlines	in	each	case.

a)	v	=	v0	exp(−x22)j.

b)	v	=	v0	exp(−x22)j.
c)	v	=	ω0(−x2i	+	x1j).

19.	 If	 ρ	 is	 constant	 and	 f	 =	∇ 	 for	 some	 ,	 prove	 that	 (4.35)	 implies	 the
vorticity	equation

20.	 Consider	 an	 incompressible	 viscous	 flow	 of	 constant	 density	 ρ0	 under
the	 influence	 of	 no	 body	 forces	 governed	 by	 the	 Navier–Stokes	 equation
(4.35).

a)	If	l,	v/l2,	U,	and	ρ0vU/l,	where	v	 	μ/ρ0	are	length,	time,	velocity,	and



pressure	scales,	show	that	in	dimensionless	form	the	governing	equations
can	be	written

where	Re	 	Ul/v	is	a	constant	called	the	Reynolds	number.	The	constant	v
is	the	kinematic	viscosity.

b)	For	flows	with	small	Reynolds	number,	that	is,	Re	 	1,	show	that

(Hint:	∇	×	(∇	×	v)	=	∇(∇	·	v)	−	∇v.)
21.	 (Plane	 Couette	 flow)	 An	 incompressible	 viscous	 fluid	 of	 constant
density	 under	 no	 body	 forces	 is	 confined	 to	 lie	 between	 two	 infinite	 flat
plates	at	z	=	0	and	z	=	d	in	 3.	The	 lower	plate	z	=	0	 is	stationary	and	 the
upper	plate	z	=	d	is	moved	at	constant	velocity	U	in	the	x	direction.	That	is,
if	v	=	(u,	v,	w),	the	boundary	conditions	v	=	0	on	z	=	0	and	v	=	U,	0,	0 	on	z	=
d.	Write	 out	 the	 governing	 equations	 and	 show	 that	 the	 velocity	 field	 and
pressure	are	given	by

Show	that	the	stress	on	the	lower	plate	is	μU/d.
22.	 (Plane	 Poiseuille	 flow)	 An	 incompressible	 viscous	 fluid	 of	 constant
density	 under	 no	 body	 forces	 is	 confined	 to	 lie	 between	 two	 stationary
infinite	 planes	 z	 =	 −d	 and	 z	 =	d.	 A	 flow	 is	 forced	 by	 a	 constant	 pressure
gradient	∇p	=	 −C,	0,	0 ,	C	>	0.	Show	that	the	fluid	velocity	is	given	by

What	 is	 the	 pressure?	 Show	 that	 the	 mass	 flow	 per	 unit	 width	 in	 the	 x
direction	is	given	by	2Cd3/3μ.
23.	(Poiseuille	 flow	in	a	pipe)	Consider	a	cylindrical	pipe	of	 length	L	and
radius	R	where	an	incompressible,	viscous	fluid	is	flowing	(e.g.,	blood	flow
in	an	artery).	In	cylindrical	coordinates	(r,	θ,	z),	denote	the	velocity	field	by
v	=	 vr,	vθ,	vz	 .	Then	assume	boundary	conditions	p	=	p0	at	z	=	0,	p	=	PL	at	z
=	L,	and	v	=	0	on	r	=	R,	and	vr	=	vθ	=	0	at	z	=	0,	L.

a)	 Write	 out	 the	 governing	 partial	 differential	 equations	 in	 cylindrical
form.	 (You	may	have	 to	 look	up	 forms	 for	 the	divergence	 and	gradient
operations	 in	 cylindrical	 coordinates.)	 Physically,	 justify	 the	 boundary



conditions.
b)	Assuming	a	solution	of	the	form	vz	=	vz(r,	z),	p	=	p(r,	z),	with	vθ	=	vr	=
0,	show	that	the	pressure	is	linear	along	the	length	of	the	tube	and

c)	Show	that	the	velocity	profile	in	the	tube	has	the	shape	of	a	paraboloid.
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Chapter	9

Discrete	Models

From	 elementary	 courses	 we	 know	 that	 differential	 equations	 are	 often
approximated	by	discrete,	or,	finite	difference	formulas;	for	example,	 the	Euler
and	the	Runge–Kutta	numerical	algorithms	lead	to	difference	equations.	But,	as
well,	 discrete	 equations	 arise	 naturally	 without	 a	 continuous	 counterpart.	 The
recent	emphasis	on	quantitative	methods	 in	 the	biological	sciences	has	brought
discrete	 models	 to	 the	 forefront,	 not	 only	 in	 classical	 areas	 like	 population
dynamics	and	epidemiology,	but	in	newer	applications	in	genomics	arising	from
the	accumulation	of	DNA	sequence	data,	bioinformatics,	and	other	phylogenetic
processes.	 The	 digital	 revolution	 in	 electrical	 engineering	 has	 made	 discrete
models	 and	 discrete	 transforms	 central	 in	 the	 development	 of	 advanced
technological	devices.	Digital	signal	processing	is	a	major	area	of	study.	Discrete
models	 are	 conceptually	 simpler	 than	 their	 differential	 equation	 counterparts.
However,	discrete	models	are	less	amenable	to	analytic	solution	techniques	and
their	 dynamics	 can	 be	more	 complicated,	 often	 exhibiting	 cycling	 and	 chaotic
behavior.
Another	important	endeavor	is	to	understand	how	stochasticity,	or	randomness,

enters	and	affects	various	systems.	For	example,	there	is	always	stochasticity	in
the	environment	that	affects	populations,	noise	in	electrical	circuits	and	devices
that	 affect	 their	 responses,	 and	 random	 forces	 on	 structures	 that	 affect	 their
vibrations.	We	consider	some	aspects	of	randomness	in	this	chapter	as	well.



9.1	One-Dimensional	Models

9.1.1	Linear	and	Nonlinear	Models
In	 differential	 equations	 the	 time	 t	 runs	 continuously,	 and	 so	 differential
equations	 are	 often	 referred	 to	 as	 continuous	 time	 models.	 However,	 some
processes	are	better	formulated	as	discrete	time	models	where	time	ticks	off	in
discrete	units	t	=	0,	1,	2,	3,…	(say,	in	days,	months,	or	years,	etc.).	For	example,
if	 the	money	 in	a	 savings	account	 is	 compounded	monthly,	 then	we	need	only
compute	the	principal	each	month.	In	a	fisheries	model,	the	number	of	fish	may
be	 estimated	 once	 a	 year.	 Or,	 a	 wildlife	 conservationist	 may	 census	 a	 deer
population	 in	 the	spring	and	fall	 to	estimate	 their	numbers	and	make	decisions
on	 allowable	 harvesting	 rates.	 Data	 is	 usually	 collected	 at	 discrete	 times.	 In
electrical	 engineering,	 continuous	 data	 can	 be	 generated	 graphically	 on	 an
oscilloscope,	but	digital	data	is	equally	common	and	is	collected,	for	example,	in
a	sampling	process,	in	discrete	time	steps.
In	a	discrete	time	model	the	state	function	is	a	sequence	xt,	i.e.,	x0,	x1,	x2,	x3,

…,	rather	than	a	continuous	function.	The	subscripts	denote	the	time;	e.g.,	 in	a
weekly	census	of	mosquitos	grown	in	a	laboratory,	x5	would	denote	the	number
of	mosquitos	at	 the	fifth	week.	We	graph	 the	states,	or	sequence,	xt	as	a	set	of
points	(t,	xt)	in	a	tx	plane,	often	connecting	them	by	straight	line	segments.
A	 one-stage,	 or	 first-order,	discrete	 time	model,	 the	 analog	 of	 a	 first-order

differential	equation,	is	an	equation	of	the	form
(1.1)	

where	 f	 is	a	given	function.	Such	equations	are	called	difference	equations	or
recursion	relations.	Knowledge	of	the	initial	state	x0	allows	us	to	compute	the
subsequent	states	recursively,	in	terms	of	the	previously	computed	states.	Thus,
(1.1)	is	a	deterministic	update	rule	that	tells	us	how	to	compute	the	next	value	in
terms	of	the	previous	one.	A	sequence	xt	that	satisfies	the	model	is	a	solution	to
the	equation.
If	f(t,	xt)	=	atxt	+	bt,	where	at	and	bt	are	given,	fixed	sequences,	then	the	model

is	 linear;	 otherwise,	 (1.1)	 is	 nonlinear.	 In	 the	 sequel	 we	 mostly	 examine	 the
autonomous	equation



(1.2)	
where	 the	 right	 side	 does	 not	 depend	 explicitly	 on	 t.	Discrete	models	 are	 also
defined	in	terms	of	changes	Δxt	=	xt+1	−	xt	of	the	state	xt.	Thus,

defines	a	discrete	model,	where	g	is	the	given	change.	Finally,	some	models	are
also	defined	in	terms	of	the	relative	change,	or	per	capita	change,	Δxt/xt.	Thus,

where	h	 is	 the	given	per	capita	change.	Any	form	can	be	obtained	easily	 from
another	by	simple	algebra.
A	second-order,	discrete	time	model	has	the	form

Now	a	state	depends	upon	two	preceding	states,	and	both	x0	and	x1	are	required
to	start	the	process.
Difference	equations	are	recursion	formulas,	and	programs	for	computing	the

values	 xt	 are	 easily	 composed	 on	 computer	 algebra	 systems	 and	 graphing
calculators.

Example	9.1
The	 simplest	 discrete	model,	 the	 growth-decay	 process,	 is	 linear	 and	 has	 the
form
(1.3)	

For	example,	if	xt	is	the	principal	at	month	t	in	a	savings	account	that	earns	0.3%
per	month,	 then	 the	principal	at	 the	 (t+1)st	month	 is	xt+1	=	xt+0.003xt.	We	 can
perform	successive	iterations	to	obtain

and	so	on.	By	induction,	the	solution	to	(1.3)	is

If	r	>	0	then	xt	grows	geometrically	and	we	have	a	growth	model.	If	−1	<	r	<	0,
then	1	+	r	is	a	proper	fraction	and	xt	goes	to	zero	geometrically;	this	is	a	decay
model.	If	−2	<	r	<	−1,	then	the	factor	1	+	r	is	negative	and	the	solution	xt	will



oscillate	between	negative	and	positive	values	as	it	converges	to	zero.	Finally,	if
r	<	−2	the	solution	oscillates	without	bound.	It	 is	also	easily	checked	by	direct
substitution	that	the	sequence

is	a	solution	to	the	equation	for	any	value	of	C:

If	x0	 is	 fixed,	 then	C	=	x0.	Discrete	growth-decay	models	 are	 commonplace	 in
finance,	in	ecology,	and	in	other	areas.	For	example,	in	ecology	we	often	write
the	model	(1.3)	as

Then	we	can	recognize	r	as	the	constant	per	capita	growth	rate.	For	populations
in	general,	the	constant	r	is	given	by	r	=	b	−	d	+	i	−	 ,	where	b,	d,	i,	and	 	are	the
birth,	 death,	 immigration,	 and	 emigration	 rates,	 respectively.	When	 r	 >	 0	 the
model	(1.3)	is	called	the	Malthus	model	of	population	growth.

Example	9.2
The	 last	 example	 showed	 that	 the	 difference	 equation	 xt+1	 =	 λxt	 has	 general
solution	 xt	 =	Cλt,	 where	C	 is	 any	 constant.	 Let	 us	 modify	 the	 equation	 and
consider	the	linear	model
(1.4)	

where	p	is	a	constant.	We	can	consider	this	model	to	be,	say,	the	monthly	growth
of	principal	xt	 in	a	bank	account	where	r	 (λ	=	1+r)	 is	 the	monthly	 interest	 rate
and	p	 is	a	constant	monthly	addition	 to	 the	account.	 In	an	ecological	setting,	λ
may	be	the	growth	rate	of	a	population	and	p	a	constant	recruitment	rate.	We	can
solve	this	equation	by	recursion	to	find	a	formula	for	xt.	If	x0	is	the	initial	value,
then	iteration	yields

By	the	formula	for	the	sum	of	a	geometric	sequence,



and	consequently

(1.5)	
which	is	the	solution	to	(1.4).

Example	9.3
(Logistic	model)	In	the	Malthus	model	of	population	growth,

the	 population	 xt	 grows	 unboundedly	 if	 the	 per	 capita	 growth	 rate	 r,	 or	 the
change	 in	 population	 per	 individual,	 is	 positive.	 Such	 a	 prediction	 cannot	 be
accurate	over	a	long	time.	If,	for	example,	r	=	b	−	d,	where	b	 is	 the	per	capita
birth	rate	and	d	is	the	per	capita	death	rate,	then

We	might	 expect	 that	 for	 early	 times,	when	 the	 population	 is	 small,	 there	 are
ample	environmental	 resources	 to	support	a	high	birth	 rate,	with	 the	death	rate
being	small.	But	for	later	times,	as	the	population	grows,	there	is	a	higher	death
rate	as	individuals	compete	for	space	and	food	(intraspecific	competition).	Thus,
we	 should	 argue	 for	 a	 decreasing	 per	 capita	 growth	 rate	 r	 as	 the	 population
increases.	 The	 simplest	 such	 assumption	 is	 to	 take	 a	 linearly	 decreasing	 per
capita	 rate,	 that	 is,	 r(1	 −	 xt/K),	 where	 K	 is	 the	 carrying	 capacity,	 or	 the
population	where	the	growth	rate	is	zero.	See	Fig.	9.1.	Then

Figure	9.1	Per	capita	growth	rate	for	the	logistic	model.



(1.6)	
In	the	standard	form

(1.7)	
which	is	nonlinear.	The	discrete	 logistics	model,	quadratic	 in	 the	population,	 is
the	simplest	nonlinear	model	that	we	can	develop.	It	is	tempting	to	identify	b	=	r
as	 a	 constant	 birth	 rate	 and	 	 as	 the	 death	 rate	 depending	 upon	 the
population.	But	an	alternative	is	to	take	 	and	 ,	with	both
depending	upon	population.	A	plot	of	the	population	is	shown	in	Fig.	9.2	with	r
=	 0.5,	K	 =	 100,	 and	 x0	 =	 20.	 It	 shows	 a	 steady	 increase	 up	 to	 the	 carrying
capacity,	 where	 it	 levels	 off.	 The	 accompanying	 MATLAB	 m-file,	 or	 script,
produces	the	sequence	in	Fig.	9.2	for	t	=	1,…,	20.	In	the	next	section	we	observe
that	 this	 is	 not	 the	whole	 story;	 different	 values	 of	 the	 parameters	 can	 lead	 to
interesting,	unusual,	and	complex	behavior.

Figure	9.2	Logistic	population	growth.



Example	9.4
(The	Ricker	model).	The	Ricker	model	is	a	nonlinear,	discrete	time	ecological
model	for	the	yearly	population	xt	of	a	fish	stock	where	adult	fish	cannibalize	the
young.	The	dynamical	equation	is

where	b	>	1	and	c	is	positive.	In	a	heuristic	manner,	one	can	think	of	the	model
in	the	following	way.	In	year	 t	 there	are	xt	adult	fish,	and	they	would	normally
give	rise	to	bxt	adult	fish	the	next	year,	where	b	is	the	number	of	fish	produced
per	adult.	However,	 if	adults	eat	 the	younger	fish,	only	a	fraction	of	 those	will
survive	 to	 the	 next	 year	 to	 be	 adults.	 We	 assume	 the	 probability	 of	 a	 fish
surviving	cannibalism	is	e−cxt,	which	decreases	as	the	number	of	adults	increases.
Thus,	bxte−cxt	is	the	number	of	adults	the	next	year.	One	cannot	solve	this	model
to	 obtain	 a	 formula	 for	 the	 fish	 stock	 xt,	 so	 we	 must	 be	 satisfied	 to	 plot	 its
solution	using	iteration,	as	was	done	for	the	logistic	model	in	the	last	example.



9.1.2	Equilibria,	Stability,	and	Chaos
An	 important	 question	 for	 discrete	 models,	 as	 it	 is	 for	 continuous	 models,	 is
whether	the	state	of	the	system	approaches	an	equilibrium	as	time	gets	large	(i.e.,
as	 t	 approaches	 infinity).	 Equilibrium	 solutions	 are	 constant	 solutions,	 or
constant	sequences.	We	say	xt	=	x*	is	an	equilibrium	solution	of	xt+1	=	f(xt)	if

(1.8)	
Equivalently,	x*	is	a	value	that	makes	the	change	Δxt	zero.	Graphically,	we	can
find	equilibria	x*	as	the	intersection	points	of	the	graph	of	y	=	f(x)	and	y	=	x	in	an
xy	plane.	See	Fig.	9.3.

Figure	9.3	Graphical	method	for	finding	equilibrium	as	the	intersection	points	of
the	graphs	of	y	=	x	and	y	=	f(x).

Example	9.5
(Logistic	model)	Setting	Δxt	=	0	in	the	logistics	model	gives	rx*	(1	−	x*/K)	=	0
or,	 x*	 =	 0	 and	 x*	 =	 K.	 These	 two	 equilibria	 represent	 extinction	 and	 the
population	carrying	capacity,	respectively.	Graphically,	we	can	plot	y	=	x	vs.	y	−
f(x)	=	x	(1	+	r	−	r/K	x);	 the	equilibria	are	at	 the	 intersections	points	of	 the	 two
curves.	See	Fig.	9.4.

Figure	9.4	Graphical	method	for	finding	equilibrium	0	and	K	for	the	logistics
model.



Example	9.6
(Ricker	model)	An	equilibrium	state	for	the	Ricker	model	must	satisfy

or

Therefore	 one	 equilibrium	 state	 is	 x*	 −	 0,	 which	 corresponds	 to	 extinction.
Setting	the	other	factor	equal	to	zero	gives

or

If	b	>	1	we	obtain	a	positive,	viable	equilibrium	population.
If	there	is	an	equilibrium	solution	x*	to	a	discrete	model	(1.8),	we	always	ask

about	 its	 permanence,	 or	 stability.	 For	 example,	 suppose	 the	 system	 is	 in
equilibrium	 and	 we	 perturb	 it	 by	 a	 small	 amount	 (natural	 perturbations	 are
present	 in	 all	 physical	 and	 biological	 systems).	Does	 the	 system	 return	 to	 that
state	or	does	it	do	something	else	(e.g.,	go	to	another	equilibrium	state,	or	blow
up)?	 We	 say	 an	 equilibrium	 state	 is	 locally	 asymptotically	 stable	 if	 small
perturbations	 decay	 and	 the	 system	 returns	 to	 the	 equilibrium	 state.	 If	 small
perturbations	of	the	equilibrium	do	not	cause	the	system	to	deviate	too	far	from
the	equilibrium,	we	say	 the	equilibrium	 is	 stable.	 If	a	perturbation	grows,	 then
we	say	the	equilibrium	state	is	unstable.	In	the	next	paragraph	we	use	a	familiar
argument	to	determine	the	stability	of	an	equilibrium	population.
Let	 x*	 be	 an	 equilibrium	 state	 for	 (1.8),	 and	 assume	 y0	 represents	 a	 small

deviation	 from	x*	 at	 t	 =	 0.	 Then	 this	 perturbation	will	 be	 propagated	 in	 time,
having	value	yt	at	 time	 t.	Does	yt	decay,	or	does	 it	grow?	The	dynamics	of	 the



state	 x*	 +	 yt	 (the	 equilibrium	 state	 plus	 the	 deviation)	 must	 still	 satisfy	 the
dynamical	equation.	Substituting	xt	=	x*	+	yt	into	(1.8)	gives

We	 can	 simplify	 this	 equation	 using	 the	 assumption	 that	 the	 deviations	 yt	 are
small.	We	can	expand	the	right	side	in	a	Taylor	series	centered	about	the	value	x*
to	obtain

Because	 the	 deviations	 are	 small	 we	 can	 discard	 the	 higher	 powers	 of	 yt	 and
retain	only	 the	 linear	 term.	Moreover,	x*	=	 f(x*)	because	x*	 is	 an	equilibrium.
Therefore,	 small	 perturbations	 are	 governed	 by	 the	 linearized	 perturbation
equation,	or	linearization

This	 difference	 equation	 is	 the	 growth-decay	 model	 (note	 that	 f’(x*)	 is	 a
constant).	 For	 conciseness,	 let	 λ	 =	 f’(x*).	 Then	 the	 difference	 equation	 has
solution

If	|λ|	<	1	then	the	perturbations	yt	decay	to	zero	and	x*	is	locally	asymptotically
stable;	if	|λ|	>	1	then	the	perturbations	yt	grow	and	x*	is	unstable.	If	λ	=	1,	then
the	linearization	gives	no	information	about	stability	and	further	calculations	are
required,	for	example,	examining	the	higher	order-terms	in	the	series	above.	The
stability	indicator	λ	is	called	the	eigenvalue.	Therefore,	if	the	absolute	value	of
the	slope	of	the	tangent	line	to	f(x)	at	 the	intersection	with	y	=	x	 is	 less	than	1,
then	the	equilibrium	is	asymptotically	stable;	if	the	absolute	value	of	the	slope	is
greater	than	1,	the	equilibrium	is	unstable.	In	other	words,	we	get	stability	if	f	is
not	too	steep	at	the	intersection	point.

Example	9.7
(Chaotic	behavior)	Consider	the	Ricker	model

where	c	>	0	and	b	>	1.	Let	us	check	the	equilibrium

for	 stability.	 Here	 f(x)	 =	 bxe−cx	 and	 we	 must	 calculate	 the	 eigenvalue,	 or	 the
derivative	 of	 f	 evaluated	 at	 equilibrium.	 To	 this	 end	 f’(x)	 =	 (−cx	 +	 1)be−cx;



evaluating	at	x*	gives

We	get	asymptotic	stability	when

or

If	b	 <	 e2,	 then	 the	 perturbations	 decay	 and	 the	 equilibrium	 is	 asymptotically
stable.	Let	us	 follow	up	on	 this	by	performing	some	simulations	with	different
values	of	b	and	observe	the	effect.	Fix	c	=	0.001.	Figure	9.5	shows	the	results	for
b	=	6.5,	9,	13,	18.	The	equilibrium	is	at	x*	=	1000	ln	b.	For	b	=	6.5,	within	the
stability	 range,	 the	 solution	 does	 indeed	 represent	 an	 asymptotically	 stable,
decaying	oscillation.	For	b	=	9,	however,	a	periodic,	2-cycle	appears,	alternating
between	high	and	 low	population	values.	When	b	 is	 increased	 further,	 there	 is
some	value	of	b	where	suddenly	the	2-cycle	bifurcates	into	a	4-cycle.	The	plot
shows	 the	 periodic	 4-cycle	when	b	 =	 13.	 This	 period	 doubling	 continues	 as	b
increases	 further,	 giving	 8-cycles,	 16-cycles,	 and	 so	 on.	 It	 can	 be	 shown	 that
these	cycles	are	stable	 limit	cycles.	But	 there	 is	a	critical	value	of	b	where	 the
patterns	 disappear,	 and	 there	 are	 seemingly	 random	 fluctuations	 in	 the
population	(b	 =	 18	 shows	 this	 case).	When	b	 exceeds	 this	 critical	 value	 these
non-periodic	 fluctuations	 become	 highly	 sensitive	 to	 initial	 conditions,	 a
behavior	 known	 as	 chaos.	 The	 frames	 in	 Fig.	 9.6	 show	 the	 solution	 for
conditions	 x0	 =	 99	 and	 x0	 =	 101	 with	 b	 =	 18.	 We	 observe	 much	 different
solutions.	 In	 the	 chaotic	 regime,	 the	 solution	 is	 deterministic	 (rather	 than
stochastic),	but	highly	unstable	with	respect	to	initial	data.

Figure	9.5	Population	dynamics	for	the	Ricker	model	for	c	=	0.001	and	b	=	6.5,
9,	13,	18,	showing	a	decaying	oscillation,	2-cycle,	4-cycle,	and	chaos,	as	b
increases.



Figure	9.6	Plots	of	discrete	solutions	of	the	Ricker	equation	in	the	case	the
initial	populations	(x0	=	99,	x0	=	100)	are	close,	in	the	chaos	regime.

Chaotic	behavior	is	common	in	discrete	models,	even	in	one	dimension.	Such
behavior	does	not	occur	in	autonomous	differential	equations	until	dimension	3.
Next	 we	 illustrate	 a	 graphical	 procedure	 to	 determine	 the	 stability	 of	 an

equilibrium	solution	of	xt+1	=	f(xt).	The	discussion	refers	to	Figs.	9.7	and	9.8.	We
first	sketch	the	curves	y	=	x	and	y	=	f(x)	on	a	set	of	axes,	as	in	Fig.	9.4.	We	then
mark	the	beginning	value	x0	on	the	x	axis.	To	find	x1	we	move	vertically	to	the



graph	of	f(x),	because	x1	=	f(x0),	and	mark	x1	on	the	y	axis.	To	find	x2	we	reflect
x1	back	to	the	x	axis	through	the	line	y	=	x.	Now	we	have	x1	on	the	x	axis.	We
repeat	 the	 process	 by	moving	 vertically	 to	 the	 curve	 f(x),	 which	 gives	 x2.	We
reflect	it	back	to	the	×	axis,	and	so	on.	This	sequence	of	moves	is	accomplished
by	 starting	 at	 x0,	 going	 vertically	 to	 f(x),	 going	 horizontally	 to	 the	 diagonal,
vertically	 to	 the	curve,	horizontally	 to	 the	diagonal,	alternating	back	and	forth.
The	plot	of	these	vertical	and	horizontal	moves	that	give	the	segments	between
the	curve	f(x)	and	the	diagonal	is	called	the	cobweb	diagram.	If	the	equilibrium
is	asymptotically	stable,	the	cobweb	will	converge	to	the	equilibrium	represented
by	the	intersection	point.	If	the	equilibrium	is	unstable,	the	cobweb	will	diverge
from	the	intersection	point.	Figure	9.8	shows	a	divergent	cobweb.

Figure	9.7	Cobweb	diagram	for	a	stable	equilibrium.

Figure	9.8	Cobweb	diagram	for	an	unstable	equilibrium.

EXERCISES



1.	Solve	the	following	linear	difference	equations	and	plot	their	solutions:
a)	
b)	
c)	
d)	

2.	 If	you	borrow	$15,000	 to	purchase	a	new	car	at	a	monthly	rate	of	0.9%
and	you	pay	off	your	loan	in	4	years,	what	is	your	monthly	payment?
3.	Use	iteration	to	show	that	the	solution	to	the	difference	equation	xt+1	=	λxt
+	pt	can	be	written

4.	The	next	three	exercises	investigate	second-order,	linear,	discrete	models,
which	 are	 analogs	 of	 the	 differential	 equation	 u″	 =	 pu’	 −	 qu.	 Consider	 a
model	of	the	form

Assume	 that	 the	 solution	 sequence	 takes	 the	 form	xt	 =	 rt	 for	 some	 r	 to	 be
determined.	 Show	 that	 r	 satisfies	 the	 quadratic	 equation	 (called	 the
characteristic	equation)

In	 the	 case	 that	 there	 are	 two	 distinct	 real	 roots	 r1	 and	 r2	 we	 have	 two
distinct	solutions	rt1	and	rt2.	Show	that	 for	any	 two	constants	A	and	B,	 the
discrete	function	xt	=	Art1	+	Brt2	is	a	solution	to	the	difference	equation.	This
expression	 is	 called	 the	 general	 solution,	 and	 all	 solutions	 have	 this	 form.
Use	this	method	to	find	the	general	solution	of

Find	a	specific	solution	that	satisfies	the	conditions	x0	=	1	and	x1	=	5.
5.	Referring	 to	Exercise	4,	 show	that	 if	 the	characteristic	equation	has	 two
equal	real	roots	(r	=	r1	=	r2),	then	xn	=	rn	and	xn	=	nrn	are	both	solutions	to
the	equation.	Thus,	the	general	solution	is	xt	=	Art	+	Btrt	=	rt(A	+	Bt),	where
A	 and	B	 are	 arbitrary	 constants.	 Find	 the	 general	 solution	 of	 the	 discrete
model

Find	a	specific	solution	that	satisfies	the	conditions	x0	=	1	and	x1	=	0.



6.	 Investigate	 the	 case	 when	 the	 roots	 of	 the	 characteristic	 equation	 in
Exercise	 4	 are	 complex	 conjugates,	 that	 is,	 r	 =	 a	 ±	 bi.	 Find	 two	 real
solutions.	 Follow	 these	 steps.	 (i)	 Use	 the	 exponential	 representation	 of	 a
complex	number,	a	+	bi	=	ρeiθ,	to	write

(ii)	Show	 that	 the	 real	and	 imaginary	parts	of	 this	complex	solution	are
real	solutions.	(iii)	What	is	the	general	solution?	Then	solve	the	following
equation:

Find	and	plot	the	solution	if	the	initial	states	are	x0	=	1	and	x1	=	 .
7.	Find	the	general	solution	of	the	Beverton–Holt	model	equation
by	making	the	substitution	 .
8.	Draw	the	cobweb	diagram	for	the	model

when	x0	=	0.5.
9.	A	density-limited	population	model	is

where	a,	b,	and	c	are	positive.
a)	Use	scaling	to	reduce	the	number	of	parameters	in	the	model	to	two.
b)	Using	the	scaled	equation,	find	the	equilibria	and	determine	conditions
for	stability	for	each.
c)	Plot,	in	two-dimensional	parameter	space,	the	region	of	stability	in	the
case	there	is	a	positive	equilibrium.

10.	The	Gilpin–Ayala	population	model	is	given	by

where	r,	K,	 and	θ	are	positive	constants.	 (a)	Find	 the	equilibria.	 (b)	Find	a
formula	 for	 the	 per	 capita	 population	 growth.	 (c)	Write	 the	 model	 in	 the
form	Pt+1	=	f(Pt)	and	determine	the	stability	of	the	equilibria.	(d)	Sketch	the
region	in	the	rθ	plane	that	gives	values	for	which	the	nonzero	equilibrium	is
stable.



9.2	Systems	of	Difference	Equations

9.2.1	Linear	Models
A	linear	model	is	a	system	of	difference	equations	of	the	form
(2.1)	

where	xt	 is	an	n-vector	of	quantities	at	time	t	and	A	 is	a	constant	n	×	n	matrix.
Such	models	arise	naturally	in	Markov1	processes	(discussed	below),	where	A	is
a	Markov	matrix	with	nonnegative	entries	and	whose	columns	sum	to	1.	Linear
models	occurs	in	other	areas,	for	example,	for	stage-structured	models	in	biology
where	A	is	a	Leslie	matrix,	or	a	population	projection,	matrix.	By	iteration,	if	x0
is	an	initial	vector,	then
(2.2)	

is	the	solution	to	(2.1).	We	can	get	a	more	usable	representation	of	the	solution	in
terms	of	 the	eigenvalues	and	eigenvectors	of	A.	Suppose	 that	A	 has	n	distinct,
real	eigenvalues	λk	with	associated	independent	eigenvectors	vk,	k	=	1,	2,…,	n.
Then	the	eigenvectors	form	a	basis	for	 n	and	we	can	express	the	initial	vector

where	the	ck	are	the	coordinates	of	x0	 in	 the	basis	of	eigenvectors.	Then,	using
linearity,

(2.3)	
which	is	the	solution.
We	recall	that	we	can	find	the	power	At	by	diagonalizing	the	matrix	A.	Let	D

be	 the	 diagonal	matrix	with	 the	 eigenvalues	 on	 the	 diagonal,	 and	 let	Q	 be	 the
matrix	 whose	 columns	 are	 the	 associated	 eigenvectors.	 Then,	 from	 linear
algebra,	Q−1	AQ	=	D	(we	say	the	matrix	Q	diagonalizes	A).	Thus	A	=	QDQ−1	and
At	=	(QDQ−1)t	=	QDtQ−1,	where	Dt	 is	a	diagonal	matrix	with	 the	entries	λti	on
the	diagonal.	This	leads	to	an	alternate	solution	form

An	important	case	occurs	when	there	is	a	positive,	real	dominant	eigenvalue,
say	λ1.	This	means	λ1	>	|λ2|	≥	|λ3|	≥	···	≥	|λn|.	Then



(2.4)	
We	have	|λi/λ1|	<	1	for	i	=	2,	3,…,	n,	and	therefore	all	the	terms	in	parentheses
decay	to	zero	as	t	→	∞.	Consequently,	for	large	t	the	solution	to	the	linear	model
behaves	approximately	as

Asymptotically,	 if	 λ1	 >	 0,	 the	 solution	 exhibits	 geometric	 growth	 or	 decay,
depending	upon	the	magnitude	of	λ1.	For	some	matrices	A,	 to	be	defined	 later,
there	 is	 a	 dominant	 eigenvalue	 and	 its	 associated	 eigenvector	 v1	 is	 positive,
having	 positive	 entries.	 In	 this	 case,	 the	 dominant	 eigenvalue	 λ1	 is	 called	 the
growth	rate	 and	 the	vector	v1	 is	 the	 longtime	 structure	of	 the	 solution.	 In	 the
context	 of	 population	 models,	 v1,	 appropriately	 normalized,	 is	 the	 stable	 age
structure.
If	some	of	the	eigenvalues	of	A	are	complex,	but	the	set	of	eigenvalues	is	still

distinct,	the	argument	above	can	be	repeated.	Using	Euler’s	formula,	eiθ	=	cos	θ
+	i	sin	θ,	every	complex	term	in	solution	(2.3)	can	be	written	in	terms	of	real	and
imaginary	parts,	each	of	which	is	a	real	solution.	For	example,	if	v	=	u	+	iw	and
λ	=	α	+	iβ	=	reiθ	is	a	complex	eigenpair,	where	r	is	the	modulus	of	λ	and	θ	is	its
argument,	then

The	 real	 and	 imaginary	 parts	 of	 this	 vector	 are	 two	 linearly	 independent,	 real
solutions.	The	complex	conjugate	eigenpair	v	=	u−iw	and	λ	=	α	−	 iβ	gives	 the
same	 two	 independent	 solutions.	 In	 summary,	 the	 two	 complex	 terms	 in	 (2.3)
associated	with	complex	conjugate	eigenpairs	may	be	replaced	by	the	two	real,
independent	vector	solutions.	Therefore,	we	may	always	write	the	solution	as	a
real	solution.	Complex	eigenvalues	clearly	lead	to	oscillations	in	the	system.	The
analysis	of	the	case	of	a	repeated	eigenvalue	of	A	is	left	to	the	Exercises.
An	equilibrium	solution	x*	of	(2.1)	satisfies

Clearly,	x*	=	0	is	always	an	equilibrium	solution;	there	are	nontrivial	equilibria
if,	and	only	if,	λ	=	1	is	an	eigenvalue	of	A.	Notice	that	(2.4)	also	implies	that	the



solution	to	the	linear	model	(2.1)	satisfies	the	condition	xt	→	0	if,	and	only	if,	all
the	eigenvalues	have	modulus	less	than	one,	or	|λi|	<	1.	In	this	case	we	say	x	=	0
is	an	asymptotically	stable	 equilibrium.	 If	 there	 is	an	eigenvalue	with	 |λ|	>	1,
then	the	equilibrium	x	=	0	is	unstable.
In	Chapters	 1	 and	 2,	where	we	 discussed	 continuous	 population	models,	we

had	in	mind	tracking	one	or	more	species	and	we	lumped	all	the	individuals	of	a
given	species	 into	a	single	quantity,	without	 regard	 to	development	stage,	size,
age,	or	 any	other	 structured	quantity.	However,	 some	animals,	 such	as	 insects,
have	well-defined	life	stages,	such	as	egg–larva–pupa–adult.	Still	other	species’
populations	 can	 be	 divided	 into	 juveniles	 and	 adults.	 We	 want	 to	 develop
dynamics	of	how	that	animal	might	go	through	its	 life	stages,	keeping	track	of
the	population	of	each	stage.
Before	working	through	an	example,	we	remark	that	many	population	models

in	ecology	track	only	the	females	of	the	species.	They	are	the	important	ones	that
give	birth;	males	may	sire	many	offspring	from	many	females.	Sorry,	men!

Example	9.8
(Leslie	model)	Consider	a	hypothetical	animal	that	has	two	life	stages,	juvenile
and	 adult.	 At	 time	 t	 (say,	 given	 in	 weeks)	 we	 let	 Jt	 denote	 the	 number	 of
juveniles	and	At	denote	the	number	of	adults.	Over	each	time	step	of	one	week
we	 assume	 that	 new	 juveniles	 are	 born,	 some	 die,	 and	 some	 graduate	 to
adulthood.	 For	 adults,	 some	 die	 and	 some	 are	 recruited	 from	 the	 graduating
juvenile	stage.	In	symbols,	for	the	juvenile	population	we	may	write
(2.5)	

In	words,	 the	number	of	 juveniles	at	 the	next	week	(Jt+1)	equals	 the	number	at
the	 last	 week	 (Jt),	 minus	 the	 number	 that	 died	 (mJt),	 minus	 the	 number	 that
became	adults	(gJt),	plus	the	number	of	births	(fAt).	The	constant	m	is	the	weekly
juvenile	mortality	rate,	g	 the	weekly	graduation	rate,	and	 f	 the	average,	weekly
fecundity	(fertility)	of	adults.	Because	adults	reproduce,	we	assume	the	number
of	juveniles	produced	each	week	is	proportional	to	the	number	of	adults	present.
For	example,	if	each	adult	on	the	average	gives	rise	to	three	juveniles	each	week,
then	 f	=	3.	Then,	100	adults	would	give	 rise	 to	300	 juveniles	per	week.	 In	 the
same	way,	for	the	adult	population,
(2.6)	

where	 μ	 is	 the	 adult	 weekly	 mortality	 rate.	 The	 last	 term	 represents	 those



juveniles	 that	 became	 adults.	 Equations	 (2.5)–(2.6)	 represent	 a	 system	 of	 two
coupled,	first-order	difference	equations.	They	provide	a	way	to	take	information
from	time	t	and	project	it	forward	to	the	next	time	t	+	1.	Therefore,	if	we	know
the	 initial	 numbers	 in	 each	 stage,	 we	 can	 recursively	 calculate	 the	 population
numbers	 for	all	 times	 t.	The	 stage-based	population	model	 in	 the	 last	 example
can	be	formulated	in	matrix	form	as

and	can	be	formulated	in	vector	notation	as
(2.7)	

where

The	 matrix	P	 is	 called	 the	 population	 projection	matrix,	 or	Leslie	 matrix2
(after	P.	H.	Leslie,	a	biologist	who	developed	the	ideas	in	the	1940s).
Often	we	 express	 the	model	 in	 terms	 of	 survivorships,	 rather	 than	mortality

rates.	The	fraction	s	that	survive	in	a	given	stage	is

Then,	 in	 our	model	 for	 juveniles	 and	 adults,	 sJ	 =	 1	 −	m	 −	g	 and	 sA	 −	 1	 −	 μ,
because	no	adults	graduate	to	the	next	class.	So	the	Leslie	matrix	is

By	iteration	we	see	immediately	that	the	solution	to	(2.7)	is

where	x0	is	a	vector	containing	the	initial	stage	populations.

Example	9.9
In	the	preceding	example	let	us	choose	g	=	m	=	0.5,	f	=	2,	and	μ	=	0.9.	Then	the
model	is

The	eigenpairs	are



The	general	solution	is

The	 dominant	 eigenvalue	 is	 λ1	 =	 1.051	 and	 the	 first	 term	 produces	 growth	 of
about	 5%.	 The	 second	 term	 will	 give	 a	 decaying	 oscillation.	 This	 is	 our
observation	 in	 Fig.	 9.9.	 Over	 a	 long	 time,	 the	 juvenile-adult	 population	 will
approach	 a	 stable	 age	 structure	 defined	 by	 the	 eigenvector	 (0.885,	 0.465)T,
which,	 when	 normalized	 to	 make	 the	 sum	 of	 the	 entries	 one,	 gives	 (0.656,
0.344)T.	Therefore,	 in	 the	 long	 run,	65.6%	of	 the	population	will	be	 juveniles,
and	34.4%	of	the	population	will	be	adults.	In	yet	different	words,	there	will	be
about	1.9	juveniles	for	every	adult.

Figure	9.9	Population	of	adults	(solid)	and	juveniles	(dashed).

Doing	 calculations	 by	 hand	 to	 get	 plots	 is	 tedious,	 so	 we	 use	 software.	 A
MATLAB	script	produces	the	time	series	plots	shown	in	Fig.	9.9.

function	stagepopulation

clear

m=0.5;	g=0.5;	f=2;	mu=0.9;	timesteps=35;

J=80;	Jhistory=J;	A=30;	Ahistory=A;

for	t=1:timesteps;

x=(1-m-g)*J+f*A;

y=g*J+(1-mu)*A;



J-x;	A=y;

Ahistory=[Ahistory	J];

Jhistory=[Jhistory	A];

end

time=0:timesteps;

plot(time,Jhistory),	hold	on

plot(time,Ahistory),	hold	off

To	get	 a	phase	plane	plot	of	Jt	vs.	At,	 just	 replace	 the	plot	 commands	 in	 the
script	above	by	‘plot(Jhistory,	Ahistory).’
In	general,	xt	may	be	an	n-vector	whose	 entries	 represent	 the	populations	of

each	of	n	stages	at	time	t.	If	n	=	4,	for	example,	xt	=	(x1t,	x2t,	x3t,	x4t)T,	and	 the
Leslie	matrix	(generally,	we	use	the	letter	A)	has	the	form

(2.8)	
where	 fi	 is	 the	 fecundity	 of	 the	 ith	 stage,	 si	 is	 survival	 rate	 (one	 minus	 the
mortality	rate	minus	the	graduation	rate)	of	the	ith	stage,	and	gi	is	the	fraction	of
the	 ith	 stage	 that	passes	 to	 the	 jth	 stage	during	 the	 fixed	 time	step.	The	Leslie
diagram	 in	 Fig.	 9.10	 shows	 pictorially	 how	 the	 rates	 and	 the	 stages	 are
connected.	 In	 still	 a	 more	 general	 case,	 the	 entries	 in	 the	 Leslie	 matrix	 may
depend	upon	t,	or	they	may	depend	upon	the	populations	themselves,	making	the
model	nonlinear.	Nonlinear	models	are	discussed	later.

Figure	9.10	Leslie	diagram.

When	there	is	a	positive,	dominant	eigenvalue,	say	λ1,	of	the	Leslie	matrix	A,



we	have	xt	~	c1v1λt1	 for	 large	 t.	Therefore	λ1	 is	 the	 long-term	growth	 rate	 and
c1v1	 represents	 the	stable	stage	structure.	Because	c1	 is	a	constant,	we	can	 just
use	v1	 to	 determine	 the	 proportion,	 or	 percentage,	 of	 each	 stage	 to	 the	whole
population.	For	example,	 if	v1	=	 (1,	2,	3)T	 is	 an	 eigenvector	 associated	with	 a
dominant	eigenvalue,	then	the	vector	( )T	shows	the	fraction	of	each	stage	in
the	stable	age	structure.
Finally,	we	ask	when	is	there	a	dominant	eigenvalue	for	a	given	model	and	a

corresponding	positive	eigenvector.	A	simple	version	of	the	Perron–Frobenius
theorem,	can	be	stated	as	follows.

Theorem	9.10
(Perron–Frobenius)	 If	 A	 is	 a	 non-negative	 matrix,	 i.e.,	 its	 entries	 are	 non-
negative,	and	if	for	some	positive	integer	k	the	matrix	Ak	has	all	positive	entries,
then	A	has	a	simple,	positive	dominant	eigenvalue	with	a	positive	eigenvector.
There	are	other	results	that	guarantee	the	same	conclusion	under	less	strenuous

hypotheses.	(See	Caswell	2001.)
One	 interesting	 issue	 in	 a	 stage-structured	 population	model	 is	 to	 determine

which	values	 in	 the	Leslie	matrix,	which	represent	fecundities,	graduation,	and
survivorship	probabilities,	most	 affect	 the	dominant	 eigenvalue	λ,	which	 is	 the
long-term	 growth	 rate.	 This	 is	 particularly	 important	 in	 making	 management
decisions	about	ecosystems.	We	can	measure	the	sensitivity	of	λ	to	changes	in	an
entry	aij	by	calculating	the	derivative	∂λ/∂aij.	(Note	that	the	dominant	eigenvalue
is	a	function	of	the	entries	in	A.)	The	matrix	of	these	values,

is	called	the	sensitivity	matrix.

Example	9.11
For	a	2	×	2	matrix

with	non-negative	entries	the	dominant	eigenvalue	is	easily	found	from	the	roots
of	the	characteristic	equation,



Then	the	sensitivity	matrix	is

For	example,	consider	the	two-stage	(juveniles	and	adults)	model

with	matrix

The	value	1.7	is	the	fecundity	of	adults,	and	0.1	is	their	survival	rate;	0.6	is	the
fraction	 of	 juveniles	 that	 survive	 and	 pass	 to	 the	 adult	 stage.	 The	 dominant
eigenvalue	 is	 λ	 =	 1.06,	 which	 means	 that	 the	 long-time	 growth	 rate	 of	 the
population	is	6%	per	season.	The	sensitivity	matrix	is

Therefore,	 we	 see	 that	 the	 2,1	 entry,	 the	 survivorship	 of	 juveniles	 affects	 the.
dominant	 eigenvalue	 most.	 We	 can	 estimate	 the	 change	 Δλ	 in	 the	 long-term
growth	 rate	 when	 the	 survivorship	 is	 changed	 by	 Δc	 with	 the	 linear
approximation

Now	we	proceed	in	general.	Consider	the	n-dimensional	model

with	λ,	v	the	dominant	eigenpair.	Then

We	 know	 that	 λ	 is	 also	 an	 eigenvalue	 of	 AT	 having	 some	 eigenvector	 w.
Therefore	ATw	=	λw,	or,	taking	the	transpose,

Therefore	w	is	a	left	eigenvector	of	A.
To	calculate	the	change	in	the	dominant	eigenvalue	with	respect	to	the	change

of	an	entry	 in	 the	matrix,	we	change	 the	 ij-entry	of	A	by	a	 small	amount	Δaij,
while	holding	the	remaining	entries	fixed.	Let	ΔA	be	the	matrix	with	Δaij	in	the
ij-position	and	zeros	elsewhere.	Then	the	perturbed	matrix	A	+	ΔA	has	dominant
eigenvalue	λ	+	Δλ	and	eigenvector	v	+	Δv,	or



Multiplying	out	and	discarding	the	higher-order	terms	gives,	to	leading	order,

Multiplying	by	wT	on	the	left	gives

or

In	the	limit	we	have

(2.9)	
which	 is	a	 simple	 representation	of	 the	sensitivity	matrix.	As	a	 final	note,	 it	 is
always	possible	to	normalize	v	and	w	so	that	wTv	=	1.
MATLAB	 is	 useful	 to	 calculate	 the	 sensitivity	 matrix	 S.	 The	 following

command	line	statements	calculate	S	for	the	model	in	the	last	example.

A=[0	1.7;	0.6	0.1]

[V,D]=eig(A)

v=V(:,2)

[W,d]=eig(A’)

w=W(:,2)

S=(1/(w’*v))*(w*v’)

Unfortunately,	 the	 sensitivity	 matrix	 may	 give	 information	 that	 is	 hard	 to
interpret	when	entries	in	A	have	large	differences.	For	example,	fecundities	are
usually	high	compared	to	survivorships.	This	fact	may	confound	the	calculation.
Therefore	 asking	 how	 the	 dominant	 eigenvalue	 changes	with	 respect	 to	 a	 unit
change	in	an	entry	is	not	always	practical,	and	it	is	better	to	compute	the	relative
changes,	or	the	elasticity.	We	define	the	elasticity	matrix	E	by

In	MATLAB	this	is	simply	E	=	A.*S/max(eig(A)).	When	an	entry	of	E	is	large,
we	 say	 the	 entry	 is	elastic,	 and	when	 it	 is	 small,	we	 say	 it	 is	 inelastic.	 These
terms	are	familiar	terms	in	economics	with	regard	to	the	elasticity	of	demand	for
a	product	with	respect	to	price	changes;	there,



where	the	demand	D	is	a	function	of	price	p.
For	reference	or	study,	the	definitive	book	by	Caswell	(2001)	has	a	thorough

discussion	of	matrix	models	in	the	biological	sciences.

EXERCISES
1.	Find	the	solution	to	the	discrete	model

if	X0	=	6	and	Y0	=	0.
2.	For	each	of	the	following	Leslie	matrices	find	the	dominant	eigenvalue	(if
any),	 the	 corresponding	 eigenvector,	 and	 the	 stable	 age	 structure.	 Interpret
each	entry	in	context	of	a	three-stage	population	model.

3.	Describe	the	dynamics	of	the	linear	model

where	a,	b,	and	f	are	positive	constants.	Discuss	 the	 two	cases	abf	>	1	and
abf	<	1.
4.	Consider	the	linear	model

where	s,	b,	c	>	0	and	0	<	a	<	1.
a)	 Determine	 conditions	 (if	 any)	 for	 which	 there	 are	 infinitely	 many
equilibria.
b)	 In	 the	case	where	 there	 is	a	 single	equilibrium,	determine	conditions



on	the	parameters	that	ensure	all	solutions	converge	to	zero	as	t	→	∞.
5.	 For	 many	 bird	 species	 the	 fecundity	 and	 survivorship	 of	 adults	 is
independent	of	the	age	of	the	adult	bird.	So,	we	can	think	of	the	population
as	composed	of	two	classes,	juveniles	and	adults.

a)	Set	up	a	general	Leslie	model	to	describe	the	dynamics	of	the	female
bird	 population,	 assuming	 juveniles	 do	 not	 reproduce	 and	 that	 the
juvenile	stage	lasts	only	one	year.	Adult	females	may	live	more	than	one
year.
b)	 Find	 the	 eigenvalues	 and	 eigenvectors	 of	 the	 Leslie	 matrix	 for	 this
model.
c)	 Identify	 the	growth	 rate	 and	dominant	 eigenvalue,	 and	determine	 the
long	time	fraction	of	 the	total	population	that	are	 juveniles.	Examine	all
cases.

6.	A	population	 is	 divided	 into	 three	 age	 classes,	 ages	0,	 1,	 and	2.	During
each	time	period	20%	of	the	females	of	age	0	and	70%	of	the	females	of	age
1	survive	until	 the	end	of	 the	following	breeding	season.	Females	of	age	1
have	 an	 average	 fecundity	 of	 3.2	 offspring	 per	 female	 and	 the	 average
fecundity	of	age	2	females	is	1.7.	No	female	lives	beyond	three	years.

a)	Set	up	the	Leslie	matrix.
b)	 If	 initially	 the	 population	 consists	 of	 2000	 females	 of	 age	 0,	 800
females	of	age	1,	and	200	females	of	age	2,	find	the	age	distribution	after
three	years.
c)	Determine	the	asymptotic	behavior	of	the	population.

7.	Show	that	if	λ	=	0	is	an	eigenvalue	of	a	matrix	A,	then	A−1	does	not	exist.
8.	Consider	a	linear	model	xt+1	=	Axt.	Under	what	condition(s)	on	A	does	the
system	have	a	single	equilibrium?
9.	Consider	the	stage-structured	model

a)	Find	the	eigenvalues	and	eigenvectors,	and	identify	the	growth	rate	and
stable	age	structure.
b)	Generate	the	sensitivity	matrix	S	and	determine	which	entry	in	A	most
strongly	affects	the	growth	rate.
c)	 Compute	 the	 elasticity	 matrix	 E.	 Do	 the	 entries	 of	 E	 change	 your



conclusion	in	part	(b)?
10.	A	three-stage	model	of	coyote	populations	(pups,	yearlings,	and	adults)
has	a	Leslie	matrix	given	by

Repeat	parts	(a)	and	(b)	of	Exercise	10.
11.	A	female	population	with	three	stages,	juveniles	J,	youth	Y,	and	adults	A,
have	 the	 following	 vital	 statistics.	 In	 a	 time	 step	 (one	 season),	 no	 animal
remains	in	the	same	stage;	but,	on	the	average,	during	each	time	step	50%	of
the	juveniles	become	youth,	and	60%	of	the	youth	survive	to	become	adults.
On	the	average,	each	youth	produces	0.8	offspring	(juveniles)	per	time	step,
and	 each	 adult	 produces	 2.2	 offspring	 per	 time	 step.	 Juveniles	 do	 not
reproduce.

a)	Draw	a	Leslie	diagram	with	arrows	indicating	how	the	stages	interact.
b)	Write	down	the	discrete	model	and	identify	the	population	projection
matrix	L.
c)	If	J0	=	25,	Y0	=	50,	and	A0	=	25,	draw	plots	(on	the	same	set	of	axes)	of
the	populations	of	each	stage	for	the	first	30	seasons.
d)	What	is	the	the	growth	rate	of	the	total	population?	Over	a	long	time,
what	 percentage	 of	 the	 population	 is	 in	 each	 stage?	 Explain	 your
observations	in	part	(c)	based	on	the	eigenvalues	and	eigenvectors	of	the
population	 projection	 matrix	 L.	 What	 are	 the	 absolute	 values	 of	 the
eigenvalues?
e)	 Under	 the	 same	 initial	 conditions,	 plot	 the	 natural	 logarithms	 of	 the
populations	versus	time?	Explain	the	difference	observed	from	part	(d).
f)	Compute	the	sensitivity	matrix	S.
g)	The	dominant	eigenvalue	is	most	sensitive	to	a	change	in	what	nonzero
entry	in	L?
h)	Compute	the	elasticity	of	the	dominant	eigenvalue	to	adult	fecundity.
Interpret	your	result	in	words.
i)	 If	measures	 are	 taken	 to	 increase	 the	 survivorship	of	youths	by	10%,
what	would	be	the	approximate	population	growth	rate?
j)	How	much	would	the	fecundity	of	adults	have	to	decrease	to	drive	the
population	to	extinction?



9.2.2	Nonlinear	Interactions
Next	we	set	up	and	analyze	two-dimensional	nonlinear	discrete	systems
(2.10)	
(2.11)	

where	f	and	g	are	given	functions,	and	t	=	0,	1,	2,….	As	in	the	case	of	differential
equations,	we	 can	 visualize	 a	 solution	 geometrically	 as	 time	 series,	where	 the
sequences	xt	and	yt	are	plotted	against	t,	or	as	a	sequence	of	points	(xt,	yt)	in	the
xy	plane,	or	phase	plane.	We	often	connect	 the	points	of	 the	sequence	 to	make
the	plots	continuous.
The	 importance	 of	 equilibria	 again	 arises	 in	 understanding	 the	 behavior	 of

nonlinear	systems.	An	equilibrium	solution	is	a	constant	solution	xt	=	x*,	yt	=	y*.
It	plots	as	a	single	point,	sometimes	called	a	critical	point,	in	the	phase	plane;	as
in	the	case	of	differential	equations,	the	behavior	of	the	system	is	determined	by
its	local	behavior	near	the	critical	points.	Therefore,	stability,	or	permanence	of
an	equilibrium,	becomes	an	issue.
An	equilibrium	solution	satisfies	the	equations

To	 analyze	 the	 orbital	 behavior	 near	 the	 equilibrium	 we	 consider	 small
perturbations	ut	and	vt	from	x*	and	y*,	respectively,	or

Substituting	into	the	system	(2.10)–(2.11)	and	linearizing	leads,	in	the	usual	way,
to	the	linearized	perturbation	equations
(2.12)	

where	ut	=	(ut,	vt)T	and	J	=	J(x*,	y*)	is	the	Jacobian	matrix	(or	the	community
matrix	in	ecology),

(2.13)	
Let	λ1	and	λ2	denote	the	eigenvalues	of	J.	From	the	section	on	linear	systems,	we
have	the	following	stability	result:

(a).	 If	 |λ1|	 <	 1	 and	 |λ2|	 <	 1,	 then	 the	 perturbations	 decay	 and	 (x*,	 y*)	 is
locally	asymptotically	stable.
(b).	If	either	|λ1|	>	1	or	|λ2|	>	1,	then	some	of	the	perturbations	will	grow	and



(x*,	y*)	is	unstable.
This	 result	 translates	 into	 the	 following	 general	 condition	 for	 asymptotic

stability	in	terms	of	the	characteristic	equation

for	the	Jacobian	matrix.	Necessary	and	sufficient	conditions	for	local	asymptotic
stability,	|λ1|	<	1	and	|λ2|	<	1,	are

(2.14)	
Conditions	 (2.14)	 are	 called	 the	Jury	 conditions.	 A	 proof	 is	 requested	 in	 the
Exercises.
To	plot	orbits	in	the	phase	plane	it	is	useful	to	find	the	nullclines	where	xt	or	yt

does	not	change.	Therefore	the	nullclines	are	defined	by	Δxt	=	0,	Δyt	=	0,	or	the
loci

respectively.	The	x-	and	y-nullclines	intersect	at	the	critical	points.	The	behavior
of	the	orbits	near	the	critical	points	is	similar	to	that	encountered	in	differential
equations:	nodal	structure,	saddle	structure,	and	rotational	structure	(spirals	and
ellipses).

Example	9.12
(Nicholson–Bailey	model)	Many	 insect	 predators	 are	 parasitoids.	A	parasitoid
finds	prey,	called	hosts,	and	lays	its	eggs	inside	or	on	the	victim.	The	eggs	hatch
into	 larvae,	 which	 then	 consume	 the	 host.	 The	 host	 then	 dies	 and	 the	 larvae
metamorphose	and	emerge	as	adults.	The	population	dynamics	is	based	upon	the
probability	of	the	host	avoiding	detection	and	has	the	general	form

where	 xt	 is	 the	 host	 population	 and	 yt	 is	 the	 predator	 population;	 F	 is	 the
escapement	function,	or	probability	of	avoiding	detection	in	one	season,	r	is	the
geometric	 growth	 factor,	 and	 c	 is	 the	 number	 of	 new	 parasitoids	 per	 host
discovered.	Think	of	F	as	the	fraction	of	hosts	that	survive	to	the	next	time	step.
The	 dynamics	 is	 discrete	 because	 both	 host	 and	 parasitoid	 usually	 have	 life
cycles	synchronized	with	seasons.	The	model	was	developed	in	the	1930s	by	A.
J.	 Nicholson	 and	 V.	 A.	 Bailey,	 and	 it	 is	 fundamental	 in	 population	 ecology
because	 of	 its	 historical	 importance,	 in	 spite	 of	 some	 difficulties	 with	 its
predictions.	There	 are	 various	 forms	 for	 the	 escapement	 function	F.	 The	 usual



model	 is	 to	 base	 it	 upon	 a	 Poisson	 random	 variable	 (see	 Section	 9.3).	 A
discrete	random	variable	X	is	Poisson	distributed	if

where	λ	is	a	positive	constant.	A	Poisson	distribution	describes	the	occurrence	of
discrete,	random	events,	such	as	encounters	between	a	predator	and	its	prey,	and
X	is	the	probability	of	k	encounters	in	a	given	time	period,	say	over	the	lifespan
of	 the	 prey.	 The	 constant	 λ	 is	 the	 average	 number	 of	 encounters	 during	 the
period.	In	terms	of	hosts	and	parasitoids,	the	average	encounter	rate	for	a	given
host	 should	 be	 proportional	 to	 the	 number	 of	 predators	 searching,	 or	 λ	 =	 ayt,
during	that	period.	So,	the	probability	of	no	encounters	is	the	zeroth-order	term
(k	=	0),	or

Therefore
(2.15)	

(2.16)	
The	equilibria	are	found	from	the	equations

which	give	two	equilibria

Note	 that	 r	 >	 1	 must	 be	 an	 implicit	 assumption	 to	 the	 model.	 To	 determine
stability	we	must	compute	the	Jacobian	matrix	(2.13).	This	tedious	calculation	is
left	to	the	reader.	We	obtain

At	extinction,

which	has	eigenvalues	r	>	1	and	0.	Hence,	the	extinct	population	is	unstable.	The
nonzero	equilibrium	has	Jacobian	matrix

To	 determine	 stability	 we	 apply	 the	 Jury	 conditions	 (2.14).	 The	 trace	 and



determinant	are

We	 show	 that	 det	 J	 >	 1,	 and	 so	 the	 equilibrium	 is	 unstable.	 Equivalently,	 we
show	g(r)	=	r	−	1	−	r	 ln	r	<	0	 for	r	>	1.	But	g(1)	=	0	and	g′(r)	=	−	 ln	r	 <	 0.
Therefore	we	must	have	g(r)	<	0.
The	results	of	the	Nicholson-Bailey	model	are	ecologically	perplexing.	There

are	no	stable	equilibria,	yet	 in	nature	hosts	and	parasitoids	endure,	co-evolving
together.	Does	this	mean	it	is	an	invalid	model?	To	get	a	sense	of	the	dynamics
we	simulate	the	solution	with	x0	=	10,	y0	=	10,	taking	a	=	1,	c	=	1,	and	r	=	2.	Fig.
9.11	 shows	 the	 unstable	 oscillations	 that	 result.	 If	 time	 is	 continued,	 the
oscillations	 continue	 and	 become	 greater.	 There	 have	 been	 explanations	 that
attempt	to	resolve	this	issue,	but	more	to	the	point,	the	Nicholson-Bailey	model
has	become	 the	basis	of	many	other	models	with	modifications	 that	attempt	 to
stabilize	the	dynamics.

Figure	9.11	Simulations	of	the	Nicholson–Bailey	model.	The	dashed	curve	is	the
parasitoid	abundance	and	the	solid	curve	is	the	host	abundance.

Example	9.13
(Beddington	model)	In	the	Beddington	model,



the	 growth	 rate	 r	 is	 replaced	 by	 a	 saturating	 density	 dependent	 rate	 eb(1−xt/K).
This	model	has	a	positive	stable	equilibrium	for	a	large	set	of	parameter	values.
Texts	 in	mathematical	 ecology	 investigate	 some	of	 these	models	 in	detail.	The
monograph	by	Hassell	(1978),	and	many	of	his	papers,	offer	deep	insights	into
these	and	other	arthropod	predator–prey	systems.

Example	9.14
(Clumped	 prey)	 Instead	 of	 searching	 among	 randomly	 distributed	 hosts,	 as
described	 by	 the	 Poisson	 distribution,	 parasitoids	 may	 search	 using	 a	 more
clumped	 prey	 model	 described	 by	 the	 negative	 binomial	 distribution,	 with
escapement	function

where	k	 is	a	clumping	parameter.	As	k	→	+∞,	 this	distribution	approaches	 the
Poisson	distribution.	Analysis	of	this	model	is	requested	in	the	exercises.

Example	9.15
(Epidemics)	Earlier	we	investigated	a	continuous	SIR	model	of	the	course	of	an
infection.	 Actually,	 because	 health	 data	 is	 collected	 on	 a	 discrete	 scale,	 e.g.,
weekly,	 it	 reasonable	 to	 develop	 a	 discrete	 model.	 Consider	 a	 disease	 in	 a
population	of	fixed	size	N,	and	let	St,	It,	and	Rt	be	the	susceptible,	infective,	and
removed	classes	at	week	 t,	 respectively.	To	 review,	 susceptibles	are	 those	who
can	catch	the	disease	but	are	currently	not	infected,	infectives	are	those	who	are
infected	 with	 the	 disease	 and	 are	 contagious,	 and	 removed	 individuals	 have
either	recovered	permanently,	are	naturally	immune,	or	have	died.	Clearly	N	=	St
+	It	+	Rt.	With	homogeneous	population	mixing,	the	dynamics	is	given	by

(2.17)	
where	the	individuals	in	a	given	class	at	week	t	+	1	equals	the	number	at	week	t,
plus	or	minus	those	added	or	subtracted	during	that	week.	The	constant	α	is	the
transmission	coefficient	and	γ	is	the	removal	rate.	This	model	 is	 the	discrete



SIR	model.	To	interpret	the	constants	we	argue	as	follows.	If	S0	and	I0	are	 the
number	 susceptible	 and	 infected	 initially,	 then	αS0I0	measures	 the	number	 that
become	infected	at	the	outset;	thus	αS0	is	the	number	that	become	infected	by	a
contact	 with	 a	 single	 infected	 individual	 during	 the	 initial	 week.	 Therefore,	 α
represents	the	probability	that	one	susceptible	person	becomes	infected.	Looked
at	in	a	different	way,	α−1	is	the	average	time	that	it	takes	for	an	individual	to	get
infected.	 The	 removal	 rate	 can	 be	 interpreted	 similarly;	 γ−1	 is	 the	 average
duration	 of	 an	 individual’s	 infectious	 period.	 To	 understand	 how	 the	 disease
progresses	we	observe	that

Because	ΔSt	<	0,	we	know	St	is	always	decreasing.	Therefore,	if	S0	<	γ/α	then	St
<	γ/α	for	all	t,	and	the	disease	decreases.	On	the	other	hand,	if	S0	>	γ/α	then	the
disease	increases	in	the	population	and	an	epidemic	occurs.	If	we	define	R	=	α/γ
S0,	 then	 an	 epidemic	 occurs	 if	R	 >	 1.	 Epidemiologists	 refer	 to	R	 as	 the	basic
reproduction	number	of	the	infection.	Notice	that	the	epidemic	peaks	when	St
=	 γ/α,	 where	 ΔIt	 changes	 sign.	 Simulations	 of	 the	 SIR	 equations	 (2.17)	 are
investigated	 in	 the	Exercises.	Both	 time	 series	plots	 and	orbits	 in	 the	SI	phase
plane	illustrate	the	dynamics.	Fig.	9.12	shows	a	typical	orbit	in	the	phase	plane
when	there	 is	an	epidemic.	The	initial	point	 is	on	the	line	S0	+	I0	=	N,	and	 the
orbit	increases	up	to	a	maximum,	which	lies	on	the	vertical	line	St	=	γ/α.	Then
the	disease	dies	out,	leaving	a	number	S*	of	infectives	who	never	get	the	disease.

Figure	9.12	Orbit	in	the	discrete	SIR	model.	One	infective	is	introduced	into	a
susceptible	population	of	500.	There	is	an	epidemic	with	R0	=	2.5	and	about	50
individuals	do	not	get	the	disease.



The	Exercises	 show	 the	variety	and	 scope	of	discrete,	nonlinear	problems	 in
biology	 and	 other	 areas	 of	 science.	 An	 unsurpassed,	 elementary	 treatment	 of
discrete	models	is	contained	in	Allman	and	Rhodes	(2000).

EXERCISES
1.	Consider	the	linear	model

(a)	Find	the	equilibria.	(b)	Draw	the	nullclines	and	the	arrows	indicating	the
direction	of	the	“flow”	on	the	nullclines	and	in	the	regions	bounded	by	the
nullclines.	(c)	On	the	line	Qt	=	Pt	in	the	phase	plane,	draw	arrows	indicating
changes	in	P	and	Q.	 (d)	Do	the	equilibria	appear	stable	or	unstable,	or	can
you	 tell?	 (e)	 Construct	 a	 rough	 phase	 plane	 diagram	 indicating	 solution
paths.	(f)	Find	the	equations	of	these	curves	by	finding	the	solution	Pt	and	Qt
in	terms	of	t.	(Hint:	Reduce	the	system	to	a	single,	second-order	equation.)
2.	Prove	that	the	quadratic	equation	λ2	−	pλ	+	q	=	0	has	roots	satisfying	|λ|	<
1	if,	and	only	if,

Here,	p	 =	 tr	 J	 and	q	 =	 det	 J.	 The	 condition	 is	 called	 the	 Jury	 condition.
Hint:	 treat	 the	 real	 case	 and	 complex	 case	 separately;	 in	 the	 complex	 case
write	the	roots	in	complex	exponential	form,	λ	=	ρ	exp(±iθ).
3.	Consider	the	following	model	connecting	the	cinnabar	moth	and	ragweed.
The	life	cycle	of	the	moth	is	as	follows.	It	lives	one	year,	lays	it	eggs	on	the
plant,	and	then	dies.	The	eggs	hatch	the	next	spring.	The	number	of	eggs	laid
is	proportional	to	the	plant	biomass	in	the	preceding	year,	or

The	 plant	 biomass	 the	 next	 year	 depends	 upon	 the	 biomass	 in	 the	 current
year	and	the	number	of	eggs	according	to



a)	Explain	why	this	last	equation	is	a	reasonable	model	(plot	biomass	vs
eggs	and	biomass	vs	biomass).
b)	What	are	the	dimensions	of	k,	c,	and	a?
c)	Rewrite	the	model	equations	in	terms	of	the	scaled	variables	Xt	=	Bt/k
and	Yt	=	Et/ka.	Call	b	=	ac.	What	are	the	dimensions	of	Xt,	Yt,	and	b?
d)	 Find	 the	 equilibrium	 and	 determine	 a	 condition	 on	 b	 for	 which	 the
equilibrium	is	stable.
e)	If	the	system	is	perturbed	from	equilibrium,	describe	how	it	returns	to
equilibrium	 in	 the	 stable	 case.	 That	 is,	 do	 the	 perturbations	 oscillate,
decay,	or	other?

4.	Explain	and	analyze	the	nonlinear	model

with	respect	to	equilibria	and	their	stability.	All	the	parameters	are	positive.
5.	Consider	a	nonlinear	fisheries	model

where	a,	m,	b,	β	>	0,	and	xt	and	yt	are	juveniles	and	adults,	respectively.
a)	 Find	 the	 equilibria	 (use	 the	 notation	 R	 =	 am	 (1	 +	 3b/2)).	 Find	 a
condition	 on	R	 that	 guarantees	 a	 nontrivial	 equilibrium	 lies	 in	 the	 first
quadrant.
b)	For	a	positive	equilibrium,	determine	conditions	on	R,	a,	and	b	under
which	the	equilibrium	is	asymptotically	stable.
c)	For	a	 fixed	a,	plot	 the	stability	 region	 in	 the	b,	 ln	R	 parameter	 plane
and	identify	the	stability	boundary	that	separates	stability	from	instability.

6.	Analyze	the	Nicholson–Bailey	model	if	the	escapement	function	is

7.	 Suppose	 one	 infected	 individual	 is	 introduced	 into	 a	 population	 of	 500
susceptible	 individuals.	The	 likelihood	 that	an	 individual	becomes	 infected
is	0.1%,	and	an	infective	is	contagious	for	an	average	of	10	days.

a)	Compute	the	basic	reproduction	number	of	the	disease	and	determine
if	an	epidemic	occurs.



b)	Plot	 the	 time	series	St,	 It,	and	Rt	 over	a	60-day	period.	At	what	 time
does	the	disease	reach	a	maximum?	Over	a	long	time,	how	many	do	not
get	the	disease?
c)	Plot	the	orbit	in	an	SI	phase	plane.

8.	Modify	a	nonfatal	SIR	disease	model	 to	 include	vital	dynamics.	That	 is,
assume	 susceptibles	 are	 born	 at	 a	 constant	 rate	m,	 and	 at	 the	 same	 time
individuals	in	each	class	die	at	a	per	capita	rate	m.	Assume	the	population	is
constant.	Working	 in	 the	SI	 phase	plane,	 investigate	 the	model	 thoroughly,
finding	 equilibria	 (if	 any)	 and	 their	 stability,	 and	 sketching	 the	 orbits.
Explain	the	long-term	dynamics	of	the	disease.
9.	A	nonlinear	 juvenile-adult	model	where	 the	 fecundity	depends	upon	 the
adult	population	is	given	by

Here,	 b,	 c	 >	 0	 and	 0	 <	 τ,	 σ	 <	 1.	 Find	 the	 equilibria	 and	 examine	 their
stability.



9.3	Stochastic	Models
Many	dynamical	processes	are	not	deterministic,	but	rather	contain	elements	of
uncertainty.	 This	 is	 particularly	 the	 case	 in	 the	 life	 sciences,	 especially	 in
ecology,	which	provide	a	context	for	the	discussion	in	much	of	this	section.	We
show	 how	 randomness	 arises	 and	 how	 it	 can	 be	 introduced	 into	 discrete
dynamical	models.
It	 is	 assumed	 the	 reader	 has	 studied	 elementary	 probability.	 Some	 of	 the

concepts	and	definitions	are	presented	in	the	first	subsection,	and	the	notation	is
established.



9.3.1	Elementary	Probability
A	random	variable	(often	denoted	RV)	is	a	variable	whose	numerical	value	(a
real	 number)	 is	 determined	 by	 the	 outcome	 of	 a	 random	 experiment,	 and	 it	 is
characterized	by	a	 rule	 that	dictates	what	 the	probabilities	of	various	outcomes
are.	The	outcome	may	be	the	number	in	a	population,	the	charge	on	a	capacitor,
the	length	of	a	random	phone	call,	the	total	time	it	takes	to	log	onto	the	Internet,
the	IQ	of	an	individual,	the	time	it	takes	a	forager	to	find	a	food	item,	and	so	on.
Typically	we	use	capital	letters	to	denote	random	variables	and	lowercase	letters
to	 denote	 real	 variables	 or	 specific	 values	 of	 random	 variables.	 To	 know	 the
random	variable	X	means	to	know	the	probability	that	X	takes	a	value	less	than
or	equal	to	a	number	b,	or	symbolically,

There	 are	basically	 two	 types	of	 random	variables,	 discrete	 and	 continuous.	A
discrete	 RV	 takes	 on	 discrete	 values,	 either	 finitely	 or	 infinity	 many,	 and	 a
continuous	RV	takes	on	a	continuum	of	values,	in	an	interval.
Continuous	 RVs.	 A	 continuous	 random	 variable	 X	 is	 characterized	 by	 its
probability	 density	 function	 (pdf)	 denoted	 by	 fX(x).	 Pdfs	 are	 also	 called
probability	distributions.	We	assume	the	pdf	exists	for	all	real	x.	The	subscript	X
on	f	reminds	us	that	it	is	associated	with	the	random	variable	X.	The	pdf	has	the
properties:

1.	fX(x)	≥	0	for	all	x.

2.	ƒ∞-∞	fX	(x)	dx	=	1.

3.	Pr(X	≤	x)	=	ƒx-∞	fX(y)dy.
Condition	(1)	says	that	 the	pdf	is	nonnegative;	condition	(2)	requires	that	 the

total	area	under	the	graph	of	the	pdf	is	unity,	and	condition	(3)	dictates	the	value
of	the	probability	of	X	taking	a	value	smaller	than	x.	The	values	of	the	random
variable	itself	are	usually	not	of	interest.	It	is	the	density	function	that	contains
all	 the	 information	 about	 the	 random	 variable	 X	 and	 allows	 us	 to	 compute
probabilities.	The	pdf	need	not	be	a	continuous	function.	If	there	is	no	confusion
about	what	the	random	variable	is,	we	drop	the	subscript	on	fX(x)	and	just	write
f(x).	The	 following	 are	 important	 continuous	 distributions.	 (Other	 distributions
are	introduced	in	the	Exercises.)	As	an	exercise,	the	reader	should	plot	the	pdf	in
each	case.



Example	9.16
The	most	common,	and	most	important,	pdf	is	the	normal	density

(3.1)	
Its	 graph	 is	 the	 standard	 bell-shaped	 curve.	 The	 number	 μ	 is	 the	 average,	 or
mean,	of	the	density,	and	σ	is	the	standard	variation,	which	measures	the	width
of	the	curve	at	its	inflection	points,	and	hence	the	spread	of	the	distribution	(see
below).	If	a	random	variable	X	has	the	normal	density	we	say	that	X	is	normally
distributed	 and	 we	 write	 X	 ~	 N(μ,	 σ).	 The	 distribution	 N(0,	 1)	 is	 called	 the
standard	normal.

Example	9.17
The	uniform	probability	density	on	an	interval	[c,	d]	is	the	step	function

The	uniform	density	models	situations	where	all	values	in	an	interval	are	equally
probable.

Example	9.18
The	exponential	probability	density	with	parameter	λ	is	defined	by

The	exponential	distribution	models,	for	example,	the	length	X	of	a	phone	call,
or	the	time	X	of	survival	of	a	cancer	patient	after	treatment.
The	function	FX(x),	which	measures	the	probability	of	X	taking	on	a	value	less

than	x,	is	called	the	cumulative	distribution	function	(cdf);	this	should	not	be
confused	with	the	probability	distribution,	or	pdf.	Thus

The	cdf	has	the	properties

and

The	cdf	is	continuous	from	the	right.	That	is,	for	each	real	number	a,



If	 the	 pdf	 fX(x)	 is	 continuous	 at	 x,	 then	 the	 fundamental	 theorem	 of	 calculus
guarantees	that

Therefore,	 the	pdf	 is	 the	derivative	of	 the	cdf	and	 the	cdf	 is	 the	 integral	of	 the
pdf.	Note	that

or

This	 equation	 explains	what	 the	 pdf	 fX(x)	 actually	 is—it	 is	 the	 probability	 per
unit	 length,	 and	 hence	 the	 name	 “probability	 density.”	 The	 probability	 of	 the
random	variable	 taking	a	value	between	x	and	x	+	h	 is	 approximately	 the	 area
under	the	density	curve	between	x	and	x	+	h.	Also	observe	that

In	summary,	the	probability	law	characterizing	a	random	variable	can	be	defined
by	the	pdf	or	the	cdf;	both	carry	all	 the	probabilistic	and	statistical	information
about	X.
Usually	 we	 are	 uninterested	 in	 the	 entire	 distribution.	 For	 example,	 when

shopping	for	a	new	car	we	do	not	necessarily	want	 to	see	 the	entire	set	of	gas
mileage	data	for	all	cars	of	the	type	we	wish	to	buy;	we	are	content	to	know	the
average	gas	mileage.	Or,	we	may	want	to	know	the	average	height	of	a	person	in
a	population,	or	the	average	IQ	of	an	entering	class	of	students.	A	measure	of	the
average,	 or	 central	 tendency,	 of	 a	 random	variable	X	 is	 its	mean,	 or	expected
value,

The	 expected	 value	 is	 the	 coarsest	 probabilistic	 information	 about	 X.	 Other
common	 measures	 of	 the	 central	 tendency	 are	 the	 mode	 and	 the	 median.	 A
measure	of	how	the	possible	values	of	the	random	variable	X	are	spread	about	its
mean	is	called	the	variance,	which	is	defined	by



The	standard	deviation	σ	is	the	square	root	of	the	variance,	or

Example	9.19
The	normal	distribution	X	~	N(μ,	σ)	has	expected	value	E(X)	=	μ	and	Var(X)	=
σ2.	Expected	values	 and	variances	 for	other	 random	variables	 are	 contained	 in
the	Exercises.
If	X	 is	a	random	variable	 then	we	can	form	combinations	of	X	 to	create	new

random	variables.	That	is,	we	can	define	Y	=	g(X),	where	g	is	a	given	real-valued
function.	 This	 equation	 defines	 a	 transformation	 of	 a	 random	 variable.	 Let	 us
assume	that	g	is	a	strictly	increasing	function	whose	first	derivative	is	continuous
on	all	of	the	real	line,	and	let	us	denote	the	inverse	g−1	of	g	by	ϕ.	That	is,	g−1	=	ϕ
Thus	y	=	g(x)	 if,	 and	only	 if,	x	=	ϕ(y),	or	g(ϕ(y))	=	y	 and	ϕ(g(x))	=	x.	We	 can
determine	the	pdf	for	Y	in	terms	of	the	pdf	for	X	by	calculating

In	this	last	integral	we	can	perform	a	change	variables	via	x	=	ϕ(y),	dx	=	ϕ(y)	dy.
Then

By	definition	of	the	probability	law,	therefore,	the	pdf	for	Y	is
(3.2)	

If	 the	 function	 g	 is	 not	 strictly	 increasing,	 then	 the	 density	 can	 be	 found	 by
breaking	up	the	problem	into	 intervals	over	which	g	 is	monotone	increasing	or
monotone	decreasing.	As	an	aside,	we	recall	from	calculus	that	the	relationship
between	the	derivatives	of	ϕ	and	g	is	ϕ’(y)	=	1/g’(x).
There	is	an	interesting	corollary	of	this	result.	Nearly	the	same	calculation	can

be	performed	to	obtain

In	terms	of	integrals,



In	 words,	 “probability	 is	 conserved”	 by	 a	 strictly	 increasing,	 continuously
differentiable	transformation	of	the	random	variable.
Next	we	inquire	about	the	expected	value	of	Y	=	g(X).	We	have

where	we	 have	 used	 (3.2)	 and	 the	 fact	 that	g	 and	 ϕ	 are	 inverses.	Using	 these
facts,	we	can	easily	show
(3.3)	

and

(3.4)	
This	latter	equation	is	commonly	used	instead	of	the	integral	formula	to	calculate
the	variance.
One	of	 the	key	 results	 in	probability	 theory	 is	 the	central	 limit	 theorem.	The

statement	 uses	 the	 notion	 of	 independent	 random	variables,	which	 are	 defined
later.	Intuitively,	two	RVs	are	independent	if	the	values	of	one	does	not	depend
on	values	of	the	other.

Theorem	9.20
(Central	Limit	Theorem)	If	Y1,	Y2,	Y3,	ldots	 is	a	sequence	of	 independent	and
identically	distributed	random	variables	with	finite	mean	μ	and	variance	σ2,	then
the	limiting	distribution	of	the	random	variable

is	the	standard	normal	distribution	N(0,	1).
Discrete	RVs.	The	preceding	definitions	and	results	go	over	to	discrete	random
variables	in	an	obvious	way.	Let	X	be	a	discrete	RV	that	assumes	the	values	x1,
x2,…,	xk,….	The	analog	of	the	pdf	is	the	discrete	probability	mass	function



which	defines	the	probabilities	of	X	taking	the	various	values.	Clearly	∑k	pk	=	1.
The	expected	value	of	X	is	the	weighted	average

and	more	generally,

The	variance	is

and	relations	(3.3)	and	(3.4)	 still	 hold.	Sometimes	 the	coefficient	 of	 variation
CV,	 defined	by	CV	=	σ/μ,	 is	used	as	measure	of	variation;	 for	 example,	CV	 =
0.40	carries	the	rough	interpretation	that	on	average	X	varies	40%	from	its	mean
value.	 Some	 important	 discrete	 random	variables	 are	 presented	 below,	 and	 the
reader	should	plot	the	pmf	in	each	case	for	several	values	of	the	parameters.

Example	9.21
Some	 experiments	 have	 only	 two	 outcomes,	 success	 S	 and	 failure	 F.	 If	 N
independent	 trials	of	a	given	experiment	are	performed,	we	can	 let	 the	random
variable	X	be	the	number	of	successes.	If	Pr(S)	=	p	and	Pr(F)	=	1	−	p,	then	the
probability	mass	function	is

which	is	the	probability	of	obtaining	k	successes	in	the	N	trials.	This	pmf	is	the
binomial	distribution.	We	write	X	~	bin(N,	p)	to	say	X	is	binomial	distributed.

Example	9.22
Again	 consider	 successive	 independent	 trials	 where	 an	 event	 A	 occurs	 with
probability	p.	Let	X	be	the	number	of	trials	until	A	occurs	the	first	time.	Then

is	 called	 the	 geometric	 distribution	 with	 parameter	 p.	 There	 is	 an	 important
generalization	of	the	geometric	random	variable.	Again	in	the	binomial	setting,
let	X	be	the	number	of	trials	required	until	the	rth	success	occurs.	Then



is	the	negative	binomial	distribution.
The	negative	binomial	distribution	is	an	important,	frequently	used	model	for

spatial	distributions	(e.g.,	of	plants	or	animals)	which	have	a	clumped	character.
This	 is	 in	 contrast	 to	 the	 Poisson	 distribution,	 discussed	 next,	 which	 models
completely	random	distributions.

Example	9.23
The	Poisson	distribution	with	parameter	λ	>	0	is

The	Poisson	RV	models	the	probability	of	unpredictable,	rare	events	over	a	short
time	scale,	where	λ	is	the	average	occurrence	of	the	event.
Finally,	we	review	some	ideas	in	conditional	probability.	If	A	and	B	are	two

events	 with	 Pr	 B	 >	 0,	 then	 the	 probability	 that	 A	 occurs,	 given	 that	 B	 has
occurred,	is

A	key	result,	the	total	probability	theorem,	is	used	in	the	sequel.	It	states	that
if	A	is	composed	of	mutually	disjoint	events	A1,…,	An,	that	is,	A	=	∪nk=1Ak	with
Ai	∩	Aj	≠	ϕ,	then

Finally,	we	say	any	set	of	events	A1,…,	An	is	independent	if

for	 all	 sequences	 of	 integers	 i1	 <	 i2	 <	 ···	 <	 ik,	k	 =	 2,	 3,….	A	 set	 of	 events	 is
dependent	if	they	are	not	independent.



9.3.2	Stochastic	Processes
A	stochastic	process	(abbreviated	SP)	is	an	indexed	family	of	random	variables
Xt	(or	X(t)),	where	t	belongs	to	some	index	set	T.	That	is,	for	each	assigned	t	 	T,
the	quantity	Xt	is	a	random	variable.	Usually	the	index	set	is	the	time	interval	T	=
[0,	∞)	or	 the	discrete	set	of	 integers	T	=	{0,	1,	2,	3,…}.	When	the	 latter	 is	 the
index	set,	 the	SP	 is	often	called	a	 random	sequence.	When	 the	 index	set	 is	 the
finite	set	T	=	{1,	2,	3,…,	n},	then	the	SP	is	a	random	vector.	There	are	actually
four	 types	 of	 real,	 stochastic	 processes	 Xt	 that	 can	 be	 considered.	 Two
characterizations	are	based	on	whether	the	index	set	is	discrete	or	is	continuous
(an	 interval),	 and	 two	more	 are	 defined	 by	whether	Xt	 itself	 takes	 on	 discrete
values	 or	 a	 continuum	 of	 values.	 As	 an	 example	 of	 a	 discrete	 process,	 let	Xt
denote	the	result	of	a	roll	of	a	single	die	at	times	t	 	T	=	{0,	1,	2,	3,…}.	At	each
instant	 of	 time	 t,	 Xt	 is	 a	 random	 variable	 that	 takes	 on	 one	 of	 the	 values
1,2,3,4,5,6,	each	with	equal	probability	(one-sixth).	A	typical	realization	of	the
process	is	1,	1,	3,	6,	1,	4,	5,	2,	5,….	In	this	case	of	a	die,	the	Xt	are	statistically
independent,	 which	 is	 generally	 not	 the	 case	 for	 stochastic	 processes.	 In	 fact,
statistical	dependence	is	usually	what	makes	stochastic	processes	interesting	and
stochastic	processes	are	frequently	characterized	by	 their	memory;	 that	 is,	 they
are	defined	by	how	a	random	variable	Xt	depends	on	earlier	random	variables	Xs,
s	<	t.	An	example	of	a	continuous	SP	is	a	Poisson	process.	For	this	process	T	=
[0,	∞)	and	Xt	 is	discrete;	Xt	 counts	 the	number	of	 times	a	 certain	event	occurs
from	time	t	=	0	to	time	t.	The	event	could	be	an	accident	at	an	intersection,	the
number	of	customers	arriving	at	a	bank,	the	number	of	breakdowns	of	machines
in	a	plant,	or	discoveries	of	prey	items	by	a	predator.
Generally,	to	define	a	SP	we	must	specify	the	index	set	T,	the	space	where	the

Xt	 lie,	 and	 relations	 between	 the	 Xt	 for	 different	 t	 (for	 example,	 joint
distributions,	correlations,	or	other	dependencies).	In	fact,	the	probability	law	for
a	SP	is	a	specification	of	all	the	joint	distributions;	but	simplifications	are	often
introduced	to	make	the	process	tractable.	The	types	of	SPs	studied	most	often	in
applied	 probability	 theory	 include	 Markov	 processes,	 Poisson	 processes,
Gaussian	processes,	Wiener	processes,	and	martingales—all	of	these	are	defined
by	 certain	 dependencies,	 or	memory.	 Therefore,	 definitions	 of	 these	 processes
depend	on	the	notion	of	conditional	probability.



Because	 a	 stochastic	 process	 Xt	 is	 defined	 as	 a	 random	 variable	 for	 each
assigned	time	t,	there	is	a	probability	density	function	f(x,	t)	for	Xt.	Observe	that
the	density	has	both	spatial	and	temporal	dependence.	From	the	density	function
we	can	calculate	the	expected	value	and	variance	at	each	time	t	via

and

Similar	definitions	hold	for	discrete	random	variables.

EXERCISES
1.	 Calculate	 the	 mean,	 standard	 deviation,	 and	 cumulative	 distribution
function	of	a	uniform	random	variable	X	with	density	 .
2.	 Verify	 that	 the	 standard	 deviation	 of	 a	 normal	 random	 variable	 with
density	N(0,	σ)	is,	in	fact,	σ.
3.	 Show	 that	 the	 expected	 value	 of	 the	 exponential	 distribution	 with
parameter	λ	is	E(X)	=	1/λ,	and	the	variance	is	Var(X)	=	1/λ2.	Show	that	the
cumulative	distribution	function	is

4.	If	X	is	a	continuous	RV,	find	the	pdf	of	the	random	variable	Y	=	X2.	(Hint:
Start	with	Pr(Y	≤	y).)
5.	 The	 famous	 Scottish	 physicist	 J.	 C.	 Maxwell	 showed	 that	 molecular
collisions	 in	 a	 gas	 result	 in	 a	 speed	 distribution	 where	 the	 fraction	 of
molecules	 in	 the	 speed	 range	 [v,	 v	 +	 dv]	 is	 given	 by	 the	 Maxwell–
Boltzmann	distribution

where	n	is	the	total	number	of	particles,	m	is	the	molecular	mass	of	each
particle,	T	 is	the	temperature,	and	k	 is	Boltzmann’s	constant	(k	=	1.38	×
10−23	 joules/deg	 K).	 Sketch	 a	 generic	 graph	 of	 the	 distribution	 and
compute	the	average	speed	of	a	molecule	in	a	gas.

6.	Verify	formulas	(3.3)	and	(3.4),	and	show	that



7.	If	X	~	N(μ,	σ),	show	that	 .	The	RV	Z	is	called	the	z–
score.
8.	Find	the	mean	and	variance	of	a	Poisson	random	variable.
9.	A	Cauchy	random	variable	has	density	defined	by

Compute	 the	 cumulative	 distribution	 function	 and	 draw	 a	 graph.	What	 is
E(X)	and	Var(X)?	What	is	unusual	about	your	answer?
10.	On	the	average	there	are	about	15	cyclones	formed	off	the	U.S.	Pacific
coast	 each	 year.	 In	 a	 given	 year,	what	 is	 the	 probability	 of	 there	 being	 at
most	6	cyclones?
11.	A	random	variable	X	is	gamma	distributed	with	parameters	a	and	λ	 if
its	pdf	is

and	f(x)	=	0	for	x	<	0,	where

is	the	gamma	function.	Sketch	the	pdf	for	a	=	3.5	and	λ	=	2.
12.	Let	X	 be	 a	normal	 random	variable	with	mean	μ	and	variance	σ2.	The
random	 variable	Y	 defined	 by	Y	 =	 eX	 is	 said	 to	 be	 a	 log-normal	 random
variable.	Show	that	the	pdf	of	Y	is	given	by

and	plot	the	pdf	for	various	values	of	σ.	What	is	the	mean	and	variance	of	Y?
(The	 log-normal	 density	 is	 often	 associated	 with	 phenomena	 that	 involve
multiplicative	effects	of	a	large	number	of	independent	random	events.)
13.	Let	X	 ~	N(0,	 1).	 Find	 the	 pdf	 of	 the	 random	variable	X2.	 (This	 pdf	 is
called	the	chi-squared	distribution.)
14.	 Let	 X	 be	 a	 discrete	 RV	 with	 Pr(X	 =	 xj)	 =	 pj,	 j	 =	 0,	 1,	 2,….	 The
probability	generating	function	is	defined	by

a)	Show	that	E(X)	=	G′(1)	and	Var(X)	−	G“(1)	+	G′(1)	−	G′(1)2.



b)	Use	the	probability	generating	function	to	find	the	mean	and	variance
of	a	binomial	random	variable	X	~	bin(N,	p).

15.	The	probability	generating	function	for	a	continuous	RV	X	is	defined
by

a)	Show	that	E(X)	=	G′(1)	and	Var(X)	=	G“(1)	+	G′(1)	−	G“(1)2.
b)	Use	the	probability	generating	function	to	find	the	mean	and	variance
of	an	exponential	distribution	X	with	parameter	λ.

16.	Let	X	be	a	discrete	RV	with	Pr(X	=	xj)	=	pj,	j	=	0,	1,	2,….	The	moment
generating	function	is	defined	by

a)	Show	that	E(X)	=	M’(0)	and	Var(X)	=	M”(0)	−	M′(0)2.
b)	Use	the	moment	generating	function	to	find	the	mean	and	variance	of	a
binomial	random	variable	X	~	bin(N,	p).

17.	The	moment	generating	function	for	a	continuous	RV	X	is	defined	by

a)	Show	that	E(X)	=	M’(0)	and	Var(X)	=	M”(0)	−	M′(0)2.
b)	Use	the	moment	generating	function	to	find	the	mean	and	variance	of
an	exponential	distribution	X	with	parameter	λ.

18.	Let	X	be	a	continuous	RV.	Prove	Chebyshev’s	inequality:

where	μ	and	σ	are	the	mean	and	standard	variation,	and	k	>	0.
19.	Let	X	be	a	continuous	RV	with	mean	μ	and	standard	variation	σ.	If	g	is	a
sufficiently	smooth	function,	show	that	Var(g(X))	 .
20.	 If	X	 is	 geometrically	 distributed,	 show	 that	 E(X)	 =	 1/p	 and	 Var(X)	 =
1−p/p2.
21.	Show	that	if	X	is	Poisson	distributed	with	parameter	λ,	then	E(X)	=	λ	and
Var(X)	=	λ.
22.	 Consider	 a	 set	 of	N	 objects	 of	which	 r	 of	 them	 are	 of	 a	 special	 type.
Choosing	 n	 objects,	 without	 replacement,	 show	 that	 the	 probability	 of



getting	exactly	k	of	the	special	objects	is

This	 distribution	 is	 called	 the	 hypergeometric	 distribution.	 Show	 that	
.



9.3.3	Environmental	and	Demographic
Models
There	are	myriad	reasons	for	random	variations	in	population	growth	and	death
rates.	 Ecologists	 often	 categorize	 these	 random	 effects	 as	 environmental
stochasticity	 and	 demographic	 stochasticity.	 The	 former	 includes	 random
weather	 patterns	 and	 other	 external	 sources	 where	 all	 individuals	 are	 affected
equally	and	there	is	no	individual	variation;	the	latter	involves	natural	variability
in	 behavior,	 growth,	 vital	 rates,	 and	 other	 genetic	 factors	 that	 occur	 in	 all
populations,	 even	 though	 the	 environment	 may	 be	 constant.	 Demographic
stochasticity	 is	 commonly	 modeled	 by	 a	 Gaussian	 (normal)	 process,	 but
environmental	 variations	 can	 take	 many	 forms.	 For	 example,	 an	 environment
may	suddenly	have	a	catastrophic	event,	such	a	flood,	or	a	bonanza	year	where
the	conditions	for	reproduction	are	unusually	high.
In	 engineering	 one	 can	 identify	 similar	 processes,	 those	 that	 have	 external

noise,	akin	to	environmental	stochasticity,	and	those	that	have	internal	or	system
noise,	which	is	like	demographic	stochasticity.
There	are	multiple	approaches	to	creating	stochastic	discrete	models.	One	is	to

add,	 in	 one	 way	 or	 another,	 stochasticity	 to	 a	 known	 deterministic	 model.
Another	is	to	construct	probabilistic	modela	directly.	In	the	sequel	we	illustrate
some	of	these	constructions.

Example	9.24
To	 fix	 the	 idea	 of	 environmental	 stochasticity	 and	 adding	 stochasticity	 to	 a
known	deterministic	model,	consider	the	Ricker	population	model

where	b	is	the	average	yearly	birthrate.	Suppose,	on	the	average,	once	every	25
years	 there	 is	 a	weather	 event	 that	 lowers	 the	birth	 rate	 that	 year	by	30%.	We
create	a	fixed,	uniformly	distributed	random	process	Zt	having	range	[0,	1].	At
each	 time	step	we	modify	 the	birthrate	according	 to	 the	 rule:	 if	Zt	 <	 0.04	 then
adjust	the	birthrate	to	0.7b;	else	make	no	adjustment.	In	this	manner,	the	birthrate
becomes	a	random	variable	Bt	and	we	can	write	the	dynamics	as

(3.5)	



where	Xt,	 the	population,	 is	now	a	random	process.	 It	 is	 interesting	 to	simulate
this	process	and	the	Exercises	will	guide	the	reader	through	this	activity.
A	word	about	notation—on	the	right	side	of	(3.5)	we	mean	the	specific	value

Xt	=	xt	of	the	random	variable,	or	population,	calculated	at	the	time	step	t;	some
authors	prefer	to	write	the	stochastic	model	(3.5)	as	Xt+1	=	Btxte−cxt.
To	 model	 demographic	 changes	 we	 might	 assume	 the	 birthrate	 is	 normally

distributed.	This	assumption	follows	from	the	observation	that	birthrates	do	not
vary	much	from	the	average,	with	large	deviations	rare.	Then	we	have

where	for	each	time	t	we	choose	the	birthrate	from	the	distribution	Gt	~	N(b,	σ),
a	 normal	 distribution	with	mean	 b	 and	 standard	 deviation	 σ	 (or	 variance	 σ2).
Computer	algebra	systems,	as	well	as	calculators,	have	commands	that	generate
different	types	of	random	variables.	(For	example,	in	MATLAB,	rand	generates
a	 uniform	 random	 variable	 on	 [0,	 1],	 and	 randn	 generates	 a	 normal	 random
variable	N(0,	1).)
Generally,	a	discrete	model	has	the	form
(3.6)	

where	r	is	a	parameter.	(The	analysis	can	clearly	be	extended	to	vector	functions
and	sets	of	parameters.)	In	the	two	examples	above,	stochasticity	was	added	to
the	 model	 by	 redefining	 the	 parameter	 r	 to	 be	 random	 process	 Rt,	 giving	 a
stochastic	process	Xt	satisfying

The	values	of	Rt	are	usually	chosen	from	a	fixed	distribution	with	mean	μ	and
variance	σ2.	 For	 example,	we	may	 choose	Rt	 =	μ	+	σWt,	where	Wt	 ~	N(0,	 1).
Alternately,	 the	 values	 of	 Rt	 may	 be	 chosen	 themselves	 to	 satisfy	 a	 linear
autoregressive	process,	 for	example,	Rt	=	aRt−1	+	b	+	Wt,	where	Wt	 ~	N(0,	 1),
and	a	and	b	are	fixed	constants.	How	stochasticity	 is	put	 into	a	model	depends
upon	 what	 one	 seeks	 and	 is	 therefore	 strictly	 an	 issue	 of	 modeling.	 Different
stochastic	mechanisms	produce	different	patterns	of	variability.
In	 some	 models	 stochasticity	 may	 enter	 only	 through	 the	 initial	 condition.

These	situations	are	modeled	by	the	process

where	C	is	a	fixed	random	variable.	The	solution	to	this	random	equation	can	be
obtained	 by	 solving	 the	 deterministic	 problem,	 if	 possible;	 in	 this	 case,	 the



random	initial	condition	is	evolved	deterministically.	The	solution	has	the	form

which	is	a	transformation	of	a	random	variable	C	(treating	t	and	r	as	parameters)
and	 therefore	 the	 statistical	 properties	 of	 Xt	 can,	 in	 principle,	 be	 determined
exactly.	Simulations,	or	realizations	of	 these	processes,	are	smooth	curves	with
random	initial	conditions.
Later	 in	 this	chapter	we	examine	stochastic	models	 that	are	obtained	directly

from	probability	considerations.

Example	9.25
Consider	the	random	difference	equation

where	a	is	a	positive	constant	and	X0	is	a	random	variable.	Treating	the	equation
deterministically,	we	obtain

Then

For	example,	if	0	<	a	<	1,	then	the	expected	value	of	Xt	goes	to	zero	as	t	→	∞,
and	the	variance	goes	to	zero	as	well;	 this	means	the	spread	of	 the	distribution
gets	narrower	and	narrower.	In	fact,	we	can	determine	the	pdf	for	Xt	as	follows.
Letting	fX0	(x)	denote	the	pdf	of	X0,	we	have

Therefore	the	pdf	of	the	process	is

For	a	specific	case	let	X0	be	uniformly	distributed	on	the	interval	[0,	b].	That	is,

Then



which	is	uniform.	As	an	exercise,	the	reader	should	plot	this	density	for	t	=	1,2,3
for	a	>	1	and	0	<	a	<	1.	This	method	is	successful	because	this	simple	discrete
model	can	be	solved	exactly.

EXERCISES
1.	A	deterministic	model	for	the	yearly	population	of	Florida	sandhill	cranes
is

where	 b	 =	 0.5	 is	 the	 birthrate	 and	 d	 =	 0.1	 is	 the	 deathrate.	 Initially	 the
population	is	100.	(Adapted	from	Mooney	and	Swift,	1999.)

a)	Find	a	formula	for	the	population	after	t	years	and	plot	the	population
for	the	first	5	years.
b)	On	average,	a	flood	occurs	once	every	25	years,	lowering	the	birthrate
40%	 and	 raising	 the	 deathrate	 25%.	 Set	 up	 a	 stochastic	 model	 and
perform	20	simulations	over	a	5-year	period.	Plot	the	simulations	on	the
same	 set	 of	 axes	 and	 compare	 to	 the	 exact	 solution.	Draw	 a	 frequency
histogram	 for	 the	 number	 of	 ending	 populations	 for	 the	 ranges	 (bins)
200–250,	250–300,	and	so	on,	continuing	in	steps	of	50.
c)	 Assume	 the	 birthrates	 and	 deathrates	 are	 normal	 random	 variables,
N(0.5,	0.03)	and	N(0.1,	0.08),	respectively.	Perform	20	simulations	of	the
population	over	a	5-year	period	and	plot	them	on	the	same	set	of	axes.	On
a	separate	plot,	 for	each	year	draw	side-by-side	box	plots	 indicating	 the
population	quartiles.	Would	you	say	the	population	in	year	5	is	normally
distributed?

2.	A	“patch”	has	area	a,	perimeter	s,	and	a	strip	(band)	of	width	w	inside	the
boundary	of	a	from	which	animals	disperse.	Only	those	in	the	strip	disperse.
Let	ut	be	 the	number	of	animals	 in	a	at	any	 time	 t.	The	per	capita	 growth
rate	of	all	the	animals	in	a	is	r.	The	rate	that	animals	disperse	from	the	strip
is	proportional	 to	 the	 fraction	of	 the	animals	 the	strip,	with	proportionality
constant	 ,	which	is	the	emigration	rate	for	those	in	the	strip.

a)	Argue	that	the	dynamics	is	ruled	by

b)	Determine	conditions	on	the	parameters	r,	w,	s,	 ,	and	a	under	which



the	population	is	growing.
c)	 Why	 do	 you	 expect	 s	 =	 k√a	 for	 some	 constant	 k?	 Write	 down	 the
model	in	the	case	that	the	region	is	a	circle.
d)	Suppose	at	each	time	step	the	emigration	rate	is	chosen	from	a	normal
distribution	with	mean	 0.35	 and	 standard	 deviation	 0.5.	With	 a	 growth
rate	of	1.06	in	a	circle	of	radius	100	m,	with	width	w	=	10	m,	simulate	the
dynamics	 of	 the	 process.	 Take	 u0	 =	 100.	 Sketch	 three	 simulations
(realizations)	 on	 the	 same	 set	 of	 axes.	 Does	 the	 population	 grow	 or
become	extinct?
e)	In	a	given	time	step,	suppose	the	animals	disperse	with	 	=	0.25	or	 	=
0.45,	each	with	equal	probability.	Simulate	 the	dynamics	of	 the	process
and	sketch	three	realizations.

3.	Consider	the	population	growth	law	xt+1	=	rtxt,	where	the	growth	rate	rt	is
a	fixed	positive	sequence	and	x0	is	given.

a)	Let	xT	be	the	population	at	time	T.	Which	quantity	is	a	better	measure
of	 an	 average	 growth	 rate	 over	 the	 time	 interval	 t	 =	 0	 to	 t	 =	 T,	 the
arithmetic	mean	 ,	or	the	geometric	mean	rG
=	(r0r1	···	rT−1)1/T?
b)	Consider	the	stochastic	model	process	Xt+1	=	RtXt,	where	Rt	=	0.86	or
Rt	=	1.16,	each	with	probability	one-half.	Does	the	population	eventually
grow,	 die	 out,	 or	 remain	 the	 same?	 If	 X0	 =	 100	 is	 fixed,	 what	 is	 the
expected	 value	 of	 the	 population	 after	 500	 generations?	 Run	 some
simulations	to	confirm	your	answer.

4.	A	stochastic	model	is	defined	by

where	the	initial	population	X0	=	x0	is	fixed,	and	the	growth	rate	Rt	at	each
time	 is	chosen	from	a	fixed	distribution	with	mean	μ	and	variance	σ2.	Use
the	central	 limit	 theorem	 to	prove	 that	Xt	approaches	a	 log-normal	 random
variable	for	large	t.	What	is	the	mean	and	variance	of	Xt	for	large	t?
5.	Suppose	you	are	playing	a	casino	game	where	on	each	play	you	win	or
lose	 one	 dollar	 with	 equal	 probability.	 Beginning	 with	 $100,	 plot	 several
realizations	of	a	process	where	you	play	200	times.	Perform	the	same	task	if
the	 casino	 has	 the	 probability	 0.52	 of	winning.	 In	 the	 latter	 case,	 perform
several	simulations	and	estimate	the	average	length	of	a	game.



6.	 In	 a	 generation,	 suppose	 each	 animal	 in	 a	 population	 produces	 two
offspring	 with	 probability	 ,	 one	 offspring	 with	 probability	 ,	 and	 no
offspring	with	probability	 .	Assume	an	animal	itself	does	not	survive	over
the	generation.	Illustrate	five	realizations	of	the	population	history	over	200
generations	when	 the	 initial	 population	 is	8,	 16,	32,	64,	 and	128.	Do	your
results	say	anything	about	extinction	of	populations?
7.	Suppose	μ	is	the	probability	that	each	individual	in	a	population	will	die
during	 a	 given	 year.	 If	Xt	 is	 the	 population	 at	 year	 t,	 then	 the	 probability
there	will	be	n	individuals	alive	the	next	year	can	be	modeled	by	a	binomial
random	variable,

In	 other	 words,	 the	 population	 at	 the	 next	 time	 step	 is	 the	 probability	 of
having	n	successes	out	of	xt	trials,	where	1	−	μ	is	the	probability	of	success
(living).

a)	 At	 time	 t	 =	 0	 assume	 a	 population	 has	 50	 individuals,	 each	 having
mortality	probability	μ	=	0.7.	Use	a	computer	algebra	system	to	perform
10	 simulations	 of	 the	 population	 dynamics	 over	 7	 years	 and	 plot	 the
results.
b)	 For	 the	 general	 model,	 find	 the	 expected	 value	 E(Xt+1)	 and	 the
variance	Var	(Xt+1).

8.	Consider	a	random	process	Xt	governed	by	the	discrete	model

where	X0	 is	 a	 random	 variable	with	 density	 fX0(x).	 Find	 a	 formula	 for	 the
density	f(x,	t)	of	Xt.
9.	Experimental	data	 for	 the	yearly	population	of	Serengeti	wildebeest	can
be	fit	by	the	Beverton–Holt	model

where	K	 is	 the	 carrying	 capacity,	 r	 is	 a	 growth	 factor,	 and	h	 is	 the	 annual
harvesting	rate.	The	carrying	capacity	is	a	function	of	rainfall	and	is	modeled
by	K	 =	 20748R,	 where	R	 is	 the	 annual	 rainfall.	 Actual	measured	 rainfalls
over	a	25-year	period	are	given	in	the	vector



Using	X0	=	250,000	and	r	=	1.1323,	simulate	the	population	dynamics	over
50	years	for	different	harvesting	rates,	h	=	0.05,	0.075,	0.1,	0.125,	0.15,	and
each	year	randomly	draw	the	annual	rainfall	from	the	vector	R.	Run	enough
simulations	to	make	some	conclusions	about	how	the	fraction	of	populations
that	collapsed	depends	upon	the	harvesting	rate.	Assume	the	threshold	value
of	 150,000	 wildebeest	 as	 representing	 a	 collapsed	 herd.	 (What	 has	 been
described	is	a	bootstrap	method	where	simulations	are	run	by	randomizing	a
single	data	set.)
10.	Develop	a	demographic	stochastic	model	based	upon	the	discrete	model

Take	c	=	1	and	b	=	6.	With	x0	=	200,	run	simulations	of	the	model	with	noise
Et	~	N(0,	σ)	for	several	different	values	of	σ,	and	comment	upon	the	results.



9.4	Probability-Based	Models

9.4.1	Markov	Processes
Stochastic	processes	Xt	are	characterized	by	the	dependencies	among	the	random
variables	X0,	X1,	X2,….	A	Markov	process	is	a	special	stochastic	where	only	the
current	value	of	the	random	variable	is	relevant	for	future	predictions.	The	past
history,	or	how	the	present	emerged	from	the	past,	is	irrelevant.	Many	processes
in	economics,	biology,	games	of	chance,	engineering,	and	other	areas	are	of	this
type—for	example,	stock	prices,	a	board	position	in	the	game	of	monopoly,	the
population	of	a	plant	species,	and	so	on.
We	 illustrate	 the	 Markov	 model	 by	 considering	 a	 specific	 problem	 in

phylogenetics.
We	may	recall	from	elementary	biology	that	the	double	helix	DNA	molecule	is

the	 genetic	 material	 that	 contains	 information	 on	 coding	 for	 and	 synthesizing
proteins.	 DNA	 is	 constructed	 from	 four	 bases,	 the	 purines	 A	 and	G,	 and	 the
pyrimidines	C	and	T.	In	the	DNA	molecule,	across	the	rungs	of	the	double	helix
molecular	 ladder,	A	 and	 T	 are	 paired	 and	G	 and	C	 are	 paired.	 Therefore,	 to
represent	 a	 DNA	 molecule	 mathematically	 all	 we	 need	 consider	 is	 a	 single
sequence,	e.g.,	ATCCGTAGATGG,	along	one	side	of	the	ladder.	As	time	evolves,
DNA	must	 be	 copied	 from	generation	 to	 generation.	During	 this	 process	 there
are	natural	mutations,	and	our	goal	is	to	set	up	a	simple	model	for	determining
how	these	mutations	evolve	to	change	an	ancestral	DNA	sequence.	Such	models
are	 important,	 for	 example,	 in	 determining	 phylogenetic	 distances	 between
different	 species	 and	 to	 understand	 the	 evolution	 of	 the	 genome	 in	 organisms,
both	 plant	 and	 animal.	 Phylogentics	 helps	 identify	 related	 species	 and	 to
construct	 evolutionary	 trees;	 understanding	 how	 viruses	 evolve,	 for	 example,
aids	in	developing	strategies	for	disease	prevention	and	treatment.
The	 simplest	 mutations	 in	 copying	 a	 DNA	 sequence	 are	 called	 base

substitutions—a	base	 at	 a	 given	 location	 is	 simply	 replaced	 by	 another	 one	 at
that	same	location	over	one	generation.	There	are	other	types	of	mutations,	but
they	are	not	considered	in	our	introductory	discussion.	If	a	purine	is	replaced	by
a	purine	or	a	pyrimidine	with	a	pyrimidine,	then	the	substitution	is	a	transition;
if	the	base	class	is	interchanged,	then	the	substitution	is	a	transversion.



To	fix	the	idea,	consider	mutations	of	a	sequence	over	three	generations:

The	 changes	 are	 highlighted.	Comparing	 the	 first	 two	 generations,	 in	 the	 fifth
position	there	is	a	transition	and	in	the	ninth	position	there	is	a	transversion.
Consider	 an	 arbitrary	 sequence.	 We	 let	 PA,	 PG,	 PC,	 and	 PT	 denote	 the

probabilities	that	A,	G,	C,	and	T	appear	 in	at	a	given	 location.	 In	 the	sequence
So,	for	example,	PA	=	3/12.	Next	we	fix	an	arbitrary	location	at	some	generation
t.	During	the	next	generation,	t	+	1,	the	base	at	that	location	may	stay	the	same,
or	 it	may	mutate	 to	another	base.	We	 let	 the	 sixteen	numbers	P(X|Y),	where	X
and	 Y	 represent	 the	 four	 bases,	 denote	 the	 conditional	 probabilities	 that	 the
location	has	base	X	at	time	t	+	1,	given	that	it	was	at	Y	at	time	t.	We	can	arrange
these	numbers	in	a	transition	matrix

(4.1)	
Notice	the	order	of	the	entries.	Columns	and	rows	are	labeled	in	the	order	A,	G,
C,	T,	and	the	column	denotes	the	state	of	the	ancestral	base,	and	the	row	is	the
state	 of	 the	 descendent	 base.	 In	 the	 transition	 matrix	 M,	 the	 entries	 are
nonnegative	 and	 the	 columns	 sum	 to	 one	 because	 one	 of	 the	 transitions	must
occur.	 Such	 a	 matrix	 is	 called	 a	Markov	matrix.	 We	 assume	 that,	 over	 many
generations	 of	 equal	 time	 steps,	 the	 same	 transition	 matrix	 characterizes	 the
transitions	 at	 each	 time	 step.	 Now,	 if	 pt	 =	 (PA,	 PG,	 PC,	 PT)T	 denotes	 the
probability	vector	at	time	t,	the	model
(4.2)	

t	=	0,	1,	2,…,	is	an	example	of	a	discrete	Markov	process.	 It	dictates	how	the
probabilities	of	bases	occurring	 in	a	generation	change	over	 time.	Therefore,	 if
p0	is	given,	then	pt	can	be	calculated	by	iteration.
We	 recognize	 (4.2)	 as	 a	 linear,	 Leslie-type	 model	 that	 we	 examined	 in	 an

earlier	section.	The	solution	is

where	the	entries	 in	 the	power	matrix	Mt	denote	 the	probabilities	of	being	 in	a



given	state	(base)	after	t	 time	steps,	given	the	initial	state.	For	example,	for	the
transition	matrix	(4.1)	for	a	DNA	sequence,	the	4,	2	element	in	Mt	would	be	the
probability	that	the	base	is	T	after	t	time	steps,	given	that	it	was	G	at	time	t	=	0.
In	 general,	 a	 discrete	Markov	 process,	 or	Markov	 chain,	 can	 be	 defined	 as

follows.	 Consider	 a	 sequence	 of	 random	 variables	 X0,	X1,	 X2,…,	 where	 each
random	variable	is	defined	on	a	finite	or	countably	infinite	state	space,	which	we
denote	by	S	=	{0,	1,	2,	3,…}.	The	stochastic	process	Xt	is	Markov,	if	for	any	t	=
0,	1,	2,	3,…,	it	has	the	property

In	other	words,	the	future	behavior	depends	only	upon	the	present	state	and	not
on	 the	previous	history.	The	 transition	matrix	M	 for	 the	process	 is	 the	matrix
whose	entries	are	mij	=	Pr(Xt+1	=	i|Xt	=	j).	Thus,	mij	is	the	probability	of	moving
from	state	 j	at	 time	 t	 to	state	 i	 at	 time	 t	+	1.	Notice	 that	M	may	be	 an	 infinite
matrix	 if	 the	 state	 space	 is	 infinite.	 Clearly,	 by	 definition,	 the	 entries	 in	 each
column	of	M	are	nonnegative	and	sum	to	one.	We	sometimes	graphically	show
the	states	and	elements	of	 the	 transition	matrix	on	a	Leslie	 type	diagram,	as	 in
Fig.	9.10.	The	entries	of	Mt	are	denoted	by	m(t)

ij	and	represent	the	probabilities
of	moving	 from	 the	 jth	 state	 to	 the	 ith	 state	 in	 t	 time	 steps.	 A	 vector	 p	 with
nonnegative	 entries	 that	 sum	 to	 one	 is	 called	 a	probability	 vector.	 There	 are
many	 examples	 of	Markov	 processes	 in	 all	 areas	 of	 science,	 engineering,	 and
economics.

Example	9.26
(Jukes–Cantor	model)	In	the	Jukes–Cantor	model	of	base	substitution,

where	1	−	a	is	the	probability	that	there	is	no	change	in	a	base,	while	a/3	is	the
probability	of	change	to	any	other	base.	The	number	a	is	called	the	mutation	rate
per	generation,	or	the	number	of	substitutions	per	site	per	time	step;	values	of	a
range	from	10−9	for	some	plants,	10−8	for	mammals,	to	10−2	for	viruses,	which
mutate	quickly.	We	are	assuming	a	is	a	small	constant	and	does	not	depend	upon
time	or	upon	location	in	the	sequence.
It	is	straightforward	to	verify	that	λ	=	1	is	an	eigenvalue	of	M	with	eigenvector



(1,	1,	1,	1)T,	and	λ	=	1	−	 a	is	an	eigenvalue	of	multiplicity	3	with	independent
eigenvectors	 (1,	1,	−1,	−1)T,	 (1,	−1,	1,	−1)T,	 (1,	−1,	−1,	1)T.	Then,	 if	Q	 is	 the
matrix	 whose	 columns	 are	 the	 eigenvectors,	 then	 Q	 diagonalizes	 M,	 which
means	M	=	QDQ−1,	where	D	is	the	diagonal	matrix

Therefore

These	 matrices	 can	 be	 multiplied	 out	 to	 obtain	Mt.	 One	 can	 check	 that	 the
diagonal	 entries	of	Mt	 are	 ,	 and	 the	off-diagonal	 entries
are	all	given	by	 .	Therefore	q(t)	is	the	expected	fraction	of	sites
in	 the	 sequence	 that	 are	 observed	 to	 remain	 unchanged	 after	 t	 time	 steps.	 It
follows	that	1	−	q(t)	 is	 the	fraction	of	sites	expected	to	differ	from	the	original
ancestral	sequence	after	t	time	steps.
It	 is	 not	 hard	 to	 prove	 the	 following	 important	 theorem	 (a	 proof	 for	 a	 two-

dimensional	matrix	is	requested	in	Exercise	1).

Theorem	9.27
Let	M	 =	 (mij)	 be	 an	n	 ×	 n	Markov	matrix	 having	 nonnegative	 entries	mij	 and
column	 sums	 equal	 to	 one.	 Then	 λ	 =	 1	 is	 an	 eigenvalue	 of	 M	 and	 the
corresponding	eigenvectors	have	nonnegative	entries;	the	remaining	eigenvalues
λi	satisfy	|λi|	≤	1.	Moreover,	if	the	entries	of	M	are	strictly	positive,	then	λ	=	1	is
a	dominant	eigenvalue	with	a	single	eigenvector.
If	 the	 state	 space	 is	 finite,	 then	over	a	 long	 time	 the	 system	may	approach	a

stationary	 probability	 distribution	 defined	 by	 a	 probability	 vector	 p	 that	 is	 an
eigenvector	 of	 λ	 =	 1.	 That	 is,	 Mp	 =	 p.	 Depending	 upon	 the	 geometric
multiplicity	of	 λ	=	1,	 the	 stationary	distribution	may	or	may	not	 be	unique.	A
stationary	 distribution	 p	 is	 said	 to	 be	 limiting	 if	Mtp0	 →	 p	 for	 every	 initial
probability	 vector	 p0.	 There	 are	 general	 conditions	 on	 a	 Markov	 matrix	 that



guarantee	a	unique	limiting	stationary	distribution	(e.g.,	see	Allen,	2003).
There	are	many	interesting	questions	about	processes	that	satisfy	the	Markov

conditions.	For	example:	Which	 states	can	 lead	 to	 some	other	 state?	Are	 there
states	 that	 are	 visited	 infinitely	 often,	 or	 are	 there	 states	 in	which	 the	 process
becomes	trapped?	Are	there	states	where	the	process	will	always	end	up?	Figure
9.14	 shows	 a	 Leslie-type	 diagram	 for	 a	 six-state	 system,	 and	 it	 illustrates
different	types	of	states.	The	mutually	communicating	states	{5,	6}	and	the	state
{4}	 are	 trapping	 states,	 and	 regardless	 of	 the	 initial	 probability	 vector,	 the
process	eventually	will	migrate	to	one	of	these	states.	States	{1},	{2},	and	{3}
are	transient.	Note	that	1	communicates	with	2,	but	2	does	not	communicate	with
1.	 There	 is	 a	 technical	 language	 that	 precisely	 characterizes	 the	 states	 of	 a
process,	 and	 we	 refer	 to	 Allen	 (2003)	 for	 a	 full	 discussion.	 Other	 questions
regarding	 the	 probabilities	 and	 expected	 times	 for	 moving	 from	 one	 state	 to
another	are	discussed	in	the	next	section.

Figure	9.13	Six-state	process	showing	the	transition	probabilities.

Figure	9.14	Graph	for	a	random	walk	with	absorbing	end	states.



EXERCISES
1.	Let	M	be	a	2	×	2	transition	matrix	for	a	two-state	Markov	process.	Prove
Theorem	9.27	in	this	special	case.
2.	For	the	Markov	matrix

with	p,	q	>	0,	find	the	unique	stationary	probability	distribution.	Find	a	3	×	3
Markov	matrix	with	a	non-unique	stationary	probability	distribution.
3.	Find	the	transition	matrix	for	the	process	shown	in	Fig.	9.14.
4.	A	regional	rent-a-car	company	has	offices	located	in	Lincoln,	Omaha,	and
ten	other	small	cities.	Their	 records	show	that	each	week,	55%	of	 the	cars
rented	in	Lincoln	are	returned	to	Lincoln,	35%	are	returned	to	Omaha,	and
the	remaining	cars	are	returned	elsewhere.	Of	those	rented	in	Omaha,	75%
are	 returned	 to	 Omaha,	 5%	 to	 Lincoln,	 and	 20%	 elsewhere.	 Of	 the	 cars
rented	 in	 the	 ten	other	cities,	25%	are	returned	Omaha	and	5%	to	Lincoln.
Draw	 a	 Leslie-type	 diagram	 illustrating	 the	 states	 and	 the	 transition
probabilities.	 Over	 the	 long	 run,	 if	 conditions	 remain	 the	 same,	 what
percentage	of	the	cars	in	their	fleet	will	end	up	in	Lincoln?
5.	Consider	the	matrix

Show	that	there	is	a	stationary	probability	distribution,	but	it	is	not	limiting.
6.	At	each	discrete	instant	of	time,	measured	in	minutes,	a	molecule	is	either
inside	a	cell	membrane,	or	outside.	If	it	 is	inside	the	cell,	 it	has	probability
0.2	of	passing	outside,	and	if	 it	 is	outside	 it	has	probability	0.1	of	entering
the	cell.

a)	If	it	is	inside	the	cell	initially,	what	is	the	probability	that	the	molecule
is	inside	the	cell	at	time	t?	Over	the	long	run,	what	is	the	probability	that
it	is	inside	the	cell?
b)	 If	 there	 are	 100	 molecules	 inside	 the	 cell	 initially,	 what	 is	 the
probability	that	there	are	exactly	80	of	the	molecules	remaining	in	the	cell
after	 1	 minute?	 What	 is	 the	 probability	 that	 there	 are	 10	 or	 fewer
molecules	 in	 the	 cell	 after	20	minutes?	 If	Nt	 is	 the	RV	 representing	 the
number	 of	 molecules	 in	 the	 cell	 at	 time	 t,	 plot	 the	 probability	 mass



function	for	N20.
7.	 In	 a	 small	 ecosystem	 there	 are	 two	 food	patches	X	 and	Y,	 and	 foraging
animals	 move	 week	 to	 week,	 from	 patch	 to	 patch,	 with	 the	 following
probabilities:	P(X,	X)	=	0.6,	P(X,	Y)	=	0.7,	P(Y,	X)	=	0.4,	P(Y,	Y)	=	0.3.
Write	down	the	transition	matrix.

a)	What	is	the	limiting	distribution	of	animals	in	the	two	patches?
b)	If	an	animal	is	in	patch	X	at	time	t	=	5	weeks,	what	is	the	probability
that	it	is	in	patch	Y	at	t	=	10	weeks?

8.	 In	 the	Jukes–Cantor	model	of	base	substitution	a	given	base	changed	 to
another	 base	 with	 equal	 probability.	 A	 generalization	 of	 this	 model	 is	 the
two-parameter	 Kimura	 model	 where	 it	 is	 assumed	 that	 transitions	 and
transversions	have	different	probabilities,	b	and	c,	respectively.

a)	Write	down	the	Markov	matrix	M	for	the	Kimura	model.
b)	Find	a	limiting	stationary	distribution.



9.4.2	Random	Walks
A	 random	walk	 is	 a	 special	 type	 of	Markov	 process	where	 the	 transitions	 can
only	 occur	 between	 adjacent	 states.	 We	 begin	 the	 discussion	 with	 a	 classic
example	where	there	are	N	+	1	states	{0,	1,	2,…,	N},	and	if	the	system	is	in	state
j,	then	it	moves	to	j	+	1	with	probability	p	and	to	j	−	1	with	probability	q	=	1	−	p.
Figuratively,	we	think	of	an	individual	walking	on	a	lattice	of	points,	which	are
the	states.	At	each	instant	the	individual	tosses	a	loaded	coin	with	Pr(heads)	=	p
and	Pr(tails)	=	1	−	p.	If	heads	comes	up	he	moves	to	the	right,	and	if	tails	shows
he	 moves	 to	 the	 left—thus	 the	 terminology	 random	 walk.	 We	 assume	 the
boundary	states	0	and	N	are	absorbing,	that	is,	m00	=	mNN	=	1.	In	other	words,	if
the	individual	reaches	one	of	these	states,	then	he	can	never	get	out.	A	boundary
state	 that	 is	 not	 absorbing	 is	 called	 a	 reflecting	 boundary.	 Fig.	9.14	 shows	 the
graph.	With	 a	 little	 imagination	 the	 reader	 can	 understand	why	 random	walks
arise	 in	many	areas,	 including	gambling	(the	states	represent	a	player’s	fortune
and	 p	 is	 the	 probability	 of	winning	 on	 a	 given	 play),	 diffusion	 (the	 states	 are
geometrical	positions	and	a	particle	or	an	animal	moves	to	the	left	or	right	with
given	probabilities),	or	population	models	 (the	 states	 are	population	 levels	 and
there	are	probabilities	of	births	and	deaths	in	any	time	period).
We	address	only	one	important	question	in	the	context	of	a	particle	executing	a

random	 walk.	 If	 a	 particle	 is	 located	 at	 position	 j	 at	 time,	 then	 what	 is	 the
probability	it	will	reach	position	0	before	it	reaches	N?	Let

for	1	≤	j	≤	N	−	1.	To	obtain	an	analytic	expression	for	this	probability,	we	argue
as	 follows.	Beginning	at	 j,	 there	 are	 two	ways	 to	proceed.	 In	 the	 first	 step	 the
particle	can	 jump	 to	 j	+	1	with	probability	p	 and	 then	have	probability	uj+1	 of
reaching	0	before	N;	 or,	 it	 can	 jump	 to	 j	−	1	with	probability	q	 and	 then	have
probability	uj−1	of	reaching	0	before	N.	According	to	the	law	of	total	probability,

(4.3)	
Also,	at	the	boundaries,

(4.4)	
Equation	 (4.3)	 is	 a	 second-order	 difference	 equation	 that	 can	 be	 solved	 by
techniques	introduced	Section	9.1.	Solutions	have	the	form	uj	=	rj.	Substituting



into	(4.3)	we	obtain	the	characteristic	equation

In	the	case	p	≠	q	the	roots	are	r	=	1,	r	=	q/p,	and	in	the	case	p	=	q	=	 ,	the	roots
are	1,	1.	Therefore,	the	general	solution	to	(4.3)	is

(4.5)	
(4.6)	

The	 arbitrary	 constants	may	be	 found	 from	 the	 boundary	 conditions	 (4.4).	We
obtain

By	exactly	the	same	argument	we	can	calculate	the	probability

The	boundary	conditions	are	now	v0	=	0,	vN	=	1.	We	get

Clearly	we	 have	uj	 +	vj	 =	 1.	 Therefore,	 the	 probability	 that	 the	 particle	 hits	 a
boundary	is	1.
We	may	not	be	 surprised	by	 the	 last	 conclusion.	But	we	can	ask	what	 is	 the

expected	time	to	hit	a	boundary.	Let	Tj	be	the	RV

Further,	let	τj	=	E(Tj).	Then

The	reasoning	underlying	this	difference	relation	is	if	the	particle	begins	at	j,	it



may	move	to	j	+	1	or	j	−	1	with	probability	p	and	q,	respectively.	If	it	moves	to	j
+	1	the	expected	time	it	hits	a	boundary	is	1	+	τj+1,	counting	the	jump	just	taken.
If	it	moves	to	j	−	1	the	expected	time	is	1	+	τj−1.	Therefore,	rearranging,

(4.7)	
which	 is	 a	 second-order	 nonhomogeneous	 difference	 equation.	 The	 boundary
conditions	are	τ0	=	τN	=	0.	The	homogeneous	equation	is	the	same	as	(4.3),	and
we	 get	 the	 same	 solution	 (4.5)–(4.6).	 To	 find	 a	 particular	 solution	we	 use	 the
method	 of	 undetermined	 coefficients,	 as	 in	 differential	 equations,	 and	we	 find
particular	solutions	j/q−p	and	−j2	 in	 the	cases	p	≠	q	and	p	=	q,	 respectively.	 In
summary,	 forming	 the	 general	 solution	 of	 (4.7)	 (composed	 of	 the	 sum	 of	 the
solution	to	the	homogeneous	equation	and	a	particular	solution)	and	evaluating
the	 constants	 using	 the	 boundary	 conditions,	 we	 find	 the	 expected	 time	 for
absorption	at	a	boundary	is

where	 j	 is	 the	 initial	 position.	 The	 exercises	 request	 calculations	 and	 plots	 of
these	times.
Next	 we	 describe	 a	 combinatorial	 approach	 to	 a	 random	 walk	 problem.

Consider	a	migrating	animal,	or	perhaps	a	dispersing	plant	species,	that	moves	in
a	linear	habitat	such	as	a	river,	or	along	the	bank	of	a	river.	As	before	we	zone
the	 habitat	 into	 a	 lattice	 of	 sites	…,	 −2,	 −1,	 0,	 1,	 2,….	 For	 this	 example	 we
assume	the	habitat	is	long	and	has	no	boundaries.	The	animal’s	location	at	time	t
(t	=	0,	1,	2,	3,…)	is	the	random	variable	Xt.	Starting	at	X0	=	0,	at	each	time	step
the	animal	moves	to	the	right	with	probability	p	or	to	the	left	with	probability	q	=
1	 −	 p.	 We	 are	 interested	 in	 calculating	 the	 probability	 mass	 function,	 or
distribution,	of	Xt.	In	other	words,	what	is	the	probability	of	the	animal	being	at
location	 k	 after	 t	 time	 steps?	 A	 specific	 example	 will	 lead	 us	 to	 the	 correct
reasoning.

Example	9.28
Consider	 the	probability	of	being	 at	 location	k	 =	 2	 after	 t	 =	 10	 time	 steps.	To
accomplish	this,	the	animal	must	move	to	the	right	r	=	6	steps	and	to	the	left	l	=



4	steps.	A	possible	path	 is	RLRRLRLLRR.	The	probability	 that	 this	 single	path
will	occur	is	clearly	p6q4.	How	many	such	paths	can	be	formed	with	r	=	6	and	l	=
4?	It	 is	clearly	 	=	210	paths.	Therefore	 the	probability	of
arriving	at	k	=	2	after	10	steps	is	 .
We	can	argue	in	general	that	if	there	are	t	steps	terminating	at	k,	then	t	=	r	+	l,

k	=	r	−	l,	and

This	holds	for	t	≥	|k|.	If	t	<	|k|,	then	it	is	impossible	to	reach	k	and	Pr(Xt	=	k)	=	0.
In	summary,	we	have	shown	that	Xt	is	binomially	distributed.

Example	9.29
Assuming	p	=	q	=	 ,	after	2n	 time	steps	what	 is	 the	probability	 that	 the	animal
will	be	back	at	the	origin?	We	have

With	 some	 work	 we	 can	 calculate	 the	 right	 side,	 but	 if	 n	 is	 large	 it	 will	 be
cumbersome.	Fortunately,	 there	 is	 an	 elegant	 approximation	 for	n!	 for	 large	n,
and	it	works	well	even	for	n	values	as	low	as	6.	Stirling’s	approximation	is

Using	this	formula,	we	find

For	 large	 t,	 there	 is	 a	 relationship	 between	 the	 binomial	 distribution	 and	 the
normal	distribution.	Although	 it	 is	out	of	our	scope	 to	prove	 it,	we	present	 the
key	result.	If	t	is	large	and	neither	p	nor	q	are	too	close	to	zero,	the	binomial	X	~
bin(t,	 p)	 can	 be	 closely	 approximated	 with	 the	 standardized	 normal	 random
variable	given	by

The	approximation	is	good	if	tp	and	tq	are	greater	than	5.	In	symbols,

This	 approximation	 enables	 us	 to	 easily	 calculate	 probabilities	 that	 an	 animal



executing	 a	 random	walk	 on	 the	 integers	will	 lie	 in	 some	 given	 interval	 after
many	steps.

EXERCISES
1.	Consider	 the	 random	walk	on	 the	 lattice	{0,	1,	2,	…,	100}.	 If	p	=	0.45,
find	 the	expected	 time	τj	 for	absorption	at	a	boundary,	 j	=	0,	 1,	 2,…,	100.
Plot	τj	vs.	j.
2.	A	gambler	 is	playing	a	casino	game,	and	on	each	play	he	wins	$1	with
probability	p	 =	 0.46,	 and	 he	 loses	 $1	with	 probability	q	 =	 0.54.	He	 starts
with	$50	and	decides	to	play	the	game	until	he	goes	broke,	or	until	he	wins
$100.	What	 is	 the	 probability	 of	 going	 broke	 before	 winning	 $100?	 How
long	should	he	expect	to	play?	What	if	the	odds	are	even?
3.	 Referring	 to	 Exercise	 2,	when	p	 =	 0.46,	 simulate	 three	 games	 and	 plot
realizations	on	the	same	set	of	axes.
4.	Compute	both	6!	and	10!	exactly	and	by	Stirling’s	approximation.
5.	 An	 animal,	 starting	 at	 the	 origin,	 is	 executing	 a	 random	 walk	 on	 the
integers	with	p	=	0.6.	After	40	steps	what	is	the	probability	Pr(X40	≤	10)?	If
p	=	0.5,	show	that	after	a	million	steps	 the	animal	will	almost	certainly	 lie
within	 4000	units	 of	 the	 origin.	 If	p	 =	 0.5,	what	 is	 the	 probability	 that	 its
position	after	50	time	steps	lies	in	the	interval	5	≤	k	≤	10?
6.	Write	a	computer	program	that	simulates	a	random	walk	on	the	integers,
with	X0	=	0	and	p	=	0.5.	Sketch	three	realizations	on	the	same	set	of	axes.



9.4.3	The	Poisson	Process
Consider	a	stochastic	process	taking	place	in	continuous	time	in	which	events	of
a	certain	type	can	occur	at	various	instants.	For	example:	phone	calls	arriving	at
a	 relay	 station,	 discoveries	 of	 food	 items	 by	 a	 forager,	 alpha	 particles	 emitted
from	a	radioactive	source,	or	customers	arriving	at	bank.	These	processes	can	be
modeled	by	a	Poisson	process,	defined	by	the	conditions:

for	 small	 intervals	 of	 time	 dt.	 The	 parameter	 λ	 is	 the	 rate	 parameter	 of	 the
process.	Now,	let

and	denote	the	distribution	function	by

We	can	calculate	the	probabilities	recursively	in	the	way	we	now	describe.
We	have

Therefore

Taking	the	limit	as	dt	→	0	gives

with	p0(0)	=	1.	Therefore	the	probability	that	no	event	occurs	up	to	time	t	is	an
exponentially	decreasing	function

We	use	this	same	method	to	compute	p1(t).	Observe



Therefore,

with	p1(0)	=	0.
This	method	can	be	extended	indefinitely	to	the	other	distributions,	and	we	can

obtain	the	system	of	differential	equations
(4.8)	

with	pn(0)	 =	 0.	 These	 are	 called	 the	Kolmogorov	 equations3	 for	 the	 process.
They	can	be	solved	recursively	to	get

(4.9)	
for	n	=	0,	1,	2,….	From	this	it	easily	follows	that

Beginning	with	p0(t),	one	can	easily	calculate	the	remaining	distributions.
The	probability	distribution	(4.9)	is	the	Poisson	distribution	with	parameter	λt.
To	simulate	a	Poisson	process	we	need	to	know	the	inter-event	period,	or	the

time	 between	 events.	 But	 this,	 too,	 is	 a	 random	 variable	 T.	 Without	 loss	 of
generality,	we	can	assume	that	T	is	the	waiting	time	from	0	to	the	first	event.	To
determine	how	T	is	distributed,	we	compute	the	cumulative	distribution	function
FT(t).	We	have

The	pdf	is	the	derivative,	or

which	 is	 the	 exponential	 distribution.	 Therefore,	 the	 inter-event	 time	 is
exponentially	distributed	and

This	means	the	average	waiting	time	is	1/λ.	An	important	assumption	underlying
a	Poisson	process	is	that	it	is	memoryless.	That	is,	occurrence	of	an	event	at	time
t	=	t0	has	no	influence	on	the	future	occurrence	of	events.	Symbolically,	Pr(T	>	t
+	 t0|T	 >	 t0)	 =	 Pr(T	 >	 t),	 which	 is	 easily	 obtained	 from	 the	 definition	 of
conditional	probability.



In	applications	 to	predation	events	 in	ecology,	 the	Poisson	model	describes	a
search	for	randomly	distributed	prey,	where	success	does	not	deplete	the	number
of	prey.	This	may	not	be	valid	in	some	situations,	for	example,	when	the	prey	are
clumped	or	depleted.
Now	we	 return	 to	 the	 question	 of	 simulation	 of	 a	 Poisson	 process.	 The	 key

idea	 is	 to	 note	 that	 if	T	 is	 Poisson	 distributed,	 then	 ,	 where	U	 is	 a
uniformly	 distributed	 random	 variable	 on	 [0,	 1].	 In	MATLAB,	 for	 example,	 a
sequence	 of	 event	 times	 t(k)	 can	 be	 calculated	 recursively	 in	 a	 loop	

,	where	t(0)	=	0.

Example	9.30
Assume	a	simple	birth	model	where	no	individual	dies,	and	each	has	probability
of	giving	birth	 in	a	 small	 interval	dt	 to	 a	 single	offspring	with	probability	bdt.
Then,	if	n	 is	the	population	at	time	 t,	 the	population	at	time	t	+	dt	 is	about	n	+
bndt	 +	 o(dt),	 where	 bndt	 is	 the	 probability	 of	 n	 individuals	 giving	 birth	 to	 a
single	 individual	 (one	 event)	 in	 the	 interval	 dt.	We	 can	model	 the	 population
with	a	Poisson	process	with	 rate	parameter	λ	=	λn	=	bn,	 now	depending	on	n.
The	random	variable	Xt	represents	the	number	of	individuals	in	the	population	at
time	t.	That	is,	pn(t)	=	Pr(Xt	=	n).	The	Kolmogorov	equations	(4.8)	become

(4.10)	
It	is	shown	in	Exercise	2	that	Xt	is	negatively	binomial	distributed.
In	 this	 chapter	we	 only	 scratched	 the	 surface	 of	 a	 large	 body	 of	 theory	 and

applications	of	stochastic	processes.	In	particular,	we	did	not	discuss	continuous
random	walks,	where	 each	 time	 step	 is	 infinitesimally	 small.	These	 processes,
called	Wiener	processes	or	Brownian	motion,	 are	 the	basis	 of	 diffusion	 theory
and	play	a	large	role	in	the	development	of	stochastic	differential	equations.	The
references	at	the	end	of	the	chapter	may	be	consulted	for	readable	treatments	of
these	important	concepts.

EXERCISES
1.	Show	that	 if	T	 is	Poisson	distributed	with	parameter	λ,	 then	 ,
where	 U	 is	 a	 uniformly	 distributed	 random	 variable	 on	 [0,	 1].	 Use	 a
computer	algebra	system	to	simulate	a	realization	of	a	Poisson	process	with
λ	=	1.



2.	Suppose	a	population	is	of	fixed	size	N	at	t	=	0	and	undergoes	a	pure	birth
process	with	Kolmogorov	equations	(4.10).

a)	Show,	by	direct	substitution,	that

satisfies	the	Kolmogorov	equations.
b)	Perform	and	sketch	three	simulations	of	the	birth	process	when	N	=	b
=	1	over	the	interval	[0,	5].	(Use	Exercise	1	with	λ	=	bn.)
c)	Plot	the	densities	pn(t)	for	n	=	0,	1,	2,…	at	times	 t	=	0,	1,	2,	3.	What
does	the	graph	of	pn(t)	vs.	t	look	like	for	a	fixed	n?

d)	 Show	 that	 the	 mean	 and	 variance	 of	 Xt	 are	Nebt	 and	 Nebt(ebt	 −1),
respectively.	(Hint:	Refer	to	the	negative	binomial	distribution.)
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